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Hamilton operator: N bosons in A = [0; 1]3 described by

N N
Hy= Y —Dz;+rY N°V(N(z; —z;)), on LI(AY)
j=1 i<

k > 0 is coupling constant, V > 0 short range interaction.
Scattering length: defined by zero-energy scattering equation

[—A + gV] f=0, with  f(z) -1 as |z| = x

= f(x) =1-— a—ol, for large |z
I

Here ag is scattering length of V. Equivalently,

8mag = m/V(:z:)f(:I:)da:

By scaling, k N2V (N.) has scattering length ag/N.



Ground state energy: from [Lieb-Yngvason '98], ground
state energy given to leading order by

En = 4magN + o(N)

Bose-Einstein condensation: from [Lieb-Seiringer '02], ground
state ¢y exhibits BEC, i.e. vy = Tro  n|¥n){(¥N]| is such that

YN — |po){¥ol
with ¢g(z) = 1 for all z € A.

Warning: this does not mean that ¥y ~ go%z)N. A simple com-
putation shows

N—-—1) -~
( )RV(O) > 4mwagN

(o™, Hy o§) =

Correlations play crucial role!!



Theorem [BBCS, ’'18]: Suppose k > 0 is small enough. Then
Exn = 4many(N — 1)

1 S1a 2 B
~ 15 (2 4 8ra0 — Vil + 16magp? — T 1 o(v1/4
2 ’ 2p
pEA+
where A* = 27Z3\{0} and
~ o0 (_1)kl€k—|—1
8may = kV(0) +
2 Ny
V(p1/N) ("5 V(i — pigk1)/N) | 5
< ( 12/ ) (H L / V(pg/N)
propkeNy P i=1 Pit1

Moreover, spectrum of Hy — En below ( consists of eigenvalues

S np\/|p* + 16magp? + O(N~H4(1 + ¢3))
pGAi

where np € N for all p € A%



Remark 1: definition of apr can be compared with Born series

00 (_1)kﬁk—|—1

Sman = xkV (0
Vp) ("5 V(b —piv1) )\ ~
x [ _dpy...dpy—o5 | [] — 2| V(pg)
R P  \i=1 P41

for ag. We find

lay —ag] < CN1

At the level of precision of Theorem, ground state energy
sensitive to finite volume effects!



Remark 2: Gross-Pitaevskii regime equivalent to N particles
in box with volume N3 interacting through unscaled potential V.

Thermodynamic limit: N particles in box A, with N |A| = oo
and p = N/|A\| fixed.

Lee-Huang-Yang formula: for small p, ground state energy per
particles expected to obey

E 128
im =Y = aragp |1+ (pa) /2 4 ...

N,A|=o00 N 15/
p=N/|\]|

Rigorous results: [Dyson, '58], [Lieb-Yngvason, '98],
[Erd&s-S.-Yau, '08], [Yau-Yin, '09], [Giuliani-Seiringer, '09],
[Brietzke-Solovej, '18] (extending ideas from [Lieb-Solovej, '01]).



Previous works: mathematically simpler models described by

N N
K
Hy = Y —Ou;+ 3 NPV (@ — )
=1 1<g
for g € [0;1).

In mean field regime, 5 = 0, excitation spectrum determined
by [Seiringer, '11], [Grech-Seiringner, '13], [Lewin-Nam-Serfaty-
Solovej, '14], [Derezinski-Napiorkowski, '14], [Pizzo, '16].

Dispersion of excitations given by eqns(p) = \/|p|4 + 2kV (p)p2.

For intermediate regimes, 5 € (0; 1), excitations spectrum de-
termined by [BBCS, '17].

Dispersion of excitations given by eg(p) = \/|p|4 + 2kV (0)p2.



Bogoliubov approximation: rewrite Hpy in momentum space,
using second quantization:

K ~
Hy= )Y anZap + o > V(r/N)ayy agapaqy,
peEN* p,q,rEN*

where, ay, ap are creation and annihilation operators with

[ap,a;;] = Opq, [ap,aq] = [a;,af]} =0

BEC implies ag,a§ are much larger than [ag,aj] = 1. Hence,
Bogoliubov replaced all ag, aj by factors of v N.

In the resulting Hamiltonian, he neglected all contributions cubic
and quartic in ap,a;, p # 0.

Then he diagonalized the quadratic Hamiltonian he derived.

Finally, he recognised that some expressions were first and second
Born approximations for ag and he replaced them with ag.
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Orthogonal excitations: for ¢y € L2(AY) and g = 1 on A,
write

YN = ozocp%@N + a1 ®s ¢6®(N_1) + an ®s @E?(N_Q) + -+ ayn

. 2 RsJ
where a; € LJ—SOO(/\) s

As in [Lewin-Nam-Serfaty-Solovej, '12], define unitary map

N

<N . Ji

U:L2(AY) —» 72N o= @ L3, (NP
j=0

Yy — Uy ={ag,a1,-..,an}

Excitation Hamiltonian: we use unitary map U to define

. <N <N
K'N: UHNU* . ]:‘l_‘ —>.7:_|__



For p,q € N* = 27xZ3\{0}, we have
Ua;aqU*:a;aq, UaBaOU*ZN—N+
Uapag U* = ajy /N — N, UahapU* = /N — N1 ap

Hence, similarly to Bogoliubov approximation,

(N —-1) /@V(O)

Ly = oRVOI(N = NG) 4 = NG (V= A

N—-1-N\.
+ Z pa »0p + Z /iV(p/N)ap ~ Tq
pEAi pEAi

{ (N=NL(N—1-N,)
w4 N2

+ S V(p/N)

3
p€A+

T ) V(p/N) {\/ Upt 0O p0g + h.C.]
\/Np qeN :p+q#0 N o

+ h.c.]

K N
+ N > V(r/N)a,y, aqapagy,
P,gENT ,TEN TFE—p,—q
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Gain: conjugation with U generates new constant and quadratic
contributions.

Problem: in contrast with mean-field regime, after conjugation
with U there are still large contributions in higher order terms.

Reason: U*Q2 = 90%9]\7 not good approximation for ground state!
We need to take into account correlations!

Natural idea: conjugate L with a Bogoliubov transformation
of the form

1
I'=exp |3 > T (a;aip - apa—p)
pEAi

soO that

T* apT = ap cosh(np) + aZ,sinh(np)
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Challenge: T does not preserve the excitation space ]—“_|§_N.

Modified operators: for p € A*_, define
b*=a*\/N_N+ b =\/N_N+a
D P N p N p

Remark: for all p € \*,

U b5 U = af, —2

P VN

Hence b;; Creates an excitation with momentum p and, at the
same time, it annihilate a particle from the condensate.

Total number of particles is conserved. Moreover, on states
with N < N, we expect by >~ ayp, by ~ ax.
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Generalized Bogoliubov transformations: let w =1 - f and

1 C
Up:—ﬁ’w(p/N) = npﬁﬁ
We define
<N <N
T=exp Y np(bpbt, —bpbp): FT" — F
pEAi
Then
T*bpT = cosh(np)bp + sinh(np)b~, + dp
where
ldpé| < ONTHI(WVG + 1)3/2%¢]]
Observe:

T*N_|_T ~ N+ —|— ||77||% ~ N.|. -|— C
T*KT ~ K + ||n||1 ~ K+ CN

T generates finitely many excitations but macroscopic energy.
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Renormalized excitation Hamiltonian: define

Gn = T*LNT = T*UHNUT : FEV — TV

Using cancellations due to equation for n, we find

On = 4magN +Hy + EN

where Hy = K+ Vy and, for every 6 > 0, there exists C' > 0 with

:|:5N < 57‘[]\[ + CR(N+ + 1)

Lower bound: since N < CK, we find

1
Gy — AmagN > “Hy — C

if Kk > 0 is small enough.
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Bose-Einstein condensation: if

(Yn, Hyyn) < 4magN + K,

the excitation vector £y = T*Uy, is such that

1
K > (YN, Hyyn)—4magN = (€N, GNEN)—4magN > §<§N7HN§N>_C

Hence, low energy states exhibit BEC, with optimal rate:

(ENSNLEN) S CEN,KEN) S CEN, HNEN) S C(K + 1)

Stronger bound: if ¥ € L2(A)®sV with

YNy =x(Hy < En 4+ QvYn

Then ¢ = UxNTEN with
(&n, [N + D)W 4+ 1) + W4 +1)3| en) < (¢ +1)3
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Proposition: the renormalized excitation Hamiltonian can be
decomposed as

ON=CN+Q2N+CNy+VN+EN

where C)p; is a constant, Q) is quadratic,

Cn = \/_ Y V(p/N) [ r L br (’yqbq + ogb* ) + h.c.]
P,qEN’,
_|_
q7F=—p
and, where,
C
68 < = [y + DWW + 1) + (Vg + 1)

Problem: Gy still contains non-negligible cubic and quartic
terms! This is the main difference compared with case 5 < 1!

Not surprising: from [Erdds-S.-Yau, 08], [Napiorkowski-Reuvers-
Solovej, '15] it is clear that Bogoliubov states can only approxi-
mate ground state energy up to an error O(1).

16



Cubic phase: we define

1

A e Z MNr O'fvb,r._l_,v —7‘ _I_ ')/'Ub + _,rb'U — h. C.
\/N?“EPH,’UEPL [ e }

with P ={p e N} :|p| < VN}, Pp={p€e N} :|p| > VN}.
Set S = e and introduce new excitation Hamiltonian
Iy = S*T*UNHNUNTS : FT — 72V
Remark: a similar cubic conjugation was used in [Yau-Yin, 09].

Proposition: we can decompose

IN=Cn~+Qn+Vn+EN
where Cy is a constant, Qy is quadratic in creation and anni-
hilation operators, and where

~ C
£Ey < 77 [y + DWE 4+ 1) + (V4 + 1))
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Diagonalization: quadratic term given by

~ G
On = ), Fpbpbp+ ?p [bp b—p + b, btp]
pEAi

with
Fp = (o +75) + 5(VC/N) * fiy) (i + 0p)?;
Gp = 2p°opyp + R(V('/N) * J?N)p(W’p + op)?

We define new Bogoliubov transformation

G 1
tanh(2r)) = ——2 = R=exp |5 > m(bpbt, — bpby)|

p pEN’,
Then
- 1
RQNR=3 ¥ |-B+F2 -G+ X F - GZajap + oy
pEAi pEAi
with

+ony <CON"H(Hy + 1)V + 1)
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Final excitation Hamiltonian: we define
My =R IyR=R*S*"T*UvHNUNTSR : FSN _, p<N
N + +
Then
Mpy = 47raN(N —1)

87ag)?2
+ > |-p —87rao-|-\/|p| + 16magp? —I—( O)
pe/\j_ 2p?
4 2 % /
+ Z \/|P| + 16magp apGp +Vy +EN
pEAi

where

+EN SONTVH (Hy + D)Wy + 1) + (W4 + 1))

Main theorem follows from min-max principle, because on low-
energy states of diagonal quadratic Hamiltonian, we find

VN <CN7L(¢+1)7/2
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