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Classical Kac master equation for colliding particles

Probabilistic model for 1-dim colliding particles (Kac 1956)

(i) For a collision randomly and uniformly pick a pair (i, j) of particles.

(ii) Randomly pick a ‘scattering angle’ θ with uniform probability .

(iii) Update the velocities by a rotation, i.e.,

(vi, vj)→ (v∗i (θ), v∗j (θ)) = (cos(θ)vi+ sin(θ)vj,− sin(θ)vi+ cos(θ)vj)

(iv) Assume that the collision times are exponentially distributed, i.e, the
probabiltity that the first collision time is larger than t is given by e−t.

~v = (v1, v2, · · · , vN )



Given an initial symmetric distribution F0(~v)

F (~v, t) = e−Nt(I−Q)F0

satisfies the linear
Kac Master equation

d

dt
F (~v, t) = −N(I −Q)F (~v, t)

Q =

(
N
2

)−1∑
i<j

Ri,j

Ri,jΦ :=
1

2π

∫ 2π

0
Φ(v1, · · · , v∗i (θ), · · · , v∗j (θ), · · · , vN )dθ

symmetric in i, j and self adjoint on L2(SN−1(R)).



Quantum Kac master equation for ‘colliding particles’

H , Single particle Hilbert space dimH = n

h : H → H , A single particle Hamiltonian

H⊗N , N − particle Hilbert space, (classical L2(RN, dv)

HN =

N∑
i=1

hi , Multiparticle Hamiltonian, h2 = I ⊗ h⊗ I · · · ⊗ I

(classical E(~v) =

N∑
j=1

|vj|2)



Binary collisions: Collision specification

Let C a compact metric space and a continuous one-to-one function

U : C → U(H2) and a Borel measure ν charging all open subsets of C

U(H2) , a set of unitary operators on H⊗H

i) U(σ) commutes with H2

ii) For some σ0 ∈ C, U(σ0) = IH2

iii) {U(σ) : σ ∈ C} = {U∗(σ) : σ ∈ C}

and σ → σ′ with U∗(σ) = U(σ′) is measurable.



iv) Let V : H2 → H2 be the swap transformation: V φ ⊗ ψ = ψ ⊗ φ.
Then

{U(σ) : σ ∈ C} = {V U(σ)V ∗ : σ ∈ C}
and the map σ → σ′ where V U(σ)V ∗ = U(σ′) is a measurable transfor-
mation that leaves ν invariant.

Collision operator

Q(A) =

∫
C
dν(σ)U(σ)AU∗(σ) , A ∈ B(H2)



Specification of h,

{e1, . . . en} , eigenvalues

{ϕ1, . . . , ϕn} , eigenvectors

Eigenbasis for HN , Ψα = ϕα1 ⊗ · · · ⊗ ϕαN , α ∈ {1, . . . , n}N

KE corresponding eigenspace , E ∈ specHN , HN =
⊕

E∈specHN

KE

KE corresponds to the level surfaces of the classical kinetic energy function

and we call them energy shells



A crucial feature of the classical Kac model is that for F defined on

the velocity space we have that F ◦Ri,j(θ) = F for θ ∈ [−π, π] if and only if F is

constant on level surfaces of the energy function Ei,j(~v) = v2
i + v2

j .

Define the ‘Energy algebra AN ’ as the

commutative algebra generated by the spectral projections of HN

∑
E∈specHN

λEPE

PE projections onto KE

Functions of HN



Obviously

A2 ⊂ {U(σ) : σ ∈ C}′ (commutant)

Define an ‘Ergodic Collision Specification’ by requiring that

{U(σ) : σ ∈ C}′ = A2

In what follows we use as the inner product on B(HN )

(A,B) = Tr[A∗B]



Examples

H = C2 ,HN = (C2)⊗N

h =

[
0 0
0 1

]

HN =

N∑
j=1

hj

has eigenvalues {0, . . . , N}

For E ∈ {0, . . . , N},

dim(KE) =

(
N
E

)
.



Identify C2 ⊗ C2 with C4 using the basis(
1
0

)
⊗
(

1
0

)
,

(
0
1

)
⊗
(

1
0

)
,

(
1
0

)
⊗
(

0
1

)
,

(
0
1

)
⊗
(

0
1

)
.

|00〉 , |10〉 , |01〉 , |11〉 ,

[
a1,1 a1,2
a2,1 a2,2

]
⊗
[
b1,1 b1,2
b2,1 b2,2

]
=: A⊗B is represented by

[
b1,1A b1,2A
b2,1A b2,2A

]
.

Basis of eigenvectors of HN , |α1, . . . , αN〉 in which each αj is either 0 or 1.

HN |α1, . . . , αN〉 =

 N∑
j=1

αj

 |α1, . . . , αN〉 .



In this basis,

H2 =

[
0 0
0 1

]
⊗ I + I ⊗

[
0 0
0 1

]
=


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

 .

Spec(H2) = {0, 1, 2}

P0 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , P1 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 and P2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .



Example A: Define C = S1× S1× S1× S1 identifying each copy of
S1 with the unit circle in C so that the general point in σ ∈ C has the
form σ = (eiϕ, eiθ, eiψ, eiη). Then define

U(eiφ) :=


eiθ 0 0 0

0 eiψ cos θ −eiϕ sin θ 0

0 e−iϕ sin θ e−iψ cos θ 0

0 0 0 eiη


Choosing ν to be the uniform probability measure (Haar measure) on C
gives us a collision specification (C, U, ν).



A simple computation shows that for every operatorA onH2 = C2⊗C2

identified as the 4×4 matrix with entries ai,j using the basis given above,

QA =

∫
C

dν(σ)U(σ)AU∗(σ) =


a1,1 0 0 0

0 1
2(a2,2 + a3,3) 0 0

0 0 1
2(a2,2 + a3,3) 0

0 0 0 a4,4


= a1,1P0 +

a2,2 + a3,3

2
P1 + a4,4P2 ∈ A2 .(1)

That
{U(σ) : σ ∈ C}′ = A2

follows from Schur’s lemma and hence (C, U, ν) is ergodic.



Lemma
Let (C, U, ν) be a collision specification.Let Φ be a convex function on
B(H2) with the property that for all U ∈ U(H2) and all A ∈ B(H2),
Φ(UAU∗) = Φ(A). Then

Φ(QA) ≤ Φ(A) (2)

and if Φ is strictly convex, there is equality in (2) with Φ(A) <∞ if and
only if A ∈ {U(σ) : σ ∈ C}′. In particular, taking Φ(A) = Tr[A∗A],
the eigenspace of Q with eigenvalue 1 is {U(σ) : σ ∈ C}′.



For the next simplest example B, we take C and U as in the previous
example, but we take ν to be a non-uniform probability measure on C.
For example, take

ν = (2π)−4(1 + cosϕ)(1 + cos θ)(1 + cosψ)(1 + cos η)dϕdθdψdη .

It is easy to check that conditions (i) through (iv) are satisfied. Then

QA =


a1,1

1
8a1,2

1
8a1,3

1
2a1,4

1
8a2,1

1
2(a2,2 + a3,3) 0 1

4a2,4
1
8a3,1 0 1

2(a2,2 + a3,3) 1
4a3,4

1
2a4,1

1
4a4,2

1
4a3,4 a4,4

 . (3)

In this case, QA /∈ A2. However, it is clear that limn→∞QnA is in A2,
and hence (C, U, ν) is ergodic.



Quantum Kac generator

Let {U(σ) σ ∈ C} be an ergodic set of collision operators and let ν
be a given Borel probability measure on C. Define the operators QN and
LN on B(HN ) by

QN =

(
N
2

)−1∑
i<j

Qi,j and LN = N(QN − IHN ) .

Qi,jA =

∫
C

dν(σ)Ui,j(σ)AU∗i,j(σ) .

Qi,j preserves positivity. TrQi,jA = TrA, Qi,jI = I , Qi,j is a Quan-
tum Markov Operator and restricted to density matrices a Quantum
Operation.



The Quantum Kac Master Equation (QKME) is the evolution equation

on the set of density matrices given by

d

dt
%(t) = LN%(t) .

Since ‖LN‖∞ ≤ 2N , the QKME is solved by exponentiation:

For each t ≥ 0 ,we may define an operator PN,t by

PN,tA =

∞∑
k=1

e−Nt
(Nt)k

k!
QkNA = etLNA .

This map is completely positive, i.e., it induces a map in

B(HN )⊗Mn(C) that is positive in ⊕nHN



Spectrum of LN

Let (C, U, ν) be a collision specification, and let LN and QN be defined
in terms of it as before. QN and LN have discrete spectrum: There is
a complete orthonormal basis consisting of eigenvectors of QN and LN .
Moreover, Spec(QN ) ⊂ (0, 1], and Spec(LN ) ⊂ (−N, 0]. The null space
of LN , Null(LN ), is given by

Null(LN ) = {A ∈ B(HN ) : Ui,j(σ)AU∗i,j(σ) = A all 1 ≤ i < j ≤ N, σ ∈ C} .

For each N , let CoN be the commutant

CoN = {Ui,j(σ) : 1 ≤ i < j ≤ N, σ ∈ C}′ .

Obviously, AN ⊂ CoN = Null(LN ) and A2 = Co2



Steady states

lim
t→∞

PN,tA = ECoN
A

Steady states are all the density matrices ρ with ρ = ECoN
ρ

If (U, C, ν) is an ergodic collision specification, then

CoN is a commutative algebra which is diagonal in the basis Ψα.

CoN is in general not equal to AN , i.e., A ∈ CoN is in general not a function of HN .



How to describe CoN?

CoN is generated by its minimal projection.

A projection P is minimal if it is non-zero and there is no projection P ′ such that P − P ′ > 0.

If P ∈ CoN is minimal, there exists a unique E ∈ specHN such that PE ≥ P .

It follows that CoN = AN if and only if PE is minimal for each E ∈ specHN



Definition: (U, C, ν) is ergodic at E if PE is minimal

(U, C, ν) is fully ergodic if PE is minimal for all E ∈ specHN

How to check full ergodicity?

Observation: If a collision specification (C, U, ν) is ergodic,

there is a finite sequence {σ1, . . . , σs} in C such that

〈ψek⊗ψe`, U(σs) · · ·U(σ2)U(σ1)ψem⊗ψen〉H2
6= 0 ⇐⇒ ek+e` = em+en .

α, α′ ∈ {1, . . . , n}N are adjacent iff for some pair i, j we have that eαi + eαj = eα′i
+ eα′j

,

and for each k 6= i, j, eαk = eα′k
.

α, α′ ∈ {1, . . . , n}N are equivalent iff there exists a path of adjacent pairs connecting α and α′.



Fact: The minimal projections P ∈ CoN are precisely those that are given by

P =
∑
α∼α0

|Ψα〉〈Ψα|

for some α0 with HNΨα0 = EΨα0

A collision specification is fully ergodic if and only if whenever

α, α′ ∈ {1, . . . , n}N satisfiy Eα = Eα′ then α ∼ α′.

Example 1: Assume that {e1, . . . , en} are rationally independent. Then α ∼ α′

if and only if α′ is a permutation of α

As a consequence CoN = AN and the system is fully ergodic.



Example 2: Three single particle states: e1 = 1, e2 = 2, and e3 = 3, 10 particles.

α1, α2, α3 ∈ {1, 2, 3}10

Occupation number representation: α1 : (4, 4, 3);α2 : (5, 2, 4);α3 : (3, 3, 4)

Total energy 21.

1 2 3 1 2 3 1 2 3
Fig. 1 Fig. 2 Fig. 3



Theorem
Let (C, U, ν) be an ergodic collision specification, and let LN be defined

as before. A density matrix % on HN satisfies LN% = 0 if and only if it
is a convex combination of normalized minimal projections in CoN .

A density matrix % on HN is a product state if % = ρ1 ⊗ · · · ⊗ ρN
where each ρj is a density matrix on H.

A density matrix % on HN is separable in case % is a closed convex hull
of the product states.

A density matrix % on HN is entangled in case is is not separable,

Corollary: Separability of steady states
Let (C, U, ν) be an ergodic collision specification, and let LN be defined

as before. All density matrices % onHN that satisfy LN% = 0 are separa-
ble. In other words, the Quantum Kac evolution destroys entanglement.



Propagation of chaos, the Quantum Kac Boltzmann equation

Chaoticity

Let ρ be a density matrix on H. A sequence {%N}N∈N of symmetric
density matrices on HN is ρ-chaotic in case

lim
N→∞

%(1) = ρ and lim
N→∞

%(k) = ⊗kρ .

%(k) = Trk+1,...,N%



Theorem (Propagation of Chaos)

Let {U(σ) : σ ∈ C} be an ergodic set of collision operators and
let ν be a given Borel probability measure on C. Let LN be defined in
terms of these as above. Then the semigroup PN,t = etLN propagates
chaos for all t meaning that if {%N}N∈N is a ρ-chaotic sequence, then
for each t, {PN,t%N}N∈N is a ρ(t)-chaotic sequence for some ρ(t) =

limN→∞(PN,t%N )(1), where in particular this limit of the one-particle
marginal exists and is a density matrix.

This density matrix ρ(t) satisfies a quantum version of the Kac-Boltzmann equation



Quantum Wild convolution operator

Let (C, U, ν) be a collision specification, The corresponding quantum
Wild convolution is the bilinear form sending (A,B) to A ? B where

A ? B = Tr2

[∫
C

dν(σ)U(σ)[A⊗B]U∗(σ)

]
= Tr2[Q(A⊗B)] .

Theorem

Suppose that {%N (0)}N∈N is ρ(0)-chaotic, and that for eachN , %N (t) =
exp(tLN )%N (0) for all t > 0. Then ρ(t) satisfies the Quantum Kac-
Boltzmann Equation

d

dt
ρ(t) = 2(ρ(t) ? ρ(t)− ρ(t)) .



Example B revisited:

In this example, let (C, U, ν) be the collision specification from example
B. Let a, b ∈ [0, 1] and let w, z ∈ C satisfy |z|, |w| ≤ 1 so that with

ρ1 =

[
a z
z 1− a

]
and ρ2 =

[
b w
w 1− b

]
,

ρ1 and ρ2 are two generic density matrices. Then using the basis from
the second example to identify C2 ⊗ C2 with C4,

ρ1 ⊗ ρ2 =


ab zb aw zw
zb b(1− a) zw w(1− a)
aw zw a(1− b) z(1− b)
zw (1− a)w (1− b)z (1− a)(1− b)

 .



Then

Q(ρ1 ⊗ ρ2) =


ab 1

8zb
1
8aw

1
2zw

1
8zb

1
2(a + b)− ab 0 1

4w(1− a)
1
8aw 0 1

2(a + b)− ab 1
4z(1− b)

1
2zw

1
4(1− a)w 1

4(1− b)z (1− a)(1− b)

 .

Note that Tr2, the partial trace over the second factor, is obtained by
adding up the two diagonal 2×2 blocks, and Tr1, the partial trace over the
first factor, is obtained by taking the trace in each 2×2 block. Therefore,

ρ1 ? ρ2 =

[ 1
2(a + b) z

8(2− b)
z
8(2− b) 1− 1

2(a + b)

]
.



In particular, taking ρ = ρ1,

ρ ? ρ =

[
a z

8(2− a)
z
8(2− a) 1− a

]
,

which is nonlinear in ρ. Note also, that in contrast with the classical case,
the quantum Wild convolution is not commutative; ρ1?ρ2 6= ρ2?ρ1 when
z(2− b) 6= w(2− a).

The Quantum Kac Boltzmann equation has a unique global solution

ρ(t) = e−2tρ0 +

∫ t

0
e2(s−t)ρ(s) ? ρ(s)ds

The QKBE is nonlinear in general and preserves positivity and the trace



What can be done in this framework:

Steady states for the QKBE

Collision invariants

Linearized QKB equation

What should be done in this framework:

Approach to equilibrium

Compute the gap.

Study approach to equilibrium in entropy.



.

Dear Heinz,

All the best wishes for your further activities, mathematical and otherwise



Steady states for the QKBE

Fix an ergodic collision specification.

h =
∑

e∈Spec(h)

ePe

Steady states are precisely the states ρ with ρ = ρ ? ρ

Gibbs state is a steady state

ρβ ⊗ ρβ = Z−2
β e−βH2 ∈ A2

S(ρ) = −Tr[ρ log ρ]



Theorem (steady states)
Let h have the spectral resolution as a above, and let ρ be a density

matrix such that ρ = ρ ? ρ and S(ρ) <∞. Then ρ has the form

ρ =
∑

e∈Spec(h)

λePe (4)

for non-negative numbers {λe : e ∈ Spec(h)} such that
∑
e∈Spec(h) Tr[Pe]λe =

1. Moreover, if {ei, ej, ek, e`} ⊂ Spec(h) then

ei + ej = ek + e` ⇒ log λei + log λej = log λek + log λe` . (5)

Conversely, every such density matrix ρ is a steady state.



This theorem says in particular that if ρ is a steady state solution of the
QKBE for an ergodic collision specification, then ρ = f (h) for some real
valued function on Spec(h). This may be the only restriction. Indeed if h
is such that whenever ej +ek = e`+em then either ej = e` and ek = em
or else ej = em and ek = e`, then there is no restriction, and in this case,
if ρ = f (h), then ρ ? ρ = ρ.

On the other hand, suppose h has evenly spaced eigenvalues and there
are at least three of them. To be specific, suppose that dim(H) = n ≥
3, and Spec(h) = {0, 1, . . . , n − 1}. Then for each j = 1, . . . n − 2,

ej−1 + ej+1 = 2ej, and hence λej =
√
λej−1λej+1. This means that for

some β ∈ R, ρ = Z−1
β e−βh. (In finite dimension, negative temperatures

are allowed.) In general, the more ways a given eigenvalue E of H2 can
be written as a sum of eigenvalues of h, the more constraints there are on
the set of steady state solutions of the QKBE.



Steady states and collision invariants
Let h be a self adjoint operator on H. The set S∞,h(H) consists

of those density matrices such that (4) and (5) are satisfied. The set
S∞,h(H)◦ consist of those ρ ∈ S∞,h(H) that are strictly positive. The
set of collision invariants is the set of self adjoint operators A of the
form A = log ρ, ρ ∈ S∞,h(H)◦.

Theorem
Let ρ∞ ∈ S∞,h(H)◦. Then for all ρ ∈ S(H),

Tr[log(ρ∞)ρ] = Tr[log(ρ∞)ρ ? ρ] . (6)

In particular, for every solution ρ(t) of the QKBE, and every collision
invariant A, Tr[Aρ(t)] is independent of t. Moreover, for each ρ∞ ∈
S∞,h(H) the relative entropy D(ρ(t)‖ρ∞) is strictly monotone decreas-
ing along any solution that is not a steady state solution.



Linearized QKBE

M(v) = (2π)−1/2e−v
2/2

∫
ρ(v)v2dv =

∫
M(v)v2dv = 1 (7)

ρ = M(1 + f ) , f small (8)

∫
v2f (v)M(v)dv = 0 , S(ρ) ≈ S(M)− 1

2

∫
f2Mdv

Thus, expect the linearized KBE to be a dissipative equation on L2(R,Mdv).



d

dt
S(ρ + tA)

∣∣∣
t=0

= Tr[log(ρ)A]

[B]−1A =

∫ ∞
0

1

sIH + B
A

1

sIH + B
ds

[B]A =

∫ 1

0
BsAB1−sds

d2

dt2
S(ρ + tA)

∣∣∣
t=0

= Tr[A[ρ]−1A]

Bogoliubov-Kubo-Mori inner product with reference state ρ

〈A,B〉BKM = Tr[A∗[ρ]−1B]



Fix a strictly positive steady state ρ∞ in such a way that for ρ close to ρ∞

Tr[log(ρ̂∞)ρ] = Tr[log(ρ̂∞)ρ∞]

for all positive steady states ρ̂∞. This is in analogy to (7).

Define in analogy to (8)

A = [ρ∞]−1(ρ− ρ∞)



Linearized QKBE

d

dt
X = KX

KX = 2
(

[ρ∞]−1[ρ∞ ? X + X ? ρ∞]−X
)

X = [ρ∞]A

Linearized QKBE at ρ∞



Theorem

Let K be the linearized Kac-Boltzmann operator at a steady state ρ∞.
Let 〈·, ·〉BKM be the corresponding inner product on B(H). Then for all
A,B ∈ B(H),

〈B,KA〉BKM = 〈KB,A〉BKM and 〈A,KA〉BKM ≤ 0 . (9)

Moreover 〈A,KA〉BKM = 0 if and only if A is in the linear span of the
collision invariants.


