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Classical Kac master equation for colliding particles

Probabilistic model for 1-dim colliding particles (Kac 1956)

1) For a collision randomly and uniformly pick a pair (z, 7) of particles.
y
ii) Randomly pick a ‘scattering angle’ 6 with uniform probability .
yPp
(iii) Update the velocities by a rotation, i.e.,

(v, vf) = (v5'(8), v}k(e)) = (cos(@)v; +sin(0)v;, — sin(0)v; + cos(0)v;)

(iv) Assume that the collision times are exponentially distributed, i.e, the
probabiltity that the first collision time is larger than ¢ is given by e .

U = (Ul,’UQ,"' 7UN)



Given an initial symmetric distribution Fj(v)

F(o,t) = e NU-Q) g,
satisfies the linear
Kac Master equation

d
N —1
Q= ( 9 ) ZRM
1<)
1,] T I 0 1 ) ) » 79 )

symmetric in 4, j and self adjoint on L*(S™Y~1(R)).



Quantum Kac master equation for ‘colliding particles’

‘H , Single particle Hilbert space dimH = n

h:H — H, A single particle Hamiltonian

HON N — particle Hilbert space, (classical L2(RN, dv)
N

Hy = Z h; , Multiparticle Hamiltonian, ho =1 h 1 --- Q[
1=1

N
(classical E(v) = Z !’Uj|2>
j=1



Binary collisions: Collision specification
Let C a compact metric space and a continuous one-to-one function

U :C — U(H9) and a Borel measure v charging all open subsets of C

U(Hs9) , aset of unitary operators on H ® H

i) U(o) commutes with Ho
ii) For some o( € C, U(og) = Iy,
i) {U(o) 0 €C}={U"(0): 0 €C}

and 0 — o’ with U*(0) = U(0’) is measurable.



iv) Let V' : Ho — Ho be the swap transformation: Vo ® ¥ = 1 ® ¢.
Then
{U(g): c€C={VU(@)V*: o€}

and the map o — ¢’ where VU (0)V* = U(c¢’) is a measurable transfor-
mation that leaves v invariant.

Collision operator

Q(A) = /CdV(U)U(O)AU*(a) A € B(H9)



Specification of h,

{ei,...en}t , eigenvalues

{901, Cee gon} , elrgenvectors

Eigenbasis for Hy , Vo = @a; @ -+ @ Qay , € {1,...,n}N

IC g corresponding eigenspace , B € specHy , Hy = @ Kgp
FEespecH p

IC g corresponds to the level surfaces of the classical kinetic energy function

and we call them energy shells



A crucial feature of the classical Kac model is that for F' defined on
the velocity space we have that F'o R; ;(0) = F' for 0 € [—m, 7| if and only if F' is
constant on level surfaces of the energy function E; ;(7) = U,L-Q + v?.
Define the ‘Energy algebra Ay’ as the

commutative algebra generated by the spectral projections of H
> ApPr
EespecH

Ppr projections onto Kg

Functions of H



Obviously

Ay c {U(0) : 0 € C} (commutant)

Define an ‘Ergodic Collision Specification’ by requiring that

(U(o):0€CY = Ay

In what follows we use as the inner product on B(H y)

(A, B) = Te[A*B]



Examples

H=C> Hy = (CH)N

00
ks

N
Hy =) h

g=1

has eigenvalues {0, ..., N}

For E € {0,...,N},

dim (K ) = (g) |



[dentify C? @ C2 with C* using the basis

()2 G) - ()eG) ()=0) - ()=()

00) , [10), [01), [11),

ajj ajp bi1bio| - b1.1A4 b1 9A
[aQ,l a272]®[b271 b272] =: A®B is represented by [bg)lA oo A | -

Basis of eigenvectors of Hpy, |aq, ..., apy) in which each a; is either 0 or 1.

N
Hylog,...;any = [ Y aj| o, an) .
=



=

(1000
0000
0000

]®1+1®[

In this basis,

Spec(Ho) = {0, 1,2}

(0000
0100
0010

0000

00
01

(0000
0100
0010

0000

0002

and P2 —

(0000
0000
0000

0001



Example A: Define C = St x S x S1 x St identifying each copy of
St with the unit circle in C so that the general point in o € C has the
form o = (&', el et e'N). Then define
e 0 0 0

0 eWcosh —ePsinf 0
0 e ¥singd e cosh 0
0 0 0 e

U(ei(b) =

Choosing v to be the uniform probability measure (Haar measure) on C
gives us a collision specification (C, U, v).



A simple computation shows that for every operator A on Hy = C2C?
identified as the 4 X 4 matrix with entries a; ; using the basis given above,

i ai | 0 0 0
0 3(aza+az3) . 0
0 0 Q(CLQQ + a373) 0
0 0 0 a44 |

a2 + a3 3
= aj 1+ 5 P+ ag 4P € Ay (1)

0A — /C (o) U (o) AU* (o) =

That
{(U(o) : c€CY = Ay

follows from Schur’s lemma and hence (C, U, v) is ergodic.



Lemma
Let (C,U,v) be a collision specification.L.et ¢ be a convex function on

B(H>) with the property that for all U € U(Hs) and all A € B(Hs),
O(UAU*) = B(A). Then

O(QA) < (A) (2)

and if ® is strictly convex, there is equality in (2) with $(A) < oo if and
only if A € {U(c) : o € C}. In particular, taking ®(A) = Tr[A*A],
the eigenspace of Q with eigenvalue 1is {U(o) : o € C}.



For the next simplest example B, we take C and U as in the previous
example, but we take v to be a non-uniform probability measure on C.

For example, take
v = (2m) (1 + cos ) (1 + cos 0)(1 + cos )(1 + cos n)dedddydn .

[t is easy to check that conditions (i) through (7v) are satisfied. Then

QA =

1.1
o
504 1

1
3412

tas1 3(ags + az3)

0

1
1442

1
01,3
0

l(ago +a33) 1a34

1
7143,4

501 4
i@2,4

44

(3)

In this case, QA ¢ Ay. However, it is clear that limy,—sso Q" A is in Ay,
and hence (C, U, v) is ergodic.



Quantum Kac generator

Let {U(o) o € C} be an ergodic set of collision operators and let v
be a given Borel probability measure on C. Define the operators Q and

Ly on B(Hp) by

—1
N
QN—(2> ZQZJ and LN:N<QN—[HN).
1<
Q; A= /CdV(O')UZ'J(O')AU;:j(O') .

Q; j preserves positivity. TrQ; ;A ="TrA, Q; ;1 =1, Q; ; 1s a Quan-
tum Markov Operator and restricted to density matrices a Quantum
Operation.



The Quantum Kac Master Equation (QKME) is the evolution equation

on the set of density matrices given by

d

EQ(t) = Lyol(t) .

Since ||[Ln|loo < 2N, the QKME is solved by exponentiation:

For each t > 0 ,we may define an operator Py ; by
0 k
_N (Nt)
Pn A = Z e t—k! QlfVA = eliN A
k=1

This map is completely positive, i.e., it induces a map in

B(Hy) ® My (C) that is positive in @"H y



Spectrum of L

Let (C, U, v) be a collision specification, and let £ and Qv be defined
in terms of it as before. Qn and L have discrete spectrum: There is
a complete orthonormal basis consisting of eigenvectors of Qar and L.

Moreover, Spec(Q ) C (0,1}, and Spec(Ly) C (=N, 0]. The null space
of L, Null(L ), is given by

Null(Ly) ={A € B(Hn) : U j(0)AU; (o) =A alll<i<j<N,o€eC}.

)

For each N, let Cop be the commutant
CON:{UZ'J'(U) 1 <1<y SN,OEC}/.

Obviously, Ay C Cop = Null(L ) and Ay = Coy



Steady states

lim P ,tA = ECONA

t—00

Steady states are all the density matrices p with p = Ecgp
If (U,C,v) is an ergodic collision specification, then
Cop 18 a commutative algebra which is diagonal in the basis V.

Coyy is in general not equal to Ay, i.e., A € Cop is in general not a function of H .



How to describe Copn?
Cop is generated by its minimal projection.
A projection P is minimal if it is non-zero and there is no projection P’ such that P — P’ > 0.
If P € Cop is minimal, there exists a unique /' € specH v such that Pp > P.

[t follows that Copn = Ay if and only if Pp is minimal for each E € specH p



Definition: (U,C,v) is ergodic at F if Pr is minimal
(U,C,v) is fully ergodic if Py is minimal for all E € specH y
How to check full ergodicity?

Observation: If a collision specification (C, U, v) is ergodic,

there is a finite sequence {0y, ..., 05} in C such that

(Ve @e,, Ulos) -+ U(02)U(01)Ve,, Qe )2, #0 = epter=emten.

a, o €{1,... ,n}N are adjacent Il for some pair ¢, j we have that eq; + ea; =€,/ + €,
d J
and for each k # 1, j, eq, = €al

a, o €{1,... ,n}N are equivalent iff there exists a path of adjacent pairs connecting o and o',



Fact: The minimal projections P € Cop are precisely those that are given by

for some oy with HyVo, = BV,
A collision specification is fully ergodic if and only if whenever
a,a’ € {1,...,n}" satisfiy E, = E then o ~ o/.
Example 1: Assume that {eq,..., ey} are rationally independent. Then o ~ o/
if and only if &' is a permutation of o

As a consequence Con = A and the system is fully ergodic.



Example 2: Three single particle states: e; =1, eo9 = 2, and e3 = 3, 10 particles.
ap, g, ag € {1,2,3}Y
Occupation number representation: aq : (4,4,3); a9 : (5,2,4); a3 : (3,3,4)

Total energy 21.

1 2 3 1 2 3 1 2 3
Fig. 1 Fig. 2 Fig. 3



Theorem
Let (C, U, v) be an ergodic collision specification, and let £ be defined
as before. A density matrix g on H v satisfies Lo = 0 if and only if it
is a convex combination of normalized minimal projections in Cop;.

A density matrix o on Hp is a product state it p = p1 ® -+ Q pn
where each p; is a density matrix on H.

A density matrix o on H v is separable in case g is a closed convex hull
of the product states.

A density matrix o on H is entangled in case is is not separable,

Corollary: Separability of steady states
Let (C, U, v) be an ergodic collision specification, and let £ be defined
as before. All density matrices p on H nr that satisty L0 = 0 are separa-
ble. In other words, the Quantum Kac evolution destroys entanglement.



Propagation of chaos, the Quantum Kac Boltzmann equation
Chaoticity

Let p be a density matrix on H. A sequence {on}yen of symmetric
density matrices on H s is p-chaotic in case

lim (D) = and lim (k) — ®k .
N—00 ¢ P N—00 ¢ P
Q(k) — Tl"/c+1,...,NQ



Theorem (Propagation of Chaos)

Let {U(o) : o € C} be an ergodic set of collision operators and
let v be a given Borel probability measure on C. Let L be defined in
terms of these as above. Then the semigroup Py ; = etEN propagates
chaos for all ¢ meaning that if {on}yen 18 a p-chaotic sequence, then
for each t, {PntoN}NeN is a p(t)-chaotic sequence for some p(t) =

lim 00 (P, 0 N)(1>, where in particular this limit of the one-particle
marginal exists and is a density matrix.

This density matrix p(t) satisfies a quantum version of the Kac-Boltzmann equation



Quantum Wild convolution operator

Let (C,U,v) be a collision specification, The corresponding quantum
Wild convolution is the bilinear form sending (A, B) to A x B where

Ax B ="Try [/C dv(o)U(0)[A® BlU*(0)| = Try|Q(A® B)] .

Theorem

Suppose that {opn(0) } yen is p(0)-chaotic, and that for each N, opn(t) =
exp(tLy)on(0) for all t > 0. Then p(t) satisfies the Quantum Kac-
Boltzmann Equation

%p(t) = 2(p(t) » p(t) — p(t)) -



Example B revisited:

[n this example, let (C, U, v) be the collision specification from example

B. Let a,b € (0,1

P1

p1 and po are two

the second example to identify C? @ C? with C*

P1 K p2 =

and let w, z € C satisfy |z|, lw| < 1 so that with

wt e []

a z
z1—a w1l—2>

generic density matrices. Then using the basis from

ab 2b aw 2W

zb b(1—a) Zw w(l — a)

aw zw a(l—0b) z(1-0)
zw (1 —a)w (1-6)Z (1 —-a)(l—-05)



Then

ab %Zb %aw %zw
1 1 !
| den-w Y0 o
Q(p1 & p2) %a@ 0 %(a +b) —ab %z(l — b)
57w j(l—aw  $(1-0z (1—a)(1-1b)

Note that Tro, the partial trace over the second factor, is obtained by
adding up the two diagonal 2 x 2 blocks, and Trq, the partial trace over the
first factor, is obtained by taking the trace in each 2 x 2 block. Therefore,
Ha+b) £2-0b)

pLxp2= |2
2(2—b) 1—4(a+b)



In particular, taking p = p1.

a 22—a
PP 22— a) 8<1—a) ’
3

which is nonlinear in p. Note also, that in contrast with the classical case,
the quantum Wild convolution is not commutative; p1xp9 # poxp1; when

2(2—5b) # w2 —a).

The Quantum Kac Boltzmann equation has a unique global solution

t
olt) = oy + / 25 5(s) % p(s)ds
0

The QKBE is nonlinear in general and preserves positivity and the trace



What can be done in this framework:
Steady states for the QKBE
Collision invariants
Linearized QKB equation
What should be done in this framework:
Approach to equilibrium
Compute the gap.

Study approach to equilibrium in entropy:.



Dear Heinz,

All the best wishes for your further activities, mathematical and otherwise



Steady states for the QKBE

Fix an ergodic collision specification.

h = Z e P,

ecSpec(h)
Steady states are precisely the states p with p = px p

Gibbs state is a steady state

PR pg = Zgze_ﬁHQ c As

S(p) = —Tr|plog p)



Theorem (steady states)
Let A have the spectral resolution as a above, and let p be a density
matrix such that p = px p and S(p) < co. Then p has the form

p=> APl (4)
e€Spec(h)

for non-negative numbers { A : e € Spec(h)} such that 3 ccqpec(p) Tr[PelAe =
1. Moreover, if {e;, e, e, eg} C Spec(h) then

eitej=ept+e = loghe +loghe; =loghe, +1logAe, . (D)

Conversely, every such density matrix p is a steady state.



This theorem says in particular that if p is a steady state solution of the
QKBE for an ergodic collision specification, then p = f(h) for some real
valued function on Spec(h). This may be the only restriction. Indeed if h
is such that whenever e+ e, = ep+ ey, then either e; = ey and e, = e
or else e; = ey and e, = ey, then there is no restriction, and in this case,
if p= f(h), then px p = p.

On the other hand, suppose h has evenly spaced eigenvalues and there
are at least three of them. To be specific, suppose that dim(H) = n >
3, and Spec(h) = {0,1,...,n — 1}. Then for each j = 1,...n — 2,

ej—1+ejy1 = 2e;, and hence )\ej — \/)\ej_l)\ejH. This means that for

some 8 € R, p= Zﬁ_le_ﬁh. (In finite dimension, negative temperatures

are allowed.) In general, the more ways a given eigenvalue E of Hy can
be written as a sum of eigenvalues of h, the more constraints there are on
the set of steady state solutions of the QKBE.



Steady states and collision invariants
Let h be a self adjoint operator on H. The set &y, (H) consists
of those density matrices such that (4) and (5) are satisfied. The set
S o n(H)° consist of those p € G4, ,(H) that are strictly positive. The
set of collision tnvariants is the set of self adjoint operators A of the
form A =logp, p € S, p(H)°.

Theorem
Let poo € Soo (H)°. Then for all p € S(H),

Trllog(poc)p] = Trllog(poc)p * p) - (6)

[n particular, for every solution p(t) of the QKBE, and every collision
invariant A, Tr|Ap(t)] is independent of ¢. Moreover, for each po €
S 1 (H) the relative entropy D(p(t)||poc) is strictly monotone decreas-
ing along any solution that is not a steady state solution.



Linearized QKBE

M(v) = (27T>_1/26_U2/2
/p(v)dev = /M(v)vzdv =1 (7)
p=M(1+ f),f small (8)

/vzf(v)M(v)dv:O, S(p) zS(M)—%/szdv

Thus, expect the linearized KBE to be a dissipative equation on L*(R, Mdv).



%s(p + tA)‘t:O = Trllog(p)A|

B~ 'A / [ W S
— S
0 S]fH + B SI’H + B

1
[B]A = / BSAB'™%ds
0

—3S(p+1A)| = TilAlg] A

Bogoliubov-Kubo-Mori inner product with reference state p

(A, B) gy = Tr[A*[p] ' B]



Fix a strictly positive steady state poo in such a way that for p close to po

Trlog(poo)p| = Tr[log(poo) poc]
for all positive steady states poo. This is in analogy to (7).

Define in analogy to (8)

A= [Poo]_l(P — Poo)



Linearized QKBE

d
—X =KX
dt

KX =2 ([Poo]_l[Poo*X + X * poc] — X)

X = [po]A

Linearized QKBE at p~o



Theorem

Let KC be the linearized Kac-Boltzmann operator at a steady state poo.
Let (-, ) gz be the corresponding inner product on B(H). Then for all
A, B € B(H),

(B,KA)prym = (KB, A)pgy and (A, KA) gy <0, (9)

Moreover (A, KCA) gy = 0 if and only if A is in the linear span of the
collision invariants.



