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Excess Charge of Atoms

@ Q(Z) Excess charge Q(Z2);
o N Maximal total number of electrons;
@ Z the nuclear charge.

For neutral atoms, Q(Z) = 0.



@ Known results on different models (the idea of homogenization)

© Viasov equation for electrons (with point nuclei)

© Time dependent Thomas-Fermi equation (a fluid dynamic system)



Known results on different models and

the idea of homogenization



Known results on different models

Stationary models

Thomas-Fermin, No negative ions. Gombas (1949) Lieb, Simon (1977).
Thomas-Fermin, Q(Z) < Z. Benguria (unpublished).
Thomas-Fermi-Weizsicker. Q(Z) < 0.7335. Benguria, Lieb (1985).
Hellmann, Hellmann-Weizsicker, Benguria, Hoops, Siedentop (1992).

Many body Schrodinger, Q(Z) < Z + 1 (proved the ionization
conjecture for Hydrogen Z = 1), Lieb (1984)

@ Many body Schrédinger, an(N — 1) < Z(1 + 0.68N~%/3), Nam (2012)

@ Hartree Fock, Q(Z) is bounded uniformly in Z. Solovej (1993 for
reduced model, 2003 for full model)

@ Miiller functional, Frank, Nam, Bosch (2016).
@ Thomas-Fermi-Dirac-Weizsacker, Frank, Nam, Bosch (2018).
Time dependent case

@ Nonlinear Hartree, Lenzmann and Lewin (2013)

@ many-body Schrodinger,Lenzmann and Lewin (2013)



|dea of homogenization (Benguria, Lieb,

We take N particle Schrodinger problem as an example

N
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[HVZ theorem, Winter & Zhislin, 1960]: Let Eo(/N) be the ground state
energy of Hy. If Eg(N) < Eg(N — 1), then there exists a ground state
eigenfunction of Hy.

Then the corresponding Schrodinger equation is
0 = (Hn— E(N))y

= (HN—l —Ay——+ Z P XN! 0(N)>¢
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|dea of homogenization (Benguria, Lieb, ...)

Testing this equation by |xy|¢ and noticing the fact that

(Hn-19; [xnlih) — Eo(N)(@, [xnv )
> Eo(N —1)(, xn|)) = Eo(N) (4, [xn[¢) > 0.

n il + L
Xi XN
one has xi — xu| 21,
-A -A N-—-1
<¢, vl (=An) er( N)|XN|¢> —Z4 =5 <0,

Thus, Lieb's inequality 1984 |q||p|? + |p|?|q| > O implies
N <2Z +1.

Cl & Siedentop, 2013 a+ b < n and min{a, b} € [0, 2],

1, ., a
0 < Tobn = 5(Iplal’” + lal*[p]?)-



Generalization of Lieb's inequality

Cl & Siedentop, 2013, Exact error term in the inequality.
a+ b < n, min{a, b} € (0,2), then
(0. (Tassun = Lanlal®=)) = (. 0| Hanlal )
an, [ axf U1 = D2 WO = )y P

2xPrlx = ylrtely

where r(n—b+a)r("+b+a)
Fy = (n + b - a)/27 L ’b) = 23 n 4—.; n—4—a
b = T (b (=)
and )
= |p|® — 27 (n+ a) ] lq|72 > 0, a € (0, n). Herbst 1977

@ Monotonicity of the constant L, 5,10, as b— (n—a)_.

@ Sharpness of the inequality

Tabn > La7b7,,|q|b*a + |q|b/2’Ha7,,|q|b/2, also true for a = 2.



Vlasov equation for electrons (with point nuclei)



The Vlasov equation in the field of a point charge

ft(x, &) the spin summed phase space density of fermions.

pr(x) = / d¢fi(x, €) the density at position x and time t.
R3

Ofy + &+ Vify + R - Vefy =0,

where the force ﬁ is

i ‘y
A(x) = V Vior(x sz — s [ W)
with potential p
Viet 1= V = Viup i= 3 Ziedoy, | - |74 — pox | - |1
k=1

For simplicity, we consider the atomic case, K =1, Z = Z;, R; = 0.

@ Rigorous derivation from many body Schrodinger (without point
charge), Porta, Rademacher, Saffirio, Schlein, 2017.

@ No wellposedness result for the point charge case!



Result for Vlasov equation

Let f; be a weak solution of the Vlasov equation of finite energy
Ev(fy), B C R3 bounded and measurable, and set

Ny(t,B) :== /RBcTﬁflgdxﬂ(x,ﬁ)

which is the number of electrons in B. Then the time average of
Ny (t, B) for large time does not exceed 4Z, i.e.,

1 /T
lim sup ?/ Ny(t, B)dt < 4Z.
0

T—o0

@ The energy is conserved in time.

Ev(fy) = / / 2 €2, E)dedt — / ‘%pt(x)dx + DIl = & (h)

where Dip] :== %// —pt’(;)_/);(f’) dxdy.



Stability of matter (Vlasov functional)

By spherical symmetric rearrangement in the variable &, (||f||c = q)

F*(x,€) == qx B sx 0 1/3(0)(5), yrr = (67°/q)*/°

/ & f(x / 2 (x,€) = —’YTF/ pP3(x).
Therefore, the total energy is bounded from blow by the TF energy
1, V4
Ev(fe) = 58 (%, €) — Mpt(x) + Dlp¢]

> / <%7TFPt(X)5/3 - %) + Dlpe] =: E7r(pe) 2 aZ

we have

wl~N

where

aiminf { [ (grment®s = 20) 1 0pl|p = 0.p.< 57, 0l < o).



Estimates for the kinetic energy and Coulomb norm

Conservation of the total energy
1, Z
Ev(f) =¢év(f) = S&Fe(x,€) = Mpt(X)JrD[pt]
4 2
Tv(ft) - Mﬂt(x) + [Ifelle,
where we have use the Coulomb norm ||f||c := \/D[p¢], shows that
1
S(Tv(fe) + I17elI%)
1 2Zp¢(x
= evin) - 5 (Tt + I - [ 220e))

(@7
< &vlh) - 5(22)7 < Tu(f) + 162

Both the kinetic energy Ty/(f;) and Coulomb norm ||f;||c are bounded
along the trajectory uniformly in time.



Main idea of the proof (homogenization)

Vlasov equation in the field of a point charge

O +6- Vit (= 205+ [ 2= Tanln)dy) - Ve =0

Intuitively we should use x - £|x| as a test function, in order to homogenize
the singularity from —2Zx/|x/|3.
Technically we choose the test function as

x|

where wr(x,§) == Vgr(x) - § = mx <&,
gr(x) := R3g(|x|/R), g(r) = r — arctg(r), Lenzmann, Lewin (2013)

Properties of gg
|VgR| < R2a ngR > Oa

(Ver(x) — Ver(y)) - (x — y) 1 i
=y = IR RE 1= VLIS




Al = H/()T//w;e(x,s)am(x,s)\

1/2 p2
s = [\/Tv(fm//\VgR<x>|2fT<x,s>+\/Tv(fo> [ 19ertRax, 5)} < oo
B = %/OT//VgR(x)-ss-vxft:#/UT//g-Hess(gR)(x)s flx,€) <0

¢ = %/OT//VgR'f 25t [ poyen) Ve
= = /T V|gR|3 . Pt =5 // (Verx |XV§R}E|3)) b _y)Pt(X)Pt(Y)}
< 1| i )
= MR(pt)
As T — oo, (Mg(pt))oo :=limsup T~ / dt Mg(p:) satisfies
T—o00 0

0= A+ B+ C < Z(Malp))ow — 3 (Mr(p))



Time dependent Thomas-Fermi equation



Time dependent Thomas-Fermi (a fluid dynamic system)

The time dependent Thomas-Fermi equation (Bloch 1933, Gombas

1949), for electrons in the field of a nucleus Z reads

1 YTF 2/3 £ _
5t¢t:§(v%pt)2 Tpt/ —M+pt*|‘| !

together with the continuity equation (p the density of electrons)

Orpr =V - (p:Vpr).

Here ¢ is the potential of the velocity field u, i.e., u = —V.
If we write it with velocity field, it is the Euler Poisson system

Orp + div(pu) =0
3 5

du+u-Vu+Vp(p)=VV,  p(p)= 107TFP°
—AV =p—6Z.



Time dependent Thomas-Fermi (a fluid dynamic system)

@ The corresponding hydrodynamic system can be formally
obtained from the Vlasov equation by using the Ansatz
fi(x, &) = pe(x)dy, (€). Rigorous derivation 777

@ No any wellposedness result so far.

Orp + div(pu) =0

3
Oeutu-VutVp(p) =VV,  plp) = 571rp

~AV =p-65Z.

wlo

Possible future projects:

e Asymptotic stability of the TF ground state.

o Existence of nontrivial stationary solutions (subsonic, supersonic,
transonic?), i.e. u # 0 and its asymptotic stability.

o Global energy weak solution...

o If (pt,u;) as a solution of HD exists, Is this solution stable in the
Vlasov equation



Results in time dependent Thomas-Fermi equation

Let ¢ and p¢ be a weak solution of TTF with finite energy H(pt, ¢t),
assume B C R3 bounded and measurable, and set

Mre(t.B) = [ dxpe()

which is the number of electrons in B. Then in temporal average for
large time, this does not exceed 47, i.e.,

1 T
limsup — Nre(t, B)dt < 4Z.
T—o0 T 0

The time-dependent Thomas-Fermi energy

Hipeg0) = [ P20+ Exe(oo)

is conserved along the trajectory of solutions ¢, pt.



Main idea of the proof (homogenization)

Time dependent Thomas-Fermi
(Fluid dynamic system of electrons in the field of a point charge)

Z _
TR = St pe |7 Bepe = V- (0 V).

1 2
6tht—§(V§0t) + 2 Pt ’X‘

Intuitively we should use p(x)|x|x - V as a test function in order to
homogenize the singularity from Z/|x|.

(simply us |x|p; as in the stationary case will not work).

Technically (Lenzmann and Lewin’s function), we choose the test function as

pe(X)Wa(x) = pe(x)Ver(x) - V.
The continuity equation plays an role in the time derivative term,

1 T
Lt = 7/ /pthRVatsat
0

17 17
= ?/ at/PthR Vi — ?/ /atPthR -Ver.
0 0

where the first term ist bounded by the kinetic energy /p|V<p|2, which

vanishes as T — oo.



limsupLlr = —I|msup—/ / V (ptth)>(VgR V(pt>
T—o0 T—o0
= </Pt(V‘Pt)TD2gRVSOt+/Pt(V<Pt)TD2<PthR>
T2
> </Pt(v¢t) D @thR>

where the last term canceled with the convection term

Ry = </,0thR : V%(V¢t)2>oo = </pt(VS0t)TD2‘PthR>OO

The pressure term is negative since gg is convex:

R, = </pthR V’)’TF 2/3>
1 v ,5/3 1 5/3 7 <
= ForF py’”-Vgr) = TR [ P DgR) < 0



Furthermore the remaining terms contribute in getting the final estimates

Rs

R4 :

Therefore,

= {Jovm v L) ([ TELLE)

- o 1) -,
_ <// VgR(X)pt(X)pt(Y);_%>w
Y //pt RWPLLIC ‘J?i?”“”h

- // X/R y/R 7 (Mr(p)2,

(Mg(pt)) o satisfies

0 < Z(Mg(pt))oo — %<MR(pt)>§>o



Thank you !



