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Abstract

We consider 2-dim Schrödinger operators H with multi-center
local point interactions and show that

1) The threshold behavior of (H − ζ)−1 is either

a) of regular type, viz. (H − ζ)−1 is continuous up to 0, or
b) it has singularity of type s-wave resonance, or
c) it has singularity of type p-wave resonances, or
d) it has singularity of type zero-energy eigenvalue .

2) Characterize zero modes of H.

3) W± are bounded in Lp for all 1 < p <∞ if H is of regular type.

For the single center case H is always of regular type.

Joint work with Horia Cornean and Alessandro Michelangeli



Let Y = {y1, . . . , yN} ⊂ R2, N ≥ 1 and

T0 : = −∆
∣∣∣∣
C∞0 (R2\Y )

, ∆ =
∂2

∂x2
1

+
∂2

∂x2
2
.

Schrödinger operator on R2 with point interactions at Y is any

selfadjoint extension of T0.

We are concerned with the ones Hα,Y with local point interac-

tions at Y and strengths α ≡ (α1, . . . , αN) ∈ RN

Hα,Y = “−∆ +
N∑
j=1

αjδ(x− yj)′′. (1)

Multiplication by δ(x − yj) is not −∆ bounded nor −∆ form-

bounded



We follow Albeverio-Gesztesy-HøeghKrohn-Holden’s definition via

resolvent equation

(Hα,Y − z2)−1 − (H0 − z2)−1

=
N∑

j,k=1

{Γα,Y (z)}−1
jk Gz(· − yj)⊗ Gz(· − yk),

for z ∈ C+ \ E, where

Gz(x) =
1

(2π)2

∫
R2

eixξdξ

ξ2 − z2
=

i

4
H

(1)
0 (z|x|),

Γα,Y (z)jk =
(
αj +

1

2π
log

(
z

2i

)
+

γ

2π

)
δjk − Gz(yj − yk)δ̂jk

and where E is the set of z such that det Γα(z) = 0, δjk is the

Kronecker delta, δ̂jk = 1− δjk and γ the Euler number.



Some properties of Gz(x). For small z|x|, we use

Gz(x) =
i

4
H

(1)
0 (z) =

(
−

1

2π
log

(
z

2i

)
−

γ

2π

)
J0(z)

−
1

2π

( 1
4z

2

(1!)2
−
(

1 +
1

2

)(1
4z

2)2

(2!)2
+ . . .

)
,

J0(z) =
∞∑
k=0

(−1)k

(k!)2

(
z2

4

)k
and for small λ|x|

i

4
H

(1)
0 (λ|x|) = g(λ) +G0(x) +O(λ2|x|2g(λ)),

g(λ) = −
1

2π
log

(
λ

2i

)
−

γ

2π
, G0(x) = −

1

2π
log |x|



For large z|x|, use Watson’s formula

i

4
H

(1)
0 (z|x|) =

eiz|x|

2
3
2π

∫ ∞
0

e−tt−
1
2

(
t

2
− iz|x|

)−1
2
dt,

which produces for λ ∈ R with |λ| ≥ 1

Gz(x) = eiz|x|ω(z|x|), |∂αλω(λ)| ≤ C〈λ〉−
1
2−|α|,

viz. (1−χ(λ))ω(λ) is a symbol of order −1/2 for a bump function
χ around 0.

Albeverio and others proved that:

(1) The resolvent equation defines s.a. Hα,Y uniquely in L2(R2)
with domain

D(Hα,Y ) = {u = v+
∑

[Γα,Y (z)−1]jkv(yk)Gz(x−yj): v ∈ H2} (2)



which is independent of z ∈ C+ \ E.

(2) v ∈ H2(R2) of (1) is uniquely determined by u ∈ D(Hα,Y ) and

(Hα,Y − z2)u(x) = (−∆− z2)v(x).

(3) Hα,Y is a real local operator,

(4) σ(Hα,Y ) =AC part [0,∞)∪ {at most N eigenvalues ≤ 0}.
(5) Hα,Y is a rank N perturbation of −∆ and

W± = lim
t→±∞

eitHα,Y e−itH0 (3)

exist and are complete : Range W± = L2
ac(Hα,Y ),

W ∗±W± = 1, W±W
∗
± = Pac(Hα,Y ),

where Pac(Hα,Y ) is the projection onto L2
ac(Hα,Y ). For Borel f

f(Hα,Y )Pac(Hα,Y ) = W±f(H0)W ∗±. (4)



• LAP. Let L2
σ = L2(R2, 〈x〉2σdx), Bσ = B(L2

σ, L
2
−σ) for σ ∈ R.

Then:

• Agmon-Kuroda theory for the LAP for (−∆− z2)−1,

• Explicit formula for the resolvent (Hα,Y − z)−1,

• Behavior of the kernel Gz(x) as |x| → ∞

imply that, for σ > 1/2, Bσ-valued analytic function (Hα,Y −z2)−1

of z ∈ C+ \ E,

E = {
√
λ : λ ∈ σp(Hα,Y )} ⊂ i[0,∞)

has boundary values on R\{0} which is locally Hölder continuous.

However, it can have singularities at λ = 0 and we first study its

behavior near λ = 0 in λ ∈ C+ \ {0}. We write λ instead of z

when we want to emphasize that λ is in C+ \{0} not only in C+.



Notation • We use the vector notation:

Ĝλ,Y (x) =

Gλ(x− y1)
...

Gλ(x− yN)

 ,
D(λ, x, y) = 〈Ĝλ,Y (x),Γα,Y (λ)−1Ĝλ,Y (y)〉,

where 〈a,b〉 =
∑
ajbj. Then,

(Hα,Y − λ2)−1 = (H0 − λ2)−1 +D(λ, x, y).

• Recall G0(x) = − 1
2π log |x|. We define

Ĝ0,Y (x) =

G0(x− y1)
...

G0(x− yN)

 .

e =
1√
N
1̂, 1̂ =

1
...
1

 , P = e⊗ e, S = 1− P.



• D̃ = D(α, Y ) and G1(Y ) are N ×N real symmetric matrices:

D̃ =
(
δjkαj +

δ̂jk

2π
log |yj − yk|

)
,

G1 = −
( δ̂jk

4N
|yj − yk|2

)
.

• Identify integral operator K and its kernel K(x, y).

Definition 1. ϕ ∈ L2
−σ(R2) is a threshold resonance of Hα,Y of

s-wave or p-wave types if ϕ satisfies

−∆ϕ(x) +
∑

fjδ(x− yj)ϕ = 0

for constants f1, . . . , fN and

ϕ(x) = b+
a1x1 + a2x2

|x|2
+O

(
1

|x|2

)
, |x| → ∞

respectively with b 6= 0 or b = 0 where a1, a2 are real constants.



Results. Matrices SD̃S, T D̃2T and G1, where T is the proj.
onto KerSCNSD̃S, control the behavior as λ→ 0 of

C+ \ {0} 3 λ 7→ (Hα,Y − λ2)−1 ∈ Bσ, σ > 1.

Theorem 2. (Hα,Y − λ2)−1 can be continuously extended to C+

if and only if SD̃S|SCN is non-singular. In this case

(Hα,Y − λ2)−1(x, y) = G0(x− y)−N−1∑(log |x− yj|+ log |y − yj|)
−N−2〈1̂, D̃1̂〉

+
〈

[SD̃S]−1S
(
Ĝ0,Y (x)−N−1D̃1̂

)
, S
(
Ĝ0,Y (y)−N−1D̃1̂

)〉
+O(g(λ)−1)

where ‖O(g(λ)−1)‖Bσ ≤ C|g(λ)−1| as λ→ 0. The leading behav-
ior as |x|+ |y| → ∞ of O(1) term is like

−
1

2π
(log |x− y| − log |x| − log |y|) + C +O(|x|−1).

In this case we say Hα,Y is of regular type.



2) If SD̃S|SCN is singular and T is proj. in SCn onto KerSCN SD̃S,

rankT D̃2T ≤ 1.

Theorem 3. Suppose SD̃S|SCN is singular and T D̃2T |TCN is non-

singular. Then

• rankT = 1. If T = f ⊗ f for f = t(f1, . . . , fN) then

ϕ(x) = −
〈
f ,
D̃1̂
N

〉
−

N∑
j=1

fj

2π
log(x− yj)

is the resonance of s-wave type.

• The resolvent has leading logλ singularity as λ→ 0:

(Hα,Y − λ2)−1 = a−2g(λ)ϕ⊗ ϕ+O(1)

with positive a−2 = 〈f , D̃2f〉 > 0.



Theorem 4. If SD̃S|SCN and T D̃2T |TCN are both singular, then

TD = DT = 0. Suppose TG1T |TCN is non-singular. Then:

• (Hα,Y − λ2)−1 has leading λ−2(logλ)−1 singularity:

(Hα,Y − λ2)−1 =
−1

Ngλ2
〈TĜ0,Y (x), [TG1T ]−1TĜ0,Y (y)〉+O(λ−2).

=
−1

Ngλ2

n∑
j=1

ajϕj(x)ϕj(y) +O(λ−2) (λ→ 0),

where n = rankT and

ϕj(x) =
N∑
k=1

fjk log |x− yk| =
aj1x1 + aj,2x2

|x|2
+O(|x|−2)

are resonances of p-wave type.



Theorem 5. SD̃S|SCN , T D̃2T |TCN and TG1T |TCN are all singu-

lar iff Hα,Y has an eigenvalue at zero. Let T1 be proj. onto

Ker TG1T |TCN and

G2 = −
(
δ̂jk

8πN
|yj − yk|2 log

(
e

|yj − yk|

))
.

Then, T1G2T1 is non-singular and with Q = [T1G2T1]−1

(Hα,Y − λ2)−1(x, y)

= −
1

Nλ2
〈T1Ĝ0,Y (x), QT1Ĝ0,Y (y)〉+O(λ−2g(λ)−1).

T1Ĝ0,Y (x) = O(|x|−2)

is an eigenfunction of Hα,Y with zero energy.

(•) Hα,Y is always of regular type if N = 1.



• Zero modes can indeed exist if N ≥ 3.
Proposition 6. Let N ≥ 3. Assume a = t(a1, . . . , aN) ∈ RN \ {0}
satisfies

N∑
j=1

aj = 0,
N∑
j=1

ajyj = 0 and D̃a = 0. (5)

Then, the function

ϕ(x) =
N∑
j=1

aj log |x− yj| (6)

belongs to the domain of Hα,Y and Hα,Y ϕ(x) = 0. Moreover,
the converse is also true: any zero energy eigenfunction must be
of the form (6) with a ∈ RN \ {0} of (5).

For N = 3 and y1, y2, y3 ∈ R2 which are collinear or for N ≥ 4 and
arbitrary y1, . . . , yN ∈ R2, there exists a ∈ RN \ {0} which satisfies



the first two of (5) and, we can always find α such that

D̃a =
(
δjkαj +

δ̂jk

2π
log |yj − yk|

)
a = 0

and, hence, Hα,Y has an eigevalue at 0. Thus the statement on

the absence of zero eigenvalue in the book by Albeverio et. al.

is not totally correct.

In the equation (5), we remark

N∑
j=1

aj = 0⇔ a ∈ RangeS,
N∑
j=1

ajyj = 0⇔ 〈a, TG1Ta〉 = 0

D̃a = 0⇔ a ∈ KerSD̃S|SCN (⇐ D̃T = 0, Ta = a)



Theorem 7. Suppose that Hα,Y is of regular type. Then, wave

operators W± are bounded in Lp(R2) for all 1 < p <∞.

It is known that wave operators for 1-dim SO with point inter-

actions are bounded in Lp(R1) for all 1 < p < ∞ (V. Duchêne,

J. L. Marzuola, and M. I. Weinstein 2011 ) and, in 3-dim dimen-

sions only for 3/2 < p < 3 (G. Dell’Antonio, A. Michelangeli, R.

Scandone and K. Y. 2018) . (For the Lp boundedness of W± for

ordinary SO, see the author’s paper in Documenta Math. 2016).

The intertwining property f(PacHα,Y ) = W±f(H0)W ∗± reduces

the mapping properties of f(Hα,Y ) to those of f(H0). For ex-

ample, Lp-Lq and Strichartz estimates for e−itHα,Y Pac follow from

those for e−itH0. p′ is the dual exponent of p: 1/p+ 1/p′ = 1.



Corollary 8. Suppose Hα,Y is of regular type. For any 2 ≤ p <∞,

‖e−itHα,Y Pac(Hα,Y )u‖p ≤ Cp|t|1/p−1/2‖u‖p′. (7)

We say (p, r) is 2-dimensional Strichartz exponent when

1

p
+

1

q
=

1

2
, 2 < q ≤ ∞.

Corollary 9. Suppose Hα,Y is of regular type. Let (p, q) and (s, r)

be 2-dim Strichartz exponents.(∫
R
‖e−itHα,Y u‖q

Lp(R2)
dt

)1/q
≤ C‖u‖2,∥∥∥∥∫ t

0
e−i(t−s)Hα,Y Pac u(s) ds

∥∥∥∥
L
q
tL

p
x

6 C‖u‖
Ls
′
t L

r′
x
.



Lemmas Theorems 2, 3, 4 and 5 are proved by studying Γα,Y (λ)−1

for λ→ 0. Observe from the property of the Hankel function

Γ(λ) =
{(
αj +

1

2π
log

(
λ

2i

)
+

γ

2π

)
δjk − Gλ(yj − yk)δ̂jk

}
jk

= −Ng
(
P −N−1g(λ)−1D̃+ λ2G1 + λ2g(λ)−1G2 +O(λ4)

)
=: −Ng(λ)A(λ) λ→ 0.

We recall

i

4
H

(1)
0 (λ|x|) = g(λ) +G0(x) +O(λ2|x|2g(λ)),

g(λ) = −
1

2π
log

(
λ

2i

)
−

γ

2π
, G0(x) = −

1

2π
log |x|.

P = e⊗ e = N−1

1 . . . 1
... ... ...
1 . . . 1

 , S = 1− P.



• D̃ = D(α, Y ) and G1(Y ) are N ×N real symmetric matrices:

D̃ =
(
δjkαj +

δ̂jk

2π
log |yj − yk|

)
,

G1 = −
( δ̂jk

4N
|yj − yk|2

)
.

We need invert

A(λ) = P −N−1g(λ)−1D̃+ λ2G1P +O(λ2g−1)

Noticing that A(λ) + S, S = 1− P is invertible, we (repeatedly)

use the following lemma due to Jensen and Nenciu.

Lemma 10. Let A be a closed operator in a Hilbert space H and

S a projection. Suppose A+ S has a bounded inverse. Then, A

has a bounded inverse if and only if

B = S − S(A+ S)−1S (8)



has a bounded inverse in SH and, in this case,

A−1 = (A+ S)−1 + (A+ S)−1SB−1S(A+ S)−1. (9)

In this case, the operator corrresponding to B of (8) is

B̃ = −N−1g−1
(
SD̃S + SO(g−1)S

)
.

and, if SD̃S is invertible, B̃ is invertible and A(λ)−1 is obtained
by (9). In this way, we have the following lemma which implies
Theorem 2. We set

F = −N−1g(λ)−1D̃.

Lemma 11. Γ(λ)−1 can be continuously extended to R if and
only if SD̃S is non-singular in SCN . In this case,

Γ(λ)−1 = −N−1g−1(1 + F )−1



+ (1 + F )−1S

(
[SD̃S]−1 +O(g−1)

)
S(1 + F )−1

+O(λ2) = [SD̃S]−1 +O(g−1).

and for 0 < |λ| < λ0 that

∂`λ[Γ−1(λ)]jk≤| · |Cλ
−`, ` = 0,1, . . . . (10)

If SD̃S is singular, we apply the Jensen-Neciu Lemma to B̃. Note

that SD̃S + T is invertible in SCN and we may repeat the argu-

ment.



We do not enter into the proof of Theorems 2,3,4, 5 and Propo-

sition 6 any further. Instead we briefly describe the proof of

Theorem 7 which is surprisingly simple.

• Stationary representation of wave operator As we are as-

suming Hα,Y is of regular type Γ(λ) is a non-singular for every

λ > 0 and the function Γ(λ)−1 is analytic in a complex neigh-

bourhood of the positive half line. By the standard argument of

scattering theory we have the following stattionary representa-

tion formula for the wave operator W+:



We define for j, k = 1, . . . , N by

(Ωjku)(x) =
1

πi

∫ +∞

0
λ(Γα,Y (λ)−1)jk G−λ(x)

×
(∫

R2

(
Gλ(y)− G−λ(y)

)
u(y)dy

)
dλ . (11)

Then, with (Tx0f)(x) := f(x− x0),

〈W+
α,Y u, v〉 = 〈u, v〉+

N∑
j,k=1

〈TyjΩjkT
∗
yk
u, v〉 .

and it suffices to deal with Ωjk. The second line of (11) is the

spectral measure of −∆ and is equal to

i

2

∫
S1
û(λω)dω.



Write Γ̃jk(λ) = [Γα,Y (λ)
−1

]jk. We have

Γ̃jk(λ)û(λω) = F(Γ̃jk(|D|u)(λω)

Define

Ku(x) =
1

πi

∫ +∞

0
G−λ(x)λ

(∫
S1

(Fu)(λω)dω
)

dλ .

It then follows that

Ωjk = K ◦ Γ̃jk(|D|). (12)

Lemma 12. We have

Ku(x) = lim
ε↓0

2i

π2

∫
R2

u(y)dy

x2 − y2 − iε
(13)

and K is bounded from Lp(R2) to itself for all 1 < p <∞.



Proof. We rewite Ku(x) as follows (modulo constants)∫ +∞

0

∫
R9

eixξ−iyη

ξ2 − λ2 − i0
δ
(
η2 − λ2

)
u(y)dydηdξλdλ

=
∫
R6

eixξ−iyη

ξ2 − η2 − i0
u(y)dydηdξ

=
∫
R6

eix(ξ+η)−iyη

ξ2 + 2ξη − i0
u(y)dydηdξ

=
∫
R6

∫ ∞
0

e−it(ξ
2+2ξη−i0)eixξ+i(x−y)ηu(y)dydηdξdt

=
∫
R3

∫ ∞
0

e−it(ξ
2−i0)+ixξu(x− 2ξt)dξdt

Then, we make change of variables x−2ξt = y or ξ = (x− y)/2t.
This makes

−tξ2 + xξ = −
(x− y)2

4t
+
x(x− y)

2t
=
x2 − y2 + i0

4t



Thus, after changing variables t to t−1,

Ku(x) =
∫
R3

∫ ∞
0

ei(x
2−y2+i0)/4tf(y)

dξ

4t2
dt

=
∫
R2

∫ ∞
0

eit(x
2−y2+i0)u(y)dydt

=
∫
R2

u(y)

i(x2 − y2 + i0)
dy

This proves (13). To prove the bound we continue to rewrite

Ku(x) by using the spherical mean

Mu(r) =
1

2π

∫
S1
u(rω)dω.

Then

Ku(x) =
∫ ∞

0

r(Mf)(r)

i(x2 − r2 + i0)
dr



=
∫ ∞

0

(Mu)(
√
r)

i(x2 − r + i0)
dr

and ∫
R2
|Ku(x)|pdx =

∫
S1

(∫ ∞
0
|Ku(

√
µ)|pdµ

)
dω

But

K(
√
r) =

∫ ∞
0

(Mu)(
√
r)

i(µ− r + i0)
dr

and Lp-boundedness of Cauchy integral implies∫ ∞
0
|K(
√
µ)|pdµ ≤

∫ ∞
0
|(Mu)(

√
r)|pdr ≤ ‖u‖Lp.

We still need study Γ̃(|D|). For small λ, Γ̃(λ) satisfies Mikhlin’s

condition for the Lp multiplier and χ(|D|)Γ̃(|D|) with χC∞0 (R) is



bounded in Lp(R2) for all 1 < p <∞. For large λ it has the form

(1− χ(λ))Γ̃(λ)

=
∑

finite sum

eialλ(1− χ(λ))bl(λ) + Mikhlin multiplier

where bl are symbols of order 1/2.

Finally we apply the following lemma by J. C. Peral (1980)
to the homogenenous Fourier integral operator produced by the
large part of λ, which completes the proof.
Lemma 13 (Peral). The translation invariant Fourier integral
operator

(Tf)(x) =
∫
Rn
eixξ+i|ξ|ψ(ξ)

|ξ|b
f̂(ξ)dξ, (14)

where ψ(ξ) ∈ C∞(Rn) is such that ψ(ξ) = 0 in a neighbourhood
of ξ = 0 and ψ(ξ) = 1 for |ξ| ≥ 2, is bounded in Lp(Rn) if and



only if ∣∣∣∣∣1p − 1

2

∣∣∣∣∣ ≤ b

n− 1
. (15)

For our application, n = 2 and b = 1/2, which produces 1 < p <

∞.


