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The Sturm-Liouville equation

• Sturm and Liouville (early 1830s):

− (pu′)′ + qu = λwu,

A1u(0) + B1(pu′)(0) = A2u(L) + B2(pu′)(L) = 0

for continuous coefficients p, q, and w satisfying p > 0 and w > 0.

• Singular problems (Weyl, 1910), measure coefficients (Krein 1952).

• Difference equations, systems of (first-order) equations

• Atkinson (1964) proposed a unified approach.

• Savchuk and Shkalikov (1999): Schrödinger equation with
distributional potential

• Eckhardt et al.: These are covered by a system with locally integrable
coefficients
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The goal of the present work

• Consider Ju′ + qu = wf on (a, b)
• J is constant, invertible, and skew-hermitian
• q and w are hermitian distributions of order 0 (measures)
• w non-negative

• L2(w) is a Hilbert space with scalar product 〈f , g〉 =
∫
f ∗wg .

• We will drop the definiteness condition: Ju′ + qu = 0, wu = 0 (or
‖u‖ = 0) implies u ≡ 0.

• The DE gives, in general, only relations not operators.
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Distributions and Relations
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Distributions

• A linear functional u on C∞c (a, b) is called a distribution, if, for each
compact set K , there are constants C and k such that

|u(φ)| ≤ C
k∑

j=0

sup{|φ(j)(x)| : x ∈ K ⊃ suppφ}.

• If the integer k can be chosen uniformly for every compact K ⊂ (a, b)
we have a distribution of finite order.

• Examples: φ 7→
∫
f φ, φ 7→ φ(0), φ 7→

∫
φdµ (all have order 0)

• Every distribution has a derivative: u′(φ) = −u(φ′).

• Distributions also have anti-derivatives, any two differ by a constant:
u1(φ)− u2(φ) = C

∫
φ if u′1 = u′2 (Du Bois-Reymond)
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Differential equations with distributional coefficients

• Q ∈ BVloc((a, b)) defines a distribution of order 0: φ 7→
∫
φdQ.

• Riesz: If q is a distribution of order 0, then there is a function
Q ∈ BVloc((a, b)) such that q(φ) =

∫
φdQ =

∫
φq.

• In other words the derivatives of functions of locally bounded variation
are precisely the distributions of order 0. We use dQ = Q ′ = q.

• If r = R ′, u ∈ L1loc(r) then φ 7→ (ru)(φ) = (ur)(φ) =
∫
φudR is a

distribution of order 0.

• If r , g are distributions of order 0, we may pose the differential
equation u′ = ru + g and seek solutions in BVloc((a, b)).

• Since, in general, distributions cannot be multiplied with another one,
this is as far as generalizations of the Sturm-Liouville equation can go.
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Integration by parts

• If F ,G ∈ BVloc((a, b)) and [x1, x2] ⊂ (a, b), then∫
[x1,x2]

(F+dG + G−dF ) = (FG )+(x2)− (FG )−(x1).

• Equivalently: (FG )′ = F+G ′ + F ′G−

• If F = tF+ + (1− t)F− and v = tG+ + (1− t)G− for some fixed t

•
∫
[x1,x2]

(FdG + GdF ) = (FG )+(x2)− (FG )−(x1)

+(2t − 1)
∫
[x1,x2]

(G+ − G−)dF .

• The last term disappears unless F and G jump at the same place and
if t = 1/2.

• Therefore we want our BVloc functions balanced.
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Relations: Basic Definitions

• A relation is a subset of a cartesian product X × Y .

• A linear relation is a linear subspace of H1 ×H2.

• dom(E ) = {u ∈ H1 : ∃(u, f ) ∈ E}, ker(E ) = {u ∈ H1 : (u, 0) ∈ E},
ran(E ) = {f ∈ H2 : ∃(u, f ) ∈ E}.

• A linear operator is, of course, a special kind of linear relation.

• Every relation S ⊂ H1 ×H2 has an inverse and an adjoint;

S−1 = {(f , u) ∈ H2 ×H1 : (u, f ) ∈ S}

S∗ = {(f , u) ∈ H2 ×H1 : ∀(v , g) ∈ S : 〈g , f 〉2 = 〈v , u〉1}

• If H1 = H2 and S ⊂ S∗, then S is called symmetric; if S = S∗, then
S is called self-adjoint.
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• Every relation S ⊂ H1 ×H2 has an inverse and an adjoint;

S−1 = {(f , u) ∈ H2 ×H1 : (u, f ) ∈ S}

S∗ = {(f , u) ∈ H2 ×H1 : ∀(v , g) ∈ S : 〈g , f 〉2 = 〈v , u〉1}

• If H1 = H2 and S ⊂ S∗, then S is called symmetric; if S = S∗, then
S is called self-adjoint.
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Resolvents

• Suppose E is closed linear relation in H×H.

• E − λ = E − λ1 = {(u, f − λu) : (u, f ) ∈ E}

• Resolvent set and spectrum

ρ(E ) = {λ ∈ C : ker(E − λ) = {0}, ran(E − λ) = H}

σ(E ) = C \ ρ(E )

• ρ(E ) is open.

• If λ ∈ ρ(E ), then (E − λ)−1 is a bounded linear operator on H.

• The resolvent relation Rλ − Rµ = (λ− µ)RλRµ holds.

• (Rλ)∗ = Rλ
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Extension Theory

• Deficiency spaces of E : Dλ = {(u, λu) ∈ E ∗}

• If E is symmetric, the dimension of Dλ is constant in either half-plane.

• These dimension (denoted by n±) are called deficiency indices of E .

• If E is a closed symmetric relation in H×H, then

E ∗ = E ⊕ Di ⊕ D−i .
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Characterization of symmetric extensions

• Suppose E is a closed symmetric relation in H×H with
d = dimDi ⊕ D−i <∞ and that m ≤ d/2 is a natural number.

• If A : E ∗ → Cd−m is a linear operator such that
• A is surjective,

• E ⊂ kerA

• AJA∗ has rank d − 2m (here J (u, f ) = (f ,−u)).

then kerA is a closed symmetric extension of E for which the
dimension of (kerA)	 E is m.

• Conversely, every closed symmetric extension of E is the kernel of
such a linear operator A.

• Finally, kerA is self-adjoint if and only if AJA∗ = 0, i.e., m = d/2.
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The operator part of a relation

• T a self-adjoint relation in H×H

• H∞ = {f ∈ H : (0, f ) ∈ T}

• H0 = H	H∞

• T0 = T ∩ (H0 ×H0) is a self-adjoint linear operator, densely defined
in H0.
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Spectral theory for systems of
ordinary differential equations with

distributional coefficients
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Existence and uniqueness theorem

• u′ = αδ0u is equivalent to ur − u` = αu(0)

• If u left-continuous, i.e., u(0) = u` implies ur = (1 + α)u`

• If u right-continuous, i.e., u(0) = ur implies ur = (1− α)−1u`

• If u balanced, i.e., u(0) = (u` + ur )/2 implies ur = (2 + α)/(2− α)u`

• if r is a distribution of order 0, set ∆r (x) = R+(x)− R−(x)

• Atkinsons’ condition: ∆r (x)2 = 0. Then (1 + ∆r (x))(1−∆r (x)) = 1
and left and right-continuous solutions are the same (except at
jumps).

• Our condition: 2±∆r (x) invertible is more general.

• Existence and uniqueness of balanced solutions for initial-value
problems for u′ = ru + g follows.
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Maximal and minimal relation

• Ju′ + qu = wf

• 2J ±∆q(x) invertible.

• Λ = {λ : ∃x : det(2J ± (∆q(x)− λ∆w (x))) = 0}, the bad set.

• Tmax = {(u, f ) ∈ L2(w)× L2(w) : Ju′ + qu = wf }

• Tmax = {([u], [f ]) ∈ L2(w)× L2(w) : (u, f ) ∈ Tmax}

• This may be a relation, even if coefficients are locally integrable and
the definiteness condition holds.

• Tmin and Tmin.

• T ∗min = Tmax
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• This may be a relation, even if coefficients are locally integrable and
the definiteness condition holds.

• Tmin and Tmin.

• T ∗min = Tmax
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Boundary conditions

• If (u, f ), (v , g) ∈ Tmax then v∗wf − g∗wu = v∗Ju′ + v ′∗Ju = (v∗Ju)′

is a finite measure on (a, b)

• Lagrange’s identity: (v∗Ju)−(b)− (v∗Ju)+(a) = 〈v , f 〉 − 〈g , u〉

• Self-adjoint restrictions of Tmax are determined by a map
A : Tmax → Cd/2 (where d/2 = n+ = n−).

• Aj may be viewed as a linear functional on Di ⊕ D−i , i.e.,
Aj(u, f ) = 〈(vj , gj), (u, f )〉.

• AJA∗ = 0 is equivalent to 〈(vj , gj), (gk ,−vk)〉 = 0.

• Lagrange: Aj(u, f ) = 〈(vj , gj), (u, f )〉 = (g∗j Ju)−(b)− (g∗j Ju)+(a).
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The resolvent and Green’s function

• If ([u], [f ]) ∈ Tmax and if the definiteness condition is violated, the
class [u] may have many balanced representatives in BVloc.

• However, there is a unique balanced representative u such that u(x0)
is perpendicular to N0 = {v(x0) : v ∈ L0}.

• Define E : Tmax → BVloc : ([u], [f ]) 7→ u.

• Define Eλ : L2(w)→ BVloc : f 7→ E (u, λu + f ) where u = Rλf
whenever λ ∈ ρ(T ).

• Each component of f 7→ (Eλf )(x) is a bounded linear functional.

• Green’s function: (Eλf )(x) = 〈G (x , ·, λ)∗, f 〉 =
∫
G (x , ·, λ)wf .
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Properties of Green’s function I

• The variation of constants formula: if x > x0

(Eλf )−(x) = U(x , λ)
(
u0 + J−1

∫
(x0,x)

U(·, λ)∗wf
)

where u0 = (Eλf )(x0).

• The conditions that Eλf is in L2(w) near both a and b, that it
satisfies the boundary conditions (if any), and that (Eλf )(x0) ⊥ N0

gives rise to a (rectangular) system

F (λ)u0 =

∫
(b−(λ)χ(a,x0) + b+(λ)χ(x0,b))U(·, λ)∗wf

• F has a left inverse F †.

• Define M±(λ) = PF (λ)†b±(λ)± 1
2J
−1.
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Properties of Green’s function II

• Then

(Eλf )(x) =

∫
U(x , λ)H(x , ·, λ)U(·, λ)∗wf

where

H(x , y , λ) = M−(λ)χ(a,x0)(y) + M+(λ)χ(x0,b)(y)

− 1

2
J−1 sgn(y − x) + S(x , λ)χ{x}(y)

and

S(x , λ) =
1

4
U(x , λ)−1(U+(x , λ)− U−(x , λ))J−1.

• M+ and M− are essentially the same.

• S is analytic on R if Λ ∩ R is empty.

• M± encode the spectral properties of T .
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The M-function

• M = M± on appropriate subspaces

• M is analytic away from R and Λ

• ImM/ Imλ ≥ 0

• Such a function cannot have isolated singularities (except removable
ones).

• M is a Herglotz-Nevanlinna function

M(λ) = Aλ+ B +

∫ ( 1

t − λ
− t

t2 + 1

)
ν(t)

where ν = N ′ and N a non-decreasing matrix.
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The Fourier Transform

• (F f )(λ) =
∫
U(·, λ)∗wf if f ∈ L2(w) is compactly supported and

λ 6∈ Λ.

• Restricting to R: F f ∈ L2(ν) extend by continuity to all of L2(w).

• H∞ = {f : (0, f ) ∈ T} is the kernel of F . H0 = L2(w)	H∞.

• (G f̂ )(x) =
∫
U(x , ·)ν f̂ if f̂ ∈ L2(ν) is compactly supported.

• F ◦ G = 1 and G ◦ F is the projection onto H0.

• (u, f ) ∈ T if and only if (F f )(t) = t(Fu)(t).
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Example and Special Cases
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Example
• n = 2, (a, b) = (0, b), J =

(
0 −1
1 0

)
, q = 0, w =

(
1 0
0 0

)
:

−u′2 = f1 and u′1 = 0

• L2(w) is infinite-dimensional

• General solution:

u =

(
c1

c2 −
∫ x
0 f1

)
and f =

(
f1
f2

)
• Tmax

∼= C× L2(w) (u1 constant) and

Tmin = {0} × {f ∈ L2(w) :
∫ b
0 f1 = 0}.

• The fundamental matrix, for which U(x0, λ) = 1, is given by

U(x , λ) =

(
1 0

λ(x0 − x) 1

)
.

• Note that w
(
0
1

)
=
(
0
0

)
and hence ‖

(
0
1

)
‖ = 0.

• These solutions form a subspace L0.
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Example: further details

• Consequences of the definiteness condition being violated.
• Behavior of solutions at left and right endpoints can’t be separated.

• Boundary values are not uniquely determined.

• Causes problems in establishing properties of Green’s function.

• P =
(
1 0
0 0

)
satisfies wU(·, λ)(I − P) =

(
1 0
0 0

)( 1 0
λ(x0−x) 1

)(
0 0
0 1

)
= 0.

• Tmax collects pairs of functions (u, f ) such that Ju′ + qu = wf .

• Tmax = {([u], [f ]) ∈ L2(w)× L2(w) : (u, f ) ∈ Tmax} collects
equivalence classes.
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Example: lack of deficiency

• Deficiency indices n± = 1

• T = {0} × L2(w) is one self-adjoint restriction of Tmax.

• Otherwise, given λ0 ∈ R,

T = {(u, f ) ∈ Tmax : bλ0u1(b) + u2(b)− u2(0) = 0}

• H∞ = {f : (0, f ) ∈ T} = {f :
∫
f1 = 0} and H0 = L2(w)	H∞.

• Then T ∩ (H0 ×H0) is a self-adjoint operator, in fact it is
multiplication with λ0.

• M(λ) = 1/(b(λ0 − λ))P gives rise to measure ν = 1
bδλ0P and a

one-dimensional transform space L2(ν).

• Fourier transform: (F f )(λ) =
∫
f1
(
1
0

)
.

• F|H0 is unitary and T is represented by multiplication with
independent variable in Fourier space L2(ν).
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Special case: n = 2, real coefficients, DC holds, Part I

• J real implies J = β
(
0 −1
1 0

)
with β ∈ R \ {0} (choose β = 1).

• Deficiency indices are equal

• The space of solutions of Ju′ + qu = λwu which lie in L2(wχ(c,b)) is
either one-dimensional or two-dimensional and this does not depend
on λ.

• Following Weyl one says to have the limit-point case or limit-circle
case at b, respectively.
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Special case: n = 2, real coefficients, DC holds, Part II

• As in the classical one has the following trichotomy:

1 n+ = n− = 0 if and only if we have the limit-point case at both a and
b. In this situation Tmax is self-adjoint.

2 n+ = n− = 1 if and only if we have the limit-point case at one of a and
b and the limit-circle case at the other. Self-adjoint restrictions are
given by posing a boundary condition at the limit-circle end.

3 n+ = n− = 2 if and only if we have the limit-circle case at both a and
b.

• In the last case there are two types of boundary conditions: separated
(one condition on either end) or coupled (two conditions both of
which involve both endpoints).
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Special case: n = 2, real coefficients, DC holds, Part III

• If a regular and b limit-point we obtain self-adjoint restrictions by
posing a boundary condition at a: cos(α)u1(a)− sin(α)u2(a) = 0.

• Set
θ(·, λ) = U(·, λ)(cosα,− sinα)>

ϕ(·, λ) = U(·, λ)(sinα, cosα)>

so that ϕ satisfies the boundary conditions.

• Choose m(λ) so that θ(·, λ) + m(λ)ϕ(·, λ) is in L2(w). This is the
Titchmarsh-Weyl solution, m is the Titchmarsh-Weyl function.

• The Titchmarsh-Weyl m-function is determined by the M-matrix:

m(λ) =
1

β
(sinα, cosα)M(λ)

(
sinα
cosα

)
.
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Thanks for your attention!
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