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Hamilton operator: N bosons in Λ = [0; 1]3 described by

HN =
N∑
j=1

−∆xj + κ
N∑
i<j

N2V (N(xi − xj)) , on L2
s(ΛN)

κ > 0 is coupling constant, V ≥ 0 short range interaction.

Scattering length: defined by zero-energy scattering equation[
−∆ +

κ

2
V

]
f = 0, with f(x)→ 1 as |x| → ∞

⇒ f(x) = 1−
a0

|x|
, for large |x|

Here a0 is scattering length of V . Equivalently,

8πa0 = κ
∫
V (x)f(x)dx

By scaling, κN2V (N.) has scattering length a0/N .
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Ground state energy: from [Lieb-Yngvason ’98], ground

state energy given to leading order by

EN = 4πa0N + o(N)

Bose-Einstein condensation: from [Lieb-Seiringer ’02], ground

state ψN exhibits BEC, i.e. γN = Tr2,...,N |ψN〉〈ψN | is such that

γN → |ϕ0〉〈ϕ0|

with ϕ0(x) = 1 for all x ∈ Λ.

Warning: this does not mean that ψN ' ϕ⊗N0 . A simple com-

putation shows

〈ϕ⊗N0 , HN ϕ
⊗N
0 〉 =

(N − 1)

2
κV̂ (0)� 4πa0N

Correlations play crucial role!!

3



Theorem [BBCS, ’18]: Suppose κ > 0 is small enough. Then

EN = 4πaN(N − 1)

−
1

2

∑
p∈Λ∗+

[
p2 + 8πa0 −

√
|p|4 + 16πa0p

2 −
(8πa0)2

2p2

]
+O(N−1/4)

where Λ∗+ = 2πZ3\{0} and

8πaN = κV̂ (0) +
∞∑
k=1

(−1)kκk+1

(2N)k

×
∑

p1,...,pk∈Λ∗+

V̂ (p1/N)

p2
1

k−1∏
i=1

V̂ ((pi − pi+1)/N)

p2
i+1

 V̂ (pk/N)

Moreover, spectrum of HN −EN below ζ consists of eigenvalues∑
p∈Λ∗+

np

√
|p|4 + 16πa0p

2 +O(N−1/4(1 + ζ3))

where np ∈ N for all p ∈ Λ∗+.
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Remark 1: definition of aN can be compared with Born series

8πa0 = κV̂ (0) +
∞∑
k=1

(−1)kκk+1

2k(2π)3k

×
∫
R3k

dp1 . . . dpk
V̂ (p1)

p2
1

k−1∏
i=1

V̂ (pi − pi+1)

p2
i+1

 V̂ (pk)

for a0. We find

|aN − a0| ≤ CN−1

At the level of precision of Theorem, ground state energy

sensitive to finite volume effects!
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Remark 2: Gross-Pitaevskii regime equivalent to N particles

in box with volume N3 interacting through unscaled potential V .

Thermodynamic limit: N particles in box Λ, with N, |Λ| → ∞
and ρ = N/|Λ| fixed.

Lee-Huang-Yang formula: for small ρ, ground state energy per

particles expected to obey

lim
N,|Λ|→∞
ρ=N/|Λ|

EN
N

= 4πa0ρ

[
1 +

128

15
√
π

(ρa3
0)1/2 + . . .

]

Rigorous results: [Dyson, ’58], [Lieb-Yngvason, ’98],

[Erdős-S.-Yau, ’08], [Yau-Yin, ’09], [Giuliani-Seiringer, ’09],

[Brietzke-Solovej, ’18] (extending ideas from [Lieb-Solovej, ’01]).
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Previous works: mathematically simpler models described by

H
β
N =

N∑
j=1

−∆xj +
κ

N

N∑
i<j

N3βV (Nβ(xi − xj))

for β ∈ [0; 1).

In mean field regime, β = 0, excitation spectrum determined

by [Seiringer, ’11], [Grech-Seiringner, ’13], [Lewin-Nam-Serfaty-

Solovej, ’14], [Derezinski-Napiorkowski, ’14], [Pizzo, ’16].

Dispersion of excitations given by εmf(p) =
√
|p|4 + 2κV̂ (p)p2.

For intermediate regimes, β ∈ (0; 1), excitations spectrum de-

termined by [BBCS, ’17].

Dispersion of excitations given by εβ(p) =
√
|p|4 + 2κV̂ (0)p2.
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Bogoliubov approximation: rewrite HN in momentum space,
using second quantization:

HN =
∑
p∈Λ∗

p2a∗pap +
κ

2N

∑
p,q,r∈Λ∗

V̂ (r/N)a∗p+ra
∗
qapaq+r

where, a∗p, ap are creation and annihilation operators with[
ap, a

∗
q

]
= δpq,

[
ap, aq

]
=
[
a∗p, a

∗
q

]
= 0

BEC implies a0, a
∗
0 are much larger than [a0, a

∗
0] = 1. Hence,

Bogoliubov replaced all a0, a
∗
0 by factors of

√
N .

In the resulting Hamiltonian, he neglected all contributions cubic
and quartic in ap, a∗p, p 6= 0.

Then he diagonalized the quadratic Hamiltonian he derived.

Finally, he recognised that some expressions were first and second
Born approximations for a0 and he replaced them with a0.
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Orthogonal excitations: for ψN ∈ L2
s(ΛN) and ϕ0 ≡ 1 on Λ,

write

ψN = α0ϕ
⊗N
0 + α1 ⊗s ϕ

⊗(N−1)
0 + α2 ⊗s ϕ

⊗(N−2)
0 + · · ·+ αN

where αj ∈ L2
⊥ϕ0

(Λ)⊗sj.

As in [Lewin-Nam-Serfaty-Solovej, ’12], define unitary map

U : L2
s(ΛN)→ F≤N+ :=

N⊕
j=0

L2
⊥ϕ0

(Λ)⊗sj

ψN → UψN = {α0, α1, . . . , αN}

Excitation Hamiltonian: we use unitary map U to define

LN = UHNU
∗ : F≤N+ → F≤N+
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For p, q ∈ Λ∗+ = 2πZ3\{0}, we have

U a∗paq U
∗ = a∗paq, U a∗0a0U

∗ = N −N+

U a∗pa0U
∗ = a∗p

√
N −N+, Ua∗0apU

∗ =
√
N −N+ ap

Hence, similarly to Bogoliubov approximation,

LN =
(N − 1)

2N
κV̂ (0)(N −N+) +

κV̂ (0)

2N
N+(N −N+)

+
∑
p∈Λ∗+

p2a∗pap +
∑
p∈Λ∗+

κV̂ (p/N)a∗p
N − 1−N+

N
ap

+
κ

2

∑
p∈Λ∗+

V̂ (p/N)

a∗pa∗−p
√

(N −N+)(N − 1−N+)

N2
+ h.c.


+

κ√
N

∑
p,q∈Λ∗+:p+q 6=0

V̂ (p/N)

√N + 1−N+

N
a∗p+qa

∗
−paq + h.c.


+

κ

2N

∑
p,q∈Λ∗+,r∈Λ∗:r 6=−p,−q

V̂ (r/N)a∗p+ra
∗
qapaq+r
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Gain: conjugation with U generates new constant and quadratic

contributions.

Problem: in contrast with mean-field regime, after conjugation

with U there are still large contributions in higher order terms.

Reason: U∗Ω = ϕ⊗N0 not good approximation for ground state!

We need to take into account correlations!

Natural idea: conjugate LN with a Bogoliubov transformation

of the form

T̃ = exp

1

2

∑
p∈Λ∗+

ηp
(
a∗pa
∗
−p − apa−p

)
so that

T̃ ∗ ap T̃ = ap cosh(ηp) + a∗−p sinh(ηp)
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Challenge: T̃ does not preserve the excitation space F≤N+ .

Modified operators: for p ∈ Λ∗+, define

b∗p = a∗p

√
N −N+

N
bp =

√
N −N+

N
ap

Remark: for all p ∈ Λ∗+,

U∗ b∗pU = a∗p
a0√
N

Hence b∗p creates an excitation with momentum p and, at the

same time, it annihilate a particle from the condensate.

Total number of particles is conserved. Moreover, on states

with N+ � N , we expect bp ' ap, b∗p ' a∗p.
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Generalized Bogoliubov transformations: let w = 1− f and

ηp = −
1

N2
ŵ(p/N) ⇒ ηp '

C

p2

We define

T = exp
∑
p∈Λ∗+

ηp
(
b∗pb
∗
−p − bpb−p

)
: F≤N+ → F≤N+

Then

T ∗bpT = cosh(ηp)bp + sinh(ηp)b
∗
−p + dp

where

‖dpξ‖ ≤ CN−1‖(N+ + 1)3/2ξ‖

Observe:

T ∗N+T ' N+ + ‖η‖22 ' N+ + C

T ∗KT ' K+ ‖η‖2
H1 ' K+ CN

T generates finitely many excitations but macroscopic energy.
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Renormalized excitation Hamiltonian: define

GN = T ∗LNT = T ∗UHNU
∗T : F≤N+ → F≤N+

Using cancellations due to equation for η, we find

GN = 4πa0N +HN + EN

where HN = K+VN and, for every δ > 0, there exists C > 0 with

±EN ≤ δHN + Cκ(N+ + 1)

Lower bound: since N ≤ CK, we find

GN − 4πa0N ≥
1

2
HN − C

if κ > 0 is small enough.
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Bose-Einstein condensation: if

〈ψN , HNψN〉 ≤ 4πa0N +K,

the excitation vector ξN = T ∗UψN is such that

K ≥ 〈ψN , HNψN〉−4πa0N = 〈ξN ,GNξN〉−4πa0N ≥
1

2
〈ξN ,HNξN〉−C

Hence, low energy states exhibit BEC, with optimal rate:

〈ξN ,N+ξN〉 ≤ C〈ξN ,KξN〉 ≤ C〈ξN ,HNξN〉 ≤ C(K + 1)

Stronger bound: if ψN ∈ L2(Λ)⊗sN with

ψN = χ(HN ≤ EN + ζ)ψN

Then ψN = U∗NTξN with〈
ξN ,

[
(HN + 1)(N+ + 1) + (N+ + 1)3

]
ξN
〉
≤ C(ζ + 1)3
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Proposition: the renormalized excitation Hamiltonian can be
decomposed as

GN = CN +QN + CN + VN + EN

where CN is a constant, QN is quadratic,

CN =
κ√
N

∑
p,q∈Λ∗+
q 6=−p

V̂ (p/N)
[
b∗p+qb

∗
−p
(
γqbq + σqb

∗
−q
)

+ h.c.
]

and, where,

±EN ≤
C√
N

[
(HN + 1)(N+ + 1) + (N+ + 1)3

]

Problem: GN still contains non-negligible cubic and quartic
terms! This is the main difference compared with case β < 1!

Not surprising: from [Erdős-S.-Yau, 08], [Napiorkowski-Reuvers-
Solovej, ’15] it is clear that Bogoliubov states can only approxi-
mate ground state energy up to an error O(1).
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Cubic phase: we define

A =
1√
N

∑
r∈PH ,v∈PL

ηr
[
σvb
∗
r+vb

∗
−rb
∗
−v + γvb

∗
r+vb

∗
−rbv − h.c.

]
with PL = {p ∈ Λ∗+ : |p| ≤

√
N}, PH = {p ∈ Λ∗+ : |p| ≥

√
N}.

Set S = eA and introduce new excitation Hamiltonian

JN = S∗T ∗UNHNU
∗
NTS : F≤N+ → F≤N+

Remark: a similar cubic conjugation was used in [Yau-Yin, 09].

Proposition: we can decompose

JN = C̃N + Q̃N + VN + ẼN
where C̃N is a constant, Q̃N is quadratic in creation and anni-
hilation operators, and where

±ẼN ≤
C

N1/4

[
(HN + 1)(N+ + 1) + (N+ + 1)3

]
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Diagonalization: quadratic term given by

Q̃N =
∑
p∈Λ∗+

Fp b
∗
pbp +

Gp

2

[
bp b−p + b∗p b

∗
−p
]

with

Fp = p2(σ2
p + γ2

p ) + κ
(
V̂ (·/N) ∗ f̂N

)
p
(γp + σp)

2;

Gp = 2p2σpγp + κ
(
V̂ (·/N) ∗ f̂N

)
p
(γp + σp)

2

We define new Bogoliubov transformation

tanh(2τp) = −
Gp

Fp
⇒ R = exp

[1
2

∑
p∈Λ∗+

τp(b
∗
pb
∗
−p − bpb−p)

]
Then

R∗Q̃NR =
1

2

∑
p∈Λ∗+

[
−Fp +

√
F2
p −G2

p

]
+

∑
p∈Λ∗+

√
F2
p −G2

p a
∗
pap + δN

with

±δN ≤ CN−1(HN + 1)(N+ + 1)
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Final excitation Hamiltonian: we define

MN = R∗JNR = R∗S∗T ∗UNHNU
∗
NTSR : F≤N+ → F≤N+

Then

MN = 4πaN(N − 1)

+
1

2

∑
p∈Λ∗+

[
−p2 − 8πa0 +

√
|p|4 + 16πa0p

2 +
(8πa0)2

2p2

]

+
∑
p∈Λ∗+

√
|p|4 + 16πa0p

2 a∗pap + VN + E ′N

where

±E ′N ≤ CN
−1/4

[
(HN + 1)(N+ + 1) + (N+ + 1)3

]

Main theorem follows from min-max principle, because on low-

energy states of diagonal quadratic Hamiltonian, we find

VN ≤ CN−1(ζ + 1)7/2
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