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Chemical reactions

I Computing reaction paths

is one of main goals in chemistry

I Born-Oppenheimer approximation

I Example: HCN → CNH
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N-particle quantum Hamiltonian

HN(Y ,Z) :=
N∑
j=1

−∆xj −
N∑
j=1

M∑
m=1

zm
|xj − ym|

+
∑

1≤j<k≤N

1

|xj − xk |
+

∑
1≤`<m≤M

zmz`
|ym − y`|

HVZ + Zhislin-Sigalov ’60–65

EN(Y ,Z) := minσ
(
HN(Y ,Z)

)
< minσess

(
HN(Y ,Z)

)
= EN−1(Y ,Z)

Theorem (All neutral molecules can bind in Born-Oppenheimer)

N = |Z | :=
∑M

m=1 zm. There exist Ȳ = (ȳ1, ..., ȳM) ∈ (R3)M such that

EN(Ȳ ,Z ) = min
Y∈(R3)M

EN(Y ,Z ).

More precisely: min
Y∈(R3)M

EN(Y ,Z ) < lim inf∑
m 6=` |ym−y`|→∞

EN(Y ,Z ).

Morgan-Simon ’80, Lieb-Thirring ’86
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Assume molecule dissociates in two parts: Y = (Y1,Y2 + Le1), Z = (Z1,Z2)

Theorem (Morgan-Simon ’80)

lim
L→∞

EN(Y1,Y2 + Le1,Z ) = min
N1+N2=N

{
EN1 (Y1, ,Z1) + EN2 (Y2,Z2)

}
Conjecture: min for N1 = |Z1| and N2 = |Z2| (neutral case).

If not, using trial state Ψ1 ∧Ψ2(· − Le1) gives upper bound

EN(Y1,Y2 + Le1,Z) ≤ EN1 (Y1, ,Z1) + EN2 (Y2,Z2)− (N1 − |Z1|)(|Z2| − N2)

L
+ o

(
1

L

)

In general, sign of interaction depends on orientation of the two molecules

Theorem (Van der Waals, Lieb-Thirring ’86)
¨

SO(3)2

EN(UY1,VY2 + Le1,Z) dUdV ≤ E|Z1|(Y1, ,Z1) + E|Z2|(Y2,Z2)− CVdW

L6
+ o

(
1

L6

)

Anapolitanos-Sigal ’16–17: computation of exact CVdW for atoms, no average
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Chemical reaction = mountain pass

We assume Y 7→ EN(Y ,Z ) has two strict local minima Ȳ0 and Ȳ1.

Mountain pass

c := inf
Y (t)∈C 0([0,1],(R3)M )

Y (0)=Ȳ0

Y (1)=Ȳ1

max
t∈[0,1]

EN

(
Y (t),Z

)
.

Conjecture: all isomerizations without dissociation [Lew-04]

N = |Z |. There exists a min-maxing sequence of paths {Yn(t)} which is compact
in the sense that the molecule does not dissociate: |yn,j(t)− yn,k(t)| ≤ R, for all
j 6= k, all n ≥ 1 and all t ∈ [0, 1].

Difficulty: understand shape of EN at in-
finity = Morse indices of “critical points at
infinity”. Not enough to know that energy
decreases in one direction
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Existence of transition state

Theorem (Existence of transition state [Lew-04])

N = |Z |. Assume there exists a compact min-maxing sequence of paths {Yn(t)}.
Then there exist tn ∈ [0, 1] and Ψn such that(

HN(Yn(tn),Z )− EN(Yn(tn),Z )
)

Ψn → 0,

EN(Yn(tn),Z )→ c ,
〈
Ψn,∇Y HN

(
Yn(tn),Z

)
Ψn

〉
→ 0.

Extracting a subsequence and translating appropriately the whole system, we find
in the limit a critical point (Ỹ , Ψ̃) at mountain pass level

c = EN(Ỹ ,Z ), HN(Ỹ ,Z )Ψ̃ = EN(Ỹ ,Z )Ψ̃,
〈

Ψ̃,∇Y HN

(
Ỹ ,Z

)
Ψ̃
〉

= 0.

M(t) =

(
sin(t) 0

0 − sin(t)

)
t 7→ λ1(M(t)) not smooth, but (x , t) 7→ 〈x ,M(t)x〉 is

Rmk. existence of an optimal path more difficult
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Conjecture in the case of two rigid molecules

0

Y1

Le1 Y2

VU Parameters: L > 0, U,V ∈ SO(3)

GS energy=E (L,U,V )

Theorem (First cases [Lew-04])

Assume there are two strict local min and let c be the mountain pass level. If

c 6= min{EN1 (Y1,Z1) + EN2 (Y2,Z2)} := e∞
or c = min{EN1 (Y1,Z1) + EN2 (Y2,Z2)} which is attained for some N1 6= |Z1|

then the conjecture is right. In particular, there is a transition state.

τ̄0

τ̄1

∼ c

∼ e∞ < c

Lm

L

t0

t1
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Multipolar expansion

Assumption: c = E|Z1|(Y1,Z1) + E|Z2|(Y2,Z2) < non neutral

Theorem (Multipolar/Van der Waals expansion [AnaLew-18])

Ψ1,Ψ2 (any) two ground states of the two sub-molecules.

E (L,U,V ) ≤ E1 + E2 +
∑

2≤n+m≤5

F (n,m)(U,V )

Ln+m+1
− CVdW(U,V )

L6
+ o

(
1

L6

)
where the o(1/L6) is uniform in U,V ∈ SO(3). If in addition the two ground
states are “non-degenerate”, then there is equality.

¨
R3×R3

ρtot,1(x)ρtot,2(y) dx dy

|Ux − Uy − Le1|
=
∑

n+m≥2

F (n,m)(U,V )

Ln+m+1

CVdW(U,V ) :=

〈
f(U,V )Ψ1 ⊗Ψ2, (H1 + H2 − E1 − E2)−1

⊥ f(U,V )Ψ1 ⊗Ψ2

〉
> 0

f(U,V )(x1, ..., xN) :=

〈 |Z1|∑
j=1

xj −
M1∑
m=1

zmym,U
∗ (1− 3|e1〉〈e1|)V

N∑
j=|Z1|+1

xj −
M1+M2∑
m=M1+1

zmym

〉
Feshbach-Schur: A

{
1− (H1 + H2 − E1 − E2)−1

⊥ f(U,V )

}
Ψ1 ⊗Ψ2(·, ·+ Le1)/‖ · ‖
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Case 1: Van der Waals dominates

Degenerate case: need to choose Ψ1 and Ψ2. Natural to take uniform average
over ker(H1 − E1) and ker(H2 − E2)  multipoles with same symmetry property
as the molecule

Theorem (Compactness when Van der Waals dominates [AnaLew-18])

Let n1 and n2 ∈ N ∪ {∞} be the indices of the first non-vanishing 2n–pole of the
two molecules (uniformly averaged in case of degeneracy). If

n1 + n2 + 1 ≥ 7

then the conjecture is true. In particular, there is a transition state.

Proof: VdW dominates E (L,U,V ) ≤ E1 + E2 − CL−6 for L� 1.

Example: for an atom (H in HCN), nk = +∞. This was covered in [Lew-06].
All other cases are new.
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Case 2: Multipolar interactions dominate

Theorem (Compactness when multipolar dominates [AnaLew-18])

Assume that

n1 + n2 + 1 ∈ {3, 4, 5}
and that the two ground states are “non-degenerate”. If n1 = 3 or n2 = 3, we
make the additional non-degeneracy assumption on the octopole

O(v , ·, ·) ≡ 0 =⇒ v = 0.

Then the conjecture is true. In particular, there is a transition state.

Rmk:

dipole-dipole, dipole-quadrupole, dipole-octopole, quadrupole-quadrupole

cannot cover n1 + n2 + 1 = 6 where VdW and multipoles are of same order
(cannot match the two completely different proofs!)

need non-degeneracy (up to spin relabelling)

n1 = n2 = 1 (dipole-dipole) covered in [Lew-04]
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Idea of proof

Theorem (Mountain pass for F (n,m)(U ,V ) [AnaLew-18])

Under the previous assumptions, the multipolar interactions F (n,m) satisfy

any critical point of F (n,m) on SO(3)2 with positive Hessian (e.g. local min)
has negative energy ;

the sets {F (n,m) ≤ −δ < 0} are pathwise connected for δ � 1

In other words, if F (n,m) has two local min then the corresponding mountain pass
level is < 0.

I Example: dipole-dipole interaction [Lew-04]

F (1,1)(U,V ) = Up1 · Vp2 − 3(Up1 · e1)(Vp2 · e1)

state energy Morse state energy Morse
→→ −2|p1|p2| 0 ↑↑ |p1|p2| 2
↑↓ −|p1|p2| 1 →← 2|p1|p2| 4
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1 Flow to local min of E (L, ·, ·) at first and last points where L = Lm � 1

2 Show ∇F (n1,n2) ' 0 and Hess F (n1,n2) & 0

3 Use one path for F (n1,n2)

τ̄0
τ̄1

∼ c = e∞

Lm

L

t0

t1

(U ′
0, V

′
0 )

(U ′
1, V

′
1 )
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