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What is the Fermi polaron?

We consider a system consisting of N fermions and 1 additional
particle (called impurity) in all of Rd or in a box [0,L]d ⊂ Rd .
Informally

HN = − 1
M

∆y −
N∑

j=1

∆xj − g
N∑

j=1

δ(xj − y)

In physics,

I this model is used to study unbalanced spin populations in Fermi
gases. Here N spin up fermions versus one spin down fermion.

I there are conjecture about the form of the ground state for weak
and strong coupling (Mora, Chevy 2009 / Punk, Dimutrescu,
Zwerger 2009). • These conjectures are based on a second
quantised model with UV cutoff.



Some References on δ-Potentials
One particle systems with δ-potential.

I Albeverio, Gesztesy, Høegh-Krohn, Holden: Solvable Model in
Quantum Mechanics, 1998

I Albeverio, Kurasov: Singular perturbations of differentiable
operators, 1999.

N-particle systems with δ-interactions via TMS extension:

I Dell’Antonio, Figari, Teta: AIHP 60 1994

I Correggi, Dell’Antonio, Finco, Michelangeli, Teta: RMP 24 2012

I Correggi, Finco, Teta: EPL 111 2015

I Michelangeli, Ottolini: RMP 79 2017

TMS = Ter Martirosyan-Skornyakov.

A different approach:

I Dimock, Rajeev: J. Phys. A. 2004



Warm up: H = −∆x − gδ(x) with eigenvalue E < 0

Let Gλ be the Green’s function solving (−∆ + λ)Gλ(x) = δ(x), λ > 0.
Then H is given by

(H + λ)−1 = (−∆ + λ)−1 +
1

GE (0)−Gλ(0)
|Gλ〉〈Gλ|

This is the norm resolvent limit of

Hn := −∆− gn|δn〉〈δn| in L2(Rd ).

where

δn(x) := (2π)−d
∫
|k|≤n

eikxdk , x ∈ Rd

g−1
n := 〈δn, (−∆ + E)−1δn〉 = (2π)−d

∫
|k|≤n

(k2 + E)−1 dk .

Note that 〈δn, ϕ〉 → ϕ(0) and gn → 0 as n→∞ (for d ≥ 2).



Abstract operator-theoretic
approach

1. regularized theory

2. approximation theorem



Let H0 : D ⊂H →H be positive, A : H → H̃ bounded, g ∈ R. Let

H = H0 − gA∗A in H

and define a generalized Birman-Schwinger-operator

φ(E) :=
1
g
− A(H0 − E)−1A∗ in H̃

Lemma
Then E ∈ ρ(H0) is an eigenvalue of H if and only if 0 is an eigenvalue
of φ(E). Moreover,

(H0 − E)−1A∗ : kerφ(E)→ ker(H − E)

is an isomorphism.

Proof. The operators H − E and φ(E) are the first and second Schur
complements, respectively, of the auxiliary block operator(

H0 − E A∗

A g−1

)
in H ⊕ H̃ .



Approximation Theorem

Let H0 ≥ 0, and for n ∈ N let An ∈ L (H , H̃ ), gn ∈ R+ and

Hn := H0 − gnA∗nAn

φn(z) := g−1
n − An(H0 − z)−1A∗n.

Suppose there exists µ < 0 such that

(a) Rµ := limn→∞ An(H0 − µ)−1 exists,

(b) φn(µ)ψ → φ(µ)ψ for all ψ ∈ D where φ(µ) � D is essentially s.a.

(c) φn(µ) ≥ c > 0 for some c and all n ∈ N large.

Then, there exists H = H∗ such that, in the strong sense

(Hn − µ)−1 → (H − µ)−1 = (H0 − µ)−1 + R∗µφ(µ)−1Rµ.

Remark: in applications gn is determined by (b) and a spectral
condition.



Proof

Relation between resolvents of the Schur complements Hn − µ and
φ(µ):

(Hn − µ)−1 = (H0 − µ)−1 + (H0 − µ)−1A∗n · φn(µ)−1 · An(H0 − µ)−1

where, as n→∞,

An(H0 − µ)−1 → Rµ
(H0 − µ)−1A∗n → R∗µ

φn(µ)−1 → φ(µ)−1, strongly.

It follows that

(Hn − µ)−1 → (H0 − µ)−1 + R∗µφ(µ)−1Rµ =: (H − µ)−1



Theorem (domain of H and lower bound)
A vector ϕ ∈H belongs to D(H) if and only if there exists a vector
wϕ ∈ D(φ(z)) such that for some (and hence all) z ∈ ρ(H0),

ϕ− R∗z wϕ ∈ D(H0) and A(ϕ− R∗z wϕ) = φ(z)wϕ. (1)

Aψ := limn→∞ Anψ, ψ ∈ D(H0). Then

(H − z)ϕ = (H0 − z)(ϕ− R∗z wϕ). (2)

It follows that for E < infσ(H0),

〈ϕ, (H − E)ϕ〉 = 〈(ϕ− R∗Ewϕ), (H0 − E)(ϕ− R∗Ewϕ)〉+ 〈wϕ, φ(E)wϕ〉.

Hence
φ(E) ≥ 0 ⇒ H ≥ E .

I basis for all lower bounds on H (due to explicit formula for φ(E))
I Equation in (1) is the generalized TMS-condition.
I For the FP described by the TMS Hamiltonian analog results are known.



Abstract theory continued
Suppose the assumptions (a)-(c) of the abstract theory hold, and, in
addition,

(d) H0 has a compact resolvent, (e.g. FP in a box)

(e) ker R∗z = {0} for all z ∈ ρ(H0).

Then,

1. σ(H) is purely discrete, and σ(φ(z)) in C\[c,∞) is purely
discrete for each z ∈ ρ(H0),

2. (H − z)−1 = (H0 − z)−1 + R∗z̄φ(z)−1Rz for z ∈ ρ(H0) ∩ ρ(H),

3. The map τ 7→ µ`(φ(τ)) is continuous, and, if µ`(φ(τ)) < c, it is
strictly decreasing.

4. For any E < minσ(H0), and ` ∈ N,

µ`(H) ≤ E ⇔ µ`(φ(E)) ≤ 0.

and therefore

〈w , φ(E)w〉 ≤ 0 ⇒ minσ(H) ≤ E .



µ`(H) ≤ E ⇔ µ`(φ(E)) ≤ 0

E1
E2

E3

Μ3HΦHELL

The zeros E1,E2,E3, . . . of the black curves are the eigenvalues of H.



The Fermi-polaron in R2



Let

Hn =
1
M

(−∆y ) +
N∑

i=1

(−∆xi )− gnWn

where

〈ψ,Wnψ〉 =
N∑

i=1

∫
dx1 . . . d̂xi ...dxNdy

∣∣∣∣∫ dxi ηn(xi − y)ψ(y ,x)

∣∣∣∣2
g−1

n =

∫
dk

η̂n(k)2

(1 + 1
M )k2 − EB

.

Then, after passing to the center-of-mass frame and F.T.,

Hn =

∫ ⊕
R2

(
1

M + N
P2 + Hrel(n,P)

)
dP.

where
Hrel(n,P) =

1
M

P2
f + Hf − gna∗(η̂n,P)a(η̂n,P)

Pf =
∫

k a∗k ak dk , Hf =
∫

k2 a∗k ak dk .



The assumptions (a)-(c) of the abstract theory are satisfied and

φ(E) = α + φ0(E) + φI(E)

where

α =
π

1 + 1
M

log(−EB)

φ0(E) =
π

1 + 1
M

log
(

1
M+1 P2

f + Hf − E
)

φI(E) =

∫
dk dl a∗k

1
1
M (Pf + k + l)2 + Hf + k2 + l2 − E

al .

It follows that Hn → H in the strong resolvent sense and that

φ(E) ≥ 0 ⇒ H ≥ E .

In particular, H is a TMS extension for the N + 1 fermion system.



Stability

Theorem (U. Linden, M.G.)
Let EB < 0 and M > 1.225, then there exists µ < EB such that,

HN ≥ µ for all N ∈ N.

Remarks:

I HN is bounded from below for all M > 0 and N ∈ N, but the lower
bound may depend on N (and M).

I It is an open question whether or not some condition M > c is
necessary.

I In 3D an analog results holds under the condition M > 0.36
(Seiringer, Moser), while for M < 0.0735 one has instability.



The Fermi-polaron in a box

d = 2



Regularized model. N fermions and one impurity particle in a box
Ω = [0,L]2 ⊂ R2 with periodic boundary conditions.

HN := L2(Ω)⊗
∧N

L2(Ω) ⊂ F ⊗F .

Let ak ,bk ,a∗k ,b
∗
k be the annihilation and creation operators

associated with the ONB of L2(Ω) given by

ϕk (x) := eikx/L for k ∈ 2π
L Z2.

Let Hn := H0 − gnWn, where

H0 :=
∑

k

k2( 1
M b∗k bk + a∗k ak ),

Wn :=
n∑

k,l,q

a∗k b∗q−k bq−l al

g−1
n :=

n∑
k

1
(1 + 1

M )k2 − EB
, EB < 0.



Let

Vn =
n∑

k,q

m∗qbq−k ak , (m∗q = b∗q)

then mpm∗q = δp,q on the vacuum and hence

Wn = V ∗n Vn, in HN .

Theorem (Linden, M.G.)
Hn = H0 − gnV ∗n Vn satisfies all hypotheses of the abstract theory and
hence there exists H = H∗ such that

Hn → H, in strong resolvent sense.

For all z ∈ ρ(H0) ∩ ρ(H),

(H − z)−1 = (H0 − z)−1 + R∗z̄φ(z)−1Rz .



Polaron and Molecule states

Fix µ > 0, let |FSµ〉 = ∧|k|2≤µϕk be the fermi sea, and let

Nµ = {k ∈ 2π
L Z2 | k2 ≤ µ}.

Polaron states are of the form

|P〉 = α0b∗0 |FSµ〉 +
∑

K 2>µ

q2≤µ

αK ,qb∗q−K a∗K aq |FSµ〉

α0, αK ,q ∈ C are variational parameters.

Molecule states are of the form:

|M〉 =
∑

K 2>µ

βK b∗−K a∗K |FSµ〉 +
∑

K 2,L2>µ

q2≤µ

βK ,L,qb∗q−K−La∗K a∗Laq |FSµ〉

βk , βK ,L,q ∈ C are variational parameters.



Our polaron Ansatz for φ(E)

|P̃〉 =
∑

q2≤µ

α̃qm∗qaq |FSµ〉 ,

If E is a solution to
min
‖P̃‖=1

〈P̃, φ(E)P̃〉 = 0

then
infσ(H) ≤ E

Theorem (M.G., Linden)
Let Eµ :=

∑
k2≤µ k2. Any solution E to the polaron equation

Eµ − E =
∑

q2≤µ

1
GE (Eµ − q2,q)

(3)

GE (λ,q) :=
∑

k

(
1

(1 + 1
M )k2 − EB

− χ(k2 > µ)
1
M (q − k)2 + k2 + λ− E

)

is an upper bound to the ground state energy of H on HNµ
. The

equation (3) has at least one solution E < Eµ.



In a similar way the solutions to the molecule equation can be
shown to be upper bounds to the ground state energy of H in HNµ+1.
If EP and EM denote the lowest solutions to the polaron and the
molecule equations, respectively, then

EM − µ < EP

for M, L and |EB| large enough. (Linden, 2017).



Enjoy your eternal sabbatical, Heinz!


