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What is the Fermi polaron?

We consider a system consisting of N fermions and 1 additional
particle (called impurity) in all of R? or in a box [0, L]? ¢ RY.
Informally

N N
1
Hy = =218y =D Dy =g 0%~ y)
j=1 j=1

In physics,

» this model is used to study unbalanced spin populations in Fermi
gases. Here N spin up fermions versus one spin down fermion.

» there are conjecture about the form of the ground state for weak
and strong coupling (Mora, Chevy 2009 / Punk, Dimutrescu,
Zwerger 2009). e These conjectures are based on a second
quantised model with UV cutoff.



Some References on §-Potentials

One particle systems with /-potential.

» Albeverio, Gesztesy, Haegh-Krohn, Holden: Solvable Model in
Quantum Mechanics, 1998

» Albeverio, Kurasov: Singular perturbations of differentiable
operators, 1999.

N-particle systems with J-interactions via TMS extension:
» Dell’Antonio, Figari, Teta: AIHP 60 1994
» Correggi, Dell’Antonio, Finco, Michelangeli, Teta: RMP 24 2012
» Correggi, Finco, Teta: EPL 111 2015
» Michelangeli, Ottolini: RMP 79 2017

TMS = Ter Martirosyan-Skornyakov.

A different approach:

» Dimock, Rajeev: J. Phys. A. 2004



Warm up: H = —Ax — gd(x) with eigenvalue E < 0

Let Gy be the Green’s function solving (—A + A)Gx(x) = §(x), A > 0.
Then H is given by

1

-1 _(_ —1
(H+XN)"=(-A+)) +GE(0)—GA(O)

[OVIEN

This is the norm resolvent limit of
Hp = —A — gnlon) (6] in L2(RY).
where

5a(x) = (2m) ¢ / edk,  xeRY

|kl<n

gn' = n, (~D+ E)'6n) = (2m) ¢ / (K* + E) "ok,

|k|<n

Note that (d,, ») — ©(0) and g, — 0 as n — oo (for d > 2).



Abstract operator-theoretic
approach

1. regularized theory

2. approximation theorem



Let Ho : D C # — A be positive, A : 2 — 7 bounded, g € R. Let
H=Hy — gA*A in 7
and define a generalized Birman-Schwinger-operator
#(E) = ; —A(Ho— E)'A*  inu#

Lemma
Then E € p(Hy) is an eigenvalue of H if and only if O is an eigenvalue
of (E). Moreover,

(Ho— E)'A* : ker¢(E) — ker(H — E)
is an isomorphism.

Proof. The operators H — E and ¢(E) are the first and second Schur
complements, respectively, of the auxiliary block operator

Ho—E A" o ~
( A g’1> in ¢ @ .



Approximation Theorem

Let Hy > 0,and for n € Nlet A, € £ (A, #), gn € R, and
Hn := Ho — gnALAn
$n(2) == gy ' — An(Ho — 2) ' Ay,
Suppose there exists p < 0 such that
(@) Ry :=liMp00 An(Ho — 1)~ exists,
(b) dn(u) — o(u)y for all » € D where ¢(u) | D is essentially s.a.
(¢) én(p) > ¢ > 0forsome cand all n e N large.

Then, there exists H = H* such that, in the strong sense
(Hn — M)_1 — (H - N)_1 = (Ho — N)_1 + R:¢(N)_1Ru-

Remark: in applications g, is determined by (b) and a spectral
condition.



Proof

Relation between resolvents of the Schur complements H, — p and

P(p):
(Hn— )" = (Ho = i)™ + (Ho — 1) " A5 - (1) "+ An(Ho — 1) "
where, as n — oo,

An(HO - ﬂ)71 — Ru
(Ho— ) A5 — R

¢n(p)™" = @(u)~",  strongly.

1

It follows that

(Ho =)™ = (Ho— ) " + Rio(n) "Ry = (H—p) "



Theorem (domain of H and lower bound)

A vector ¢ € 7 belongs to D(H) if and only if there exists a vector
w, € D(¢(z)) such that for some (and hence all) z € p(Hp),

¢ — Rzw, € D(Hp) and  A(y — Rzw,) = ¢(2)w,. 1)
Ay = limy_, 00 Anth, ¥ € D(Hp). Then
(H—2)p = (Ho — 2)(¢ — Rzw,.). (2)
It follows that for E < inf o(Hp),
(. (H = E)p) = (¢ — ReW,,), (Ho — E)(¢ — REW,)) + (W,, §(E)W,).

Hence

(6(E)>0 = H>E.|

> basis for all lower bounds on H (due to explicit formula for ¢(E))
» Equation in (1) is the generalized TMS-condition.
> For the FP described by the TMS Hamiltonian analog results are known.



Abstract theory continued

Suppose the assumptions (a)-(c) of the abstract theory hold, and, in
addition,

(d) Hp has a compact resolvent, (e.g. FP in a box)
(e) ker Ry = {0} for all z € p(Hp).
Then,

1. o(H) is purely discrete, and o(¢(z)) in C\[c, c0) is purely
discrete for each z € p(Hp),

2. (H—2)"' = (Ho— 2)~" + Rip(2)~ "Rz for z € p(Ho) N p(H),

3. The map 7 — pue(o(7)) is continuous, and, if pe((7)) < ¢, itis
strictly decreasing.

4. Forany E <mino(Hp),and ¢ € N,
me(H) < E < u(4(E)) <0.

and therefore

(w,p(E)w) <0 = mino(H)<E.



w(H) < E & w(e(E)) <0

u3(6(E)

The zeros Ej, Ep, E3, . .. of the black curves are the eigenvalues of H.



The Fermi-polaron in R?



Let N
1
Ho = 3 (~2) + Do (-B) ~ Wy
i=1
where

2

(W, W) = Z/d)ﬁ dXNd}/‘/dX/ nn(Xi — y)v(y, X)

/dk 77[7
1 + —Eg

Then, after passing to the center-of-mass frame and F.T.,

®
Hy = 2 .
=, (M+NP + Ha(n, P)) dP

where

1 R R
M'sz + Hr — gna*(in,p)a(fin,p)

Pf = fka;ak dk, Hf = sz a;ak dk.

Hrel(”v P) =



The assumptions (a)-(c) of the abstract theory are satisfied and

¢(E) = a+¢°(E) + ¢/(E)

where
s
a= log(—Es)
1+ 5%
0 __ T 1 p2
¢(Ey_1+%km(MHﬂ%Jﬁ—E)

1
(Pr+k+12+H+k>+1P—E

Maz/wma1 a.
M

It follows that H, — H in the strong resolvent sense and that

(6(E)>0 = H>E|

In particular, H is a TMS extension for the N + 1 fermion system.



Stability

Theorem (U. Linden, M.G.)
Let Eg < 0 and M > 1.225, then there exists u < Eg such that,

Hy >u forallN € N.

Remarks:

» Hy is bounded from below for all M > 0 and N € N, but the lower
bound may depend on N (and M).

» [tis an open question whether or not some condition M > c is
necessary.

» In3D an analog results holds under the condition M > 0.36
(Seiringer, Moser), while for M < 0.0735 one has instability.



The Fermi-polaron in a box
d=2



Regularized model. N fermions and one impurity particle in a box
Q = [0, L]? ¢ R? with periodic boundary conditions.

=12 e \ 12(Q) c Fo F.

Let ax, by, a;, b;; be the annihilation and creation operators
associated with the ONB of L?(Q2) given by

or(x) = e /L fork e 272
Let H, := Hy — gnW,, where

Hp = Z kz(,%/,b;bk + aja),
k

n
Wh:="aj by by a

k,l.q

n
1
9;1:221—_8 EB<O



Let

n
Vo= mibg_kak,  (mj=b;)
k.q
then mymy = 6p,q on the vacuum and hence

Wn = V,—T Vn, in %N.

Theorem (Linden, M.G.)

Hn = Hy — 9,V V, satisfies all hypotheses of the abstract theory and
hence there exists H = H* such that

H, — H, in strong resolvent sense.
For all z € p(Hp) N p(H),

(H=2)""=(Ho—2)"" + R;¢(2) 'R



Polaron and Molecule states
Fix > 0, let [FS,,) = Ajxe<, ¢« be the fermi sea, and let
N, = {k € 2272 | k® < u}.

Polaron states are of the form

IP) =|agh§ [FS,.) |+ > ak.qb xakaq|FS,)

K2>;L
P<p
ap, ak,qg € C are variational parameters.

Molecule states are of the form:

M) =| 3" Brb* kak [FSu) |+ > BrLabl x_i8karaq|FS,)
K2>p K2 12>p
P<pu

Bk, Bk.L,q € C are variational parameters.




Our polaron Ansatz for ¢(E)

P) =" dgmyaq[FS,),
F<p
If E is a solution to

min (P, ¢(E)P) = 0
I1PI="

then
info(H) < E

Theorem (M.G., Linden)
Let E,, := Yy, k?. Any solution E to the polaron equation

1
E,—E= Z GHE — 9 (3)

GP<p

B 1 - X(K? > 1)
G 9= 2 ((1 )k —Es (g —KP+ K+ A E>

is an upper bound to the ground state energy of H on Jy,. The
equation (3) has at least one solution E < E,,.



In a similar way the solutions to the molecule equation can be
shown to be upper bounds to the ground state energy of H in 7y, 1.
If Ep and Ey, denote the lowest solutions to the polaron and the
molecule equations, respectively, then

Ev—pn<Ep

for M, L and | Eg| large enough. (Linden, 2017).



Enjoy your eternal sabbatical, Heinz!



