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Motivation

In 1995, the Bose-Einstein condensation (BEC) was observed in experiments:
many bosons occupy the same quantum state at a low temperature, leading to
macroscopic quantum effects e.g. superfluidity, quantized vortices, ...

Cornell, Wieman, Ketterle (2001 Nobel Prize in Physics)

It was predicted by Bose and Einstein (1924-25) from the analysis of the
non-interacting Bose gas
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Motivation

The Bose–Einstein condensate is closely related to the superfluid, a special state
of matter which behaves like a fluid with zero viscosity at very low temperatures

Allen–Misener & Kapitsa (1938): Superfluid 4He (bosons) at below 2.17 K
London (1938): Explanation via the Bose–Einstein condensation
Landau (1941): Theoretical explanation (1962 Nobel Prize in Physics)
Lee – Osheroff–Richardson (1972): 3He (fermions) can form bosons by
pairing and exhibit the superfluidity at 0.003 K (1996 Nobel Prize in Physics)

On mathematical side:

Bogoliubov (1947): Microscopic explanation for Landau’s criterion of
superfluidity
The fermionic of Bogoliubov theory is the Bardeen–Cooper–Schrieffer
(BCS) theory (1957) for superconductivity (1972 Nobel Prize in Physics)

How to understand these properties from first principles?

J. F. Allen and A. D Misener, Nature 141, 75 (1938)
P. Kapitza, Nature 141, 74 (1938)
F. London, Nature 141, 643–644 (1938)
L.D. Landau, Phys. Rev. 60, 356 (1941)
N. N. Bogoliubov, J. Phys. (USSR), 11, p. 23 (1947)
D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 28, 885–888 (1972)
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Bosons and fermions

From first principles of quantum mechanics, N quantum particles in Rd is
described by a (normalized) wave function Ψ ∈ L2(RdN)

|Ψ(x1, ..., xN)|2 = probability density of positions of particles

|Ψ̂(p1, ..., pN)|2 = probability density of momenta of particles

We will consider identical (indistinguishable) particles ⇒ |Ψ|2 is symmetric

bosons: Ψ symmetric (ex: photon, gluon, Higgs, Helium 4)

Ψ(xσ(1), ..., xσ(N)) = Ψ(x1, ..., xN), ∀σ ∈ SN

fermions: Ψ anti–symmetric (ex: electron, proton, neutron, Helium 3)

Ψ(xσ(1), ..., xσ(N)) = (−1)σΨ(x1, ..., xN), ∀σ ∈ SN

A typical example of N-body bosonic wave function is the Hartree state

Ψ(x1, ..., xN) = (u⊗N)(x1, ..., xN) = u(x1)...u(xN), ‖u‖L2(Rd ) = 1

The fermionic analogue is the Slater determinant u1 ∧ u2 ∧ ... ∧ uN
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A many–body quantum problem

A system of N bosons in Rd is described by the Hamiltonian

HN =
N∑
i=1

(−∆xi + V (xi )) + λ

N∑
i<j

w(xi − xj) on L2
s (RdN)

We are interested in the ground state energy

EN = inf
‖Ψ‖

L2
s (RdN )

=1
〈Ψ,HNΨ〉

If a ground state Ψ exists, then it solves the Schrödinger equation

HNΨ = ENΨ

This is ‘just’ a linear equation, but not solvable even numerically when N ≥ 10.
For practical computation, we have to replace the many-body linear problem to
one-body nonlinear problems
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Hartree approximation

The idea goes back to Pierre Curie (1985) and Pierre Weiss (1907)

Mean–field theory: particles are treated as if they were independent

For bosons, MF theory suggests to restrict to the Hartree state u⊗N

〈u⊗N ,HNu
⊗N〉

N
=

ˆ
|∇u|2 +

ˆ
V |u|2 +

λ(N − 1)

2

x
|u(x)|2|u(y)|2w(x − y)dxdy

In the mean–field regime λ = 1
N−1 we obtain the Hartree functional

EH(u) =

ˆ
Rd

|∇u|2 +

ˆ
Rd

V |u|2 +
1

2

x

Rd×Rd

|u(x)|2|u(y)|2w(x − y)dxdy

Define the Hartree energy

eH = inf
‖u‖

L2(Rd )
=1
EH(u)

If a minimizer exists, it solves the Hartree equation for some ε0 ∈ R

−∆u + Vu + (w ∗ |u|2)u = ε0u
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Bogoliubov theory

On a Hartree state u⊗N we find the Hartree energy functional

EH(u) =

ˆ
Rd

|∇u|2 +

ˆ
Rd

V |u|2 +
1

2

x

Rd×Rd

w(x − y)|u(x)|2|u(y)|2dxdy

Assume ∃ unique minimizer u0. Then ∀v in {u0}⊥, we have Taylor’s expansion

EH

(
u0 + v√
1 + ||v ||2

)
= EH(u0) +

1

2
Hess EH(u0)(v , v) + o

(
||v ||2H1

)
Bogoliubov theory (1947) can be formulated as

λk(HN) = NeH + λk(H) + o(1)N→∞, ∀k ≥ 1

where H = second quantization of 1
2 Hess EH(u0) on Fock space F({u0}⊥)

F(H) =
∞⊕
n=0

Hn = C⊕ H⊕ H2 ⊕ ..., Hn =
n⊗
s

H

Bogoliubov Hamiltonian H describes the fluctuations around the condensate
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Bogoliubov theory

Write the Hamiltonian using an = a(un), {un}∞n=0 ONB for L2(R3)

HN =
∑

m,n≥0

Tmna
∗
man +

1

2

∑
m,n,p,q≥0

Wmnpqa
∗
ma
∗
napaq

1 Replace any a0, a∗0 by
√
N (c-number substitution);

2 Ignore all terms with 3 or 4 operators a#
n with n 6= 0;

3 Diagonalize the resulting quadratic Hamiltonian
4 Anytime when you see

´
V , replace it by b (Landau’s correction)

All this leads to
HN ≈ NeGP + eBog +

∑
p,q≥1

epa
∗
pap,

In the the mean–field regime, the first two steps are correct, so the last step
(Landau’s correction) is not needed

In the GP regime, quartic terms have O(N) contribution and cubic terms
have O(1) contribution. Thus without the last step, Bogoliubov theory is
incorrect. How to implement the last step rigorously?

8 / 10



BEC in the thermodynamic limit: An open problem

Consider N bosons in a large torus Ω = [0, L]3 described by the Hamiltonian

HN =
N∑
j=1

−∆xj +
N∑
i<j

W (xi − xj)

An outstanding open problem in mathematical physics is the proof of BEC in the
thermodynamic limit N →∞, L→∞, N/L3 = ρ > 0 fixed

Conjecture (BEC in the thermodynamic limit)

If W ≥ 0, then the ground state ΨN of HN condensates on u0(x) = L−3/21Ω(x)

〈u0, γ
(1)
ΨN

u0〉 =
1

|Ω|2
x

Ω×Ω

γ
(1)
ΨN

(x , y)dxdy ≥ c0 > 0 independently of Ω

Best known: the Lee–Huang–Yang formula (1957), a = scattering length of W

lim
N→∞
N/L3=ρ

EN

N
= 4πaρ

(
1 +

128

15
√
π

√
ρa3 + o(

√
ρ)ρ→0

)
proved by Dyson (57), Lieb–Yngvason (98), Yau–Yin (08), Fournais–Solovej
S. Fournais, J.P. Solovej. The energy of dilute Bose gases. Annals of Math. 192 (2020)
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Intermediate regimes

By rescaling, the thermodynamic limit is equivalently described by

HN =
N∑
j=1

−∆xj +
N∑
i<j

N2/3W (N1/3(xi − xj)) on L2
s (([0, 1]3)N)

In the Gross–Pitaevskii limit

HN =
N∑
j=1

−∆xj +
N∑
i<j

N2W (N(xi − xj)) on L2
s (([0, 1]3)N)

We may consider an intermediate limit

HN =
N∑
j=1

−∆xj +
N∑
i<j

N2κW (Nκ(xi − xj)) on L2
s (([0, 1]3)N)

Theorem (BEC in intermediate regime, Fournais 2020)

If W ≥ 0 and 1 > κ > 3/5, then there is the complete BEC on u0(x) = 1

lim
N→∞

〈u0, γ
(1)
ΨN

u0〉 = 1

S. Fournais. Length scales for BEC in the dilute Bose gas. arXiv:2011.00309
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