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(—A +4de + V(z))u(x) = V(x) + 2ep(u xu)(x) ,

/ (1 — u(z))V(x) da

e =

[N e

(1.1)

(1.2)



Theorem 1.4 (asymptotics of the energy for d = 3) Consider the case d = 3. Let V
be non-negative, integrable and square-integrable. Then, for each p > 0 there is at least one
e > 0 such that p = p(e). For any such p and ¢ we have the following bounds for low and

high density (i.e., small and large p). For low density,

128
3
15\/?—1_ \V P + O(‘\/E)

e = 2mpa (1+

)

(1.23)

where a is the scattering length of the potential, which is defined in (4.11). For high density,

in any dimension d = 1,

e = g/ V(z) dx + o(p).

(1.24)



First: High density p

Lemma 4.1 (high density asymptotics) If V is integrable, then as p — oo,

=13 (/V(;ﬁ) ff.;c) (1+ o(1)).



Lemma 4.1

e = gf(l —u(x))V(x) dx = g(fV(x) dx - [u(x)V(x)dx)
- Now if we show pli_)rglofu(x)V(x) dx =0

Then lim Ifu(x):(x) axl _ o(1)
p—)OO

So e = g(fV(x) dx-o(l))=§(fV(x) dx ) (1+o(1))



Lemma 4.1

We define X, := {x: V(x) =y} (measurable)
Ju()V(x) dx = nyu(x)V(x) dx + fRn\qu(x)V(x) dx

We know: [ u(x) dx < %

So fRn\qu(x)V(x) dx < yfRn\qu(x) dx < %



?

Why [u(x) dx <

1
p

To prove this, consider the operator
G, := [-A + 4¢]™! (1.8)

which is given by

Gef =Yaex f (1.9)

where Y}, is the Yukawa potential [LLO1, section 6.23|, which is non-negative and [ Y;.dz =
(4¢)"'. When d = 3,
(3*2\/;[":'

Yie(w) = (1.10)




Why [u(x) dx <= ?

1
p

(—A +4e + V(z))u(z) = V() + 2ep(u * u)(x) , (1.1)

(1.1) is equivalentto  (—A + 4e) u,(x) = (1 — up)V(X) + 2ep(up * up)
And with  u,(x) = (A + 4e)~1 ((1 — up)V(x) + 2ep(up * up))

We have  u,(x) =Yy, * ((1 — up)V(x)) + 2ep Yy, * (up * up)



Why [u(x) dx <= ?

1
p

Integrating yields
Ju@)dx = [(Y4e* (V(x)(l — u(x))) + 2ep- Y xuxu)

=fY4e'fV(x)(1—u(X))dX + Zepr4e-fu*u

= ﬁfV(x) (1—u(x))dx+ g (Ju(x) dx)2



Why [u(x) dx <= ?

1
p

= 2 (Ju dx)” = [u@) dx+ o [V (1~ u@®) dx=0

With e = ng(x)(l —u(x)) dx we have

g(fu(x)dx)z—fu(x)dx+ $=O

—>fu(x)dx=g
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Lemma 4.1

We have [, u(x)V(x) dx <

© IR

Tl\ X)/

[ WGV () dix+ [, u(V(x) dx
< [ uGV(x) dx+2 < [ V(x) dx+ 7
Since 0<u(x) <1

- v
and ;rzl(f)(nyV(x) dx +p)—>0
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Whylnf(f V(x) dx +%)—>0?

y=0

For all n in N we find y,, in R s.t. fory =y,

1
nyV(x) dx < 5

And p,, in R* s.t. 12 <

Pn

SIr
n
@)

: Y < n 2
]l/l’Zl(f)‘ (fXY V(x) dx + pn) - fXYn V(x) dx + n N
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Whylnf(f V(x) dx +%)—>0?

y=0

And lim (fx V(x) dx +]p/—">£ 0
Yn n

n—>00

We also have lim inf (fX V(x) dx + ;) < lim (fx Vix) dx +Z_n)
y Yn n

n—oo y=0 n—oo

And since p,, could be bounded

lim inf(fX V(x) dx + >< lim 1nf(f V(x) dx +pl>SO
14 n

p— 00 yZO n—oo y>0
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Lemma 4.1

Now we have
lim [u(x)V(x)dx=0
p—)OO

And therefore
e = g(f V(x) dx)(1+ o(1)) for p - oo
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Now: low density p

Lemma 4.3 (low density asymptotics) If V is non-negative and integrable and d = 3,
then |
128

15y/7

e = 2mpa (1 + pa’ + n(ﬁ)) . (4.15)

Where a is defined by



Now: low density p

Where ¢ is defined by the scattering equation

—Ap(z) = (1 —¢(z))V(z), lim ¢(z)=0. (4.8)

|| —o00

Note that (4.8) can be written as (—A + V)p = V, and hence the solution is

o(x) = lim K. V(x) = limuy(x, e) , (4.9)
el el

where u; is the first term of the iteration introduced in the previous section. It follows from
Lemma 3.2 that 0 < p(z) < 1 for all =.



Scheme of proof

Proof: The scheme of the proof is as follows. We first approximate the solution u by w,
which is defined as the decaying solution of

—Aw,(z) = (1 —u,(x))V(z). (4.16)

The energy of w, is defined to be

_P ,
Cu = f(l —w,(z))V(x) dr (4.17)

and, as we will show, it is close to e, more precisely,

16/2¢3

1572

L
G

e

€ — €y = /V(r) dx + o(p2). (4.18)

In addition, (4.16) is quite similar to the scattering equation (4.8). In fact we will show that
e, 18 close to the energy 2mpa of the scattering equation

16\/5(?%

1572

Cyw — 2TPA = —

/ o(z)V(z) dz + o(p?). (4.19)

17



Scheme of proof

Summing (4.18) and (4.19): e —e, + e, — 2Mpa

- 1if§2f Ve dx + o(pi) -

116;/—262 @) V(x)dx + 0(,02)

= 116;/;282 J(1=p@)V(x)dx+ o (pZ)

We know Ama = fV(L)(l — (z))dx .

16\/—82
= Q0 -4ma + 0(p2)
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Scheme of proof

T

3 X 3
— e = 2npa + 6‘1\592 ca+ o (pi) = 21mpa (1 + ?;ZS\ZZZ + 0(@))

32v2e2
Now we show that from e=27rpa<1+ 57'[26 + (\/_)> (*) follows

e = 27Tpa<1 +—\/,07+0(\/_)>

as desired.
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Why e = 2mpa (1 = 32\/_6 (\/_)> = e = 21npa <1 == %pa3 - o(ﬁ)) ?

(1.22) says G/'vczm)pg(eg (%fvarm)p.

So from (*) we know e = Cypa + C,ez for Cy, C; > 0
3
And eES%eforsmalle,so e<Cpa forC>0

32\/_e2

And for f(e) = we have f € O(ap)z

> e = 2mpa (1 4 Q@2 o(@)) = 2npa (1+ 0(yp) + 0(yp)) = 2mpa(1 + 0(yP))

20



(1+0(m)*=(1+0Gn)

3
Let f bein O(y/p),andg:= (1 + f)zwithg=1+§
3
Sog=(0+f)z—-1

3 3 2
_A+pI-1 (a4 i) -1 _a+pi-a

9 _
VP VP \/ﬁ-((1+f)%+1) \/5'((1+f)%+1)

21



(1+0(m)*=(1+0Gn)

We know forp — 0 :

3 3
1<(A+f)z+1<(1+12+1=+/8+1

since f(p) < 1 for p small enough, so

1 (1+f)3-1

. (1+f)3-1
lim sup,_,o N TER—

3

\/5'((1+f)§+1

(1+£)°-1
\/ﬁ

< limsup,_, ) < lim sup,_,g

And(1+ )3 —1= f3+3f%+3f
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(1+0(m)*=(1+0Gn)

Andsincef€ 0(yp) = f3 € 0(\/53) c 0(+/p) because f; < f33
(same with f?)

=3 +3f2+3f€0(yp)
1 (1+f)3-1
V8+1 3

\/ﬁ-<(1+f)5+1>
So § € 0(Vp)

=

C < limsup,_ <C

23



Why e = 2mpa (1 s 32\/—6 (\/_)> = e = 2mpa <1 T = \/P7 i 0(\/_)>

And e3 = (ana)% (1+0(/p))? = (ana)% (1+0oW/m)

32v2e2
So = 2mpa (1 + 5725 + 0(\/ﬁ)> = ana(

= (1+0(/P) + o(ﬁ))

= 27mpa (1 + %\/pﬁ +p;0(\/ﬁ) + 0(@))

24



Why e = 27rpa<1+ 32\/—6 (\/_)> = e = 27TPG<1+_\/PT+O(\/_)>

= 27mpa (1 + —w/pa3 + 2 0(\/_) + o(\/_)>
= 2mpa (1 + %\/pcﬁ + p%O(\/ﬁ) + o(\/ﬁ))
(1 + %{;\/pa3 +0(p) + o(ﬁ))

= 2mpa

But O(p) is in 0(\/5) since p—-0

25



Proof of (4.18)

Now we want to proof the following

I:\.-|n.--

16
€ — €y = J\/_P /V ) dz + o(p

1572

?). (4.18)

And therefore we look at the Fourier Transforms of u, (x) and w, (x)
= [ e u,(x) dx @, = [ e w,(x) dx

26



Proof of (4.18)

From (—A + 4e + V(x)) u,(x) = V(x) + Zep(up * up) (1.1)

S (-A+4e)u,(x) = (1 — up)V(x) + 2ep(up * up)

And the Fourier Transform of that is

(k2 + 4e) 2, (k) = =S (K) + 2eptl, (k)?
m_Jwith S(k) = zﬁef e”‘x(l — U, (x))V(x) dx

27



Proof of (4.18)

So 2ep L, (K)? + (k2 + 4€) 8, (k) +2°S(1) = 0

And solving this equation leeds to

1[ k2 k2 \°
u,,(k)z; 4_€+1_ <4—e+1> —S(k)

2eS(k)
pk?

With a similar calculation we get @, (k) =

28



i, (k) — @, (k) is integrable

We want to do the invert Fourier Transform on ii,(k) — @, (k) so we have to show

that this is integrable.

X 1K K2\ ~
up(k) = ; E-I_l_ <E+1> — S(k) =

S5(k)

p
2 2
Z_e+1+\/(i_e+ 1) — S(k)

2o\ (k2 L\
(B (£ ) s

k2 k2 2
%+1+\/(%+1> —S(k)

|-
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i, (k) — @, (k) is integrable

If we look at |k| — oo,

We have 1,(k) — @,(k) =

1 S(k) 2eS(k) _ S(k) 1 1
p ) pk? "~ p ) (K2
’;—Z+1+J(Z—Z+1) Sk (’;—:+1+j(’;—2+1) Sk <4€)>

4e 4e

_SW) 1 I S SR
p <k2+1+\/<k2+1)2—5(k) 2(’;—2+1) 2(’;—2+1) 2(2"(@))

-

1 1
O(W) O(w) .



k2 k2
—+1+ (
4e

4—e+1
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k2

k2

1 1 _ 7)) -2 ~0(1)

|k|*

k2 T (k2\ T _ (K2 K2 K2 k2
2(4—e+1> 2(@) 2(@4‘1)‘2(4—8) 2(4—e+1)'2<5>
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i, (k) — @, (k) is integrable

0,(k) — @, (k) = 2 (0 (L)+0(L)) as |k|— oo

p |k]® |k|*

S(K) is bounded : [S(k)| < £ [[e™*(1 = u,())V()|dx < = [(1 = upy(0))V(x)dx = 1
(Recall e = Ef(l — up(x)) V(x) dx)

2

and since 1, (k) and &, (k) are continuous, and therefore bounded

tl,(k) — @, (k) is integrabel for all k and we can invert the Fourier Transform

33



Proof of (4.18)

1 [ g 1 [ K k2 \° 2eS(k)
u(x)—w(x)=(2n)3fe K ;<<4_e+1\/<4—e+1) —S(k))— =~ )dk

changing variables with u(k)= 2+ek , (|det(Du ) (k)| = (2+/e)3):

3

w() — w(x) = < [ e-izveks <<k2 F1- (k24 1) - s(zm)) 3 %iﬁ) ak

m3p
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Proof of (4.18)

S(2k+/e)

We want to find an integrable majorant for k2 + 1 — \/(EZ + 1)2 — S(ZE\/E) Y

leta = k? + 1and s = S(2kve), We havea > 1 > |s| and

‘a—\/az—s— > ‘a—\/az—s—s > S_Z‘

2a—2|~ 20 T 24 74

S‘a—\/az—s—i‘+‘s

=
2a 2a 2a—2
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Proof of (4.18)

S

a—\/az—sa—ZSa

SZ

S
_a+\/a2—s

} Za(a +Va? — 5)2

2 1

<
2a3

S

2a(a+\/012—s)2

And

2a

=2a(a+\/a2—s).(

a—\/az—s)
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Proof of (4.18)

So in general

S S 1 1
‘a—\/az—s——‘+‘

S 1
— < + < =—=
2al  [2a 2a-— 2‘ 2a®  4a(a—1) " k%2(k2+1)
Wich is integrable on R3\B,.(0) forr > 0

Now we would need a different majorant which is integrable on B,.(0)

But we just assume we already found one.
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Proof of (4.18)

we want to use dominated convergency to say

o _ A 2k "
lim | e~i2vekx (kz +1- J (k2 +1)° = 5(2kye) - S( k\/g)) dk

e—0 ZEZ

2 2 2 SO 7
=fe°<k2+1—\/(k2+1) —S(O)—W>dk

~ ~ 2 1,5
=fk2+1—\/(k2+1) —1-—dk

Since S(0) < Z%f e®(1 — u,(x))V(x)dx < Zﬂef(l — U, (x))V(x)dx = 1
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Proof of (4.18)

1
;2 1—\/A2 1) =1 - ——dk
fk+ (R? + 1) —

The integral depends only on |E| — change of variables to Spherical coordinate system

1
<r2+1—\/(r2+1)2—1—ﬁ>- r2d(r x ¢ x0)
RXx[0,2m)X[0,1)

=4T[fooo(r2+1—\/(r2+1)2—1—2—;). re dr
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Proof (4.18)

R S PR

241+ (r2+1)2-1 212

Why is that integrable?
1 1 1P+ n2-1 (rz-1)*= (r2+1)°-1
r241+(r2+1)2-1 212 (r2+1+J(r2+1)2—1)-2r2 - (r2+1+J(r2+1)2—1)-2r2-(r2—1+\/(r2+1)2—1)

_4r2 _1 <1>
— ~0(=
(r2+1+\/(r2+1)2—1)-2r2-(7‘2—1—\/(7‘2+1)2—1) r
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Proof of (4.18)

By dominated convergence and because S(0) = 1 we have

lim = (e —e,) = llm o f(up a)p) V(x) dx
e—0 e2 0292

= —lim 2 [ V(@) (% | (kz +1- J (k2 +1)° - 5(2kve) - 5(2"”> dk)dX

:—%fV(x)<$f<l€2+1—\/(I?2+1)2—1—271€2>d1?>dx

16vV?2
= 151:-]V(x)dx
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Proof of (4.18)

3
16+/2e2
15m?2

_16V2

"~ 1572

lim = (e — e,,) - [V(x) dx

e—0 ez

V() dx & lim(e —e,) =

1 [ 1
And since (i / Vd:r:) p<e< (E/Vdm) o .

161/2¢2 _
€ — €y = ]\/_:n /V(r) dx + o(p2). (4.18) as desired
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