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Mean field limit: N fermions in torus A = [0; 1]3.
Kinetic energy: Zé\le — Dy N5/3

Potential energy: zgij V(z; — ;) ~ N?

Hamilton operator: on L2(AY), we consider

N 5 1 N
Hy= ) -—¢ ij—l_NZV(xi_wj)
1=1 1<J

with e = N—1/3,



Hartree-Fock theory: restrict to Slater determinants

Ysiater(Z1, ..., zN) ~ det (fi(mj)>1§i,j§N

with {ji7 L, orthonormal system in L2(N).

Reduced density matrix: is rank N projection wy = Y301 | f;)(f;-
Hartree-Fock functional: energy given by

Sron) = Tr—<2Bun+o [ Vo) on (2o i n)— oy )P
Hartree-Fock energy: Eyg = infuy Egp(wn).

Correlation energy: defined by
Ecorr = EnN — EnHF

See Niels talk in afternoon.



Dynamics: study evolution after traps are switched off.

Time scale: observe
a2 2 .
e TITETD £ ITETA — 4 4 D(e7)(3eV)

Interested in t = 7 of order one.

Schrodinger equation: on L2(R3N), consider

N N
, 1
Z€3t¢N,t — LZ —€2A:cj + N Z V(x; — ij) ¢N,t

=1 i<j
for initial data ¢ o close to a Slater determinant.



Semiclassical structure: consider Fermi sea

wy (@ y) = S e? @Y ~ Nf((z —y)/e)

pe2nZ3:|p|<eN1/3

Separation of scales: expect interesting states to have form

wn(zy) 2 Nf((x —y)/e)o((z +y)/2)

Commutators: capture semiclassical structure through bounds

Trl[wawN]l SN&Z

TI’|[€V,MN]| 5 Ne

Remark: commutator bounds verified for ground states of non-
interacting fermions in [Fournais-Mikkelsen 2019]



Theorem [Benedikter, Porta, S. 2013]: let V : R3 — R with
/dp(l + p?) [V ()| < oo

Let wy be rank N projection on L2(R3), satisfying semiclassical
commutator bounds.

Let o € L2(R3N) be Slater det. with reduced density wy, and

_iH
by = e HNYEY

Then

— W <1
H’YN,t Nit|lgg ~

where

ie@th’t = [— e2 A + (V *x 0t), WN ¢t

is time dependent Hartree-Fock equation, with wy g = wpy.
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Remarks:
Rate of convergence: compare with ||y ¢[lns, lwn ¢llns =~ N1/2.
Exchange term: |lower order, can be neglected

VIasov equation: Hartree-Fock equation still depends on N. AS
N — oo, it can be approximated by VIasov equation.

Other works: [Spohn '80], [Narnhofer-Sewell '81],
[Bardos-Golse-Gottlieb-Mauser '03], [Elgart-Erdds-S.-Yau '04],
[Frohlich-Knowles '11], [Petrat-Pickl '15], [Porta-Rademacher-
Saffirio-S. '16], [Chong-Lafleche-Saffirio, '21]

Norm approximation: obtained for dynamics of almost bosonic
excitations of Fermi sea [Benedikter-Nam-Porta-S.-Seiringer, '21].



High density limit: consider N fermions in region A C R3 at
density p = N/|A|, large but independent of N.

Kinetic energy: YN, —Ay, ~ p?/3N

Potential energy: >V (z; — z;) ~ pN
Schrodinger equation: on L2(R3N), consider

N

N
ieath’t = LZ —Ezij + 53 Z Vi(x; — wj) ¢N,t

=1 1<J

where now £ = p~1/3 is small, but independent of N.

Initial data: we are interested in evolution of Slater determinant
localized in region A C R3, with volume |A| ~ 3N,



Local semiclassical structure: let
. 1
14 |z —z|?

z

and its free evolution
1

1+ |2(t) — 2%

W,(t) = with z(t) = 2 — 2tieV

Moreover, let Xa(z) = 1 4 dist(z, A)%.

We assume initial data satisfies local bounds

Sup sup X/\(z)HWz(t)wN <3

t€[0;T] 2R3 tr
sup sup Xa(z) HWz(t) [;r;,wN . <72
te[0;T] z€R3 -

sup sup XA(z)HWZ(t)[sv,wN' < g2
te[0;T] zeR3 )



Theorem: Assume V smooth and decaying sufficiently fast.

Let wy be a rank-N projection on LQ(]R{3), exhibiting the local
semiclassical structure.

Let wy; be solution of Hartree-Fock equation

7:5875(4}]\[’15 — [ — €2A + (V * Qt)7 wN,t]7

With wy =0 = wy and gi(x) = €3WN,t(CU; x).

Moreover, assume the no-concentration bound
sup sup TriWrwn; S e -3
te[0;T] zeR3

Let ¢y € L2(R3N) be Slater determinant with reduced density
wy and ¥y ; the solution of the many-body Schrodinger equation.

Then, for all t € [0;T],

1/2A71/2
v — wnillns S et/2NY/

10



Remarks:
Rates: |vn.¢llHs, lwntllns = NY/2.

No-concentration: forT' > 0 small enough, the no-concentration
condition follows from the assumptions on data wyy.

Assumptions: can be stated in terms of free evolution wR,t as

tes[lCJ)PT] ::1[53 XA(Z)HWZ [:1:, w%’t} Htr s

Coherent states: approximation for ground states of trapped
systems constructed with coherent states satisfies assumptions.

Related work: [Lewin-Sabin,13], [Deckert-Frohlich-Pickl-Pizzo,18].
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Propagation of local structure: assuming data exhibits semi-
classical structure and no-concentration, we have

Sup  sup XADWzwn tlltr S
te[0;T] zeR3

sup sup Xa(2)|We |z, wneller S €
te[0;T] zeR3

sup sup Xa(2)||W> [SV Wt lller S e
te[0;T] zeR3

—2

—2

Corollary: F': R3 — R smooth and with fast decay. Then
sup sup Xa(z) H [Fz(a:),wN,t} Htr < g2

te[0;T] zeR3
where F,(x) = F(x — z).
Proof: write F'(x) = H(x)G(xz) and expand
H:(2)[Ga (@), wn ] = [ dp Ga(p) Ha(@) [, oy

~ 1 : .
G [ o) -
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Evolution of localizers: define U(t;s) by
iedU(t; s) = h()U(t; s), h(t) = —e2A + (V x 0p)
Then
U(t; s)*WZ2(to)U(t;s) S WE(to +t — s)

Proof: define propagator in interaction picture
Ur(t; s) = Ug(£)*U(t; s)Up(s)
SO that
ieopUr(t; s) = Ug(t)(V * o) Up (1)U (¢; 5)

Claim follows if we can prove that

Ur(t; s)*WZ2(to)Us(t; s) S W2(to)
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We find
e Ur(t; ) W2(to)Us(t; s)
= U;(t; 5)* |[Uo(t)*(V * 00)Uo(t), W2 (to) | U(t; s)
= Ur(t; 8)" Uo(t)* |V * o1, W2(to + 1) | Uo()U; (1 5)

Next observe

[V « o1, W2 (to + t)]
= W.(to +t) [(V x0t), W2(tg + t)] — h.c.

= W.(tg +t) [(V % 01) — Wa(to + t)(V % o)W H(to + t)]Wz(tO +t) —h.c.

From no-concentration and smoothness of V, we find

|(V % 00) = Wa(to +)(V % ) W2 (o + )| | S

With Gronwall, we conclude
Ur(t; $)*W2(to)Us(t; s) S W2(to) [
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Proof of propagation: we compute

ie0 U (¢: 0)* [a: wN,t] U(t:0) = U(t; 0)* Hx h(t)] , wN,t} U(t:0)
= 2e U(t;0)* eV, wy ¢ |U(%; 0)

Thus
U(t;O)*[:c,wN,t]U(t; 0) = [az,wN} +/Ot ds U(s;O)*[ev,wN,S}U(s; 0)

and

W2U (t; 0) [z, wn |U (£ 0)*,
t

+ / ds |
0

With control of evolution of localizers, we conclude

W [x’wN’t] Htr < ‘

WU (8 8) [eV, wp | U (¢ 8)* .

Wz(t — 5) [sv W s]

Wz[az th”‘ |Wz(t)[a: W | —I—/ ds o
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Proceed similarly to control commutator with V. We find

ied U (t: 0)* [av, wN7t] U(t:0) = U(t; 0)* [[ev, h(t)} , wN,t] U(¢; 0)
= cU(t; 0)*|VV * g1, wy |U(t; 0)

Using no-concentration, smoothness and decay of V, we find

Combined with

) W [a:,w]\@t} Htr N |

and with assumptions, Gronwall implies

W.(t — s) [:c, wN,S}

W|eV,wnller S |

WO[e ], + o .

W.(t — s) [av, wMS]

t
Wl onl, + o

tr

W [Ev’wNat} Htr Se =

W [x’wNat} Htr’ ‘
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Many-body analysis: switch to second quantization.

Fock space: we introduce

F=@ LR, dzy ...dzn)
n>0

Creation and annihilation operators: for f € L2(R3) we define
a*(f) und a(f), satisfying the CAR

{a(f),a™(9)} = (f,9), {a(f),alg)} ={a"(f),a"(g)} =0
We also introduce operator valued distributions a}, a; SO that

a*(f)zfdxf(a;)a;; and a(f)zfdwmaa;

Hamilton operator: On F, we define

3
Hy = &2 / dxVzarVgaz + % / dzdyV (x — y) aya,ayay
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Bogoliubov transformation: find basis {f;}cn of L2(R3) with

N
wy = Y i) {fil

=1

Unitary implementor: we find unitary map Rw, on F such that

Ruy2=1a"(f1)...a"(fn)S2
and

* k _J a(f;) if <N
o (i = { () iGN

For general g € L2(R3), we have (with uy =1 —wy)

R;ya* (9)Ruy = a*(ung) + a(wng)

For arbitrary ¢t € R, we also find Ry, , with
RZZN,ta* (Q)RWN,t — a*(uN,tg) + a(wn t9)
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Dynamics of excitations: we define {y; s.t.

Yy = e TINUER, Q= Ry SN

Y

We observe that

lvn.e — wnillfis < 2N — 2Trynwn e = 2Tryy (1 — wng)

and that

(UN £ dM (1 —wn )VN L)
(Run SNt AT (un 1) Roy &N t)
Ent Al (un )ENE)
ENHNENL)

Troyn (1 —wny)

INA

Conclusion: need to control growth of number of excitations

<§N,t7 NgN,t)
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Growth of excitations: a computation shows that

ic Ot EN N EN L)
= Re 63/d:1:dyV(az —y)

x (En g {a* (un e g)a™ (Wi y)a* (Wi e) a(wn g,2)
+a*(untz)a(un tz)a(wny)a(unsy)
+ aun,g)a(wnz)a(wn, ) alun) v )

Bound for last term: we write
V(e —y) = /dz V(l)(az — z)V(Q)(z — )

and
III = 63/dz < [/de(U(fv - Z)a*(UN,t,x)a*(wN,t,x)]§N,t,
< | [y @y - 2atunp)alon )] ene)
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Hence

m < e® [az A en | AP x|

with
AP = [azv (@ - 2auyy)alwn )
= /drdS{uN,tVz(j)(Oﬁ)wN,t}("“, s)aras

where VA(2) = v (z - 2) (G = 1,2).

We estimate

[49] o5 S a5 V27 won ],

We conclude that

I < 53/de/\(z)_2 I] sup X/\(Z)H[th, Z(j)”‘t <e LA < 2N
j=1,2 2€R3 7 r

21



Bound for second term: let
[=¢> / dedyV(x —y)(Ens a” (untz)a(wney)a(uny)a(un s 2 )EN+)

=23 [ do (en g 0" (unpa) | [ duVe(wlalon pyalun )] aluy g )En o)

Estimating

H /dny(y)a(wN,t,y)a(uN,t,y)Hop S H [Vw’ wN,t} Htr Se?

we conclude that
II < 6/dfb‘ laCun . )En % S el e NENL)

Conclusion: we find

OEN - NEN ) S Ne+ (Ene, NEn )
T hus

ENNENL S Ne
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