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The dilute Bose gas

Consider N interacting, non-relativistic bosons in a box Λ of sidelength L.
Density ρ := N/|Λ| = N/Ld , d = 2, 3.
The Hamiltonian of the system is, on the symmetric (bosonic) space ⊗N

s L
2(Λ),

HN :=
N∑
i=1

−∆i +
∑
i<j

v(xi − xj),

and 0 ≤ v is radially symmetric with compact support.

The ground state energy of the system is

E0(N,Λ) := inf SpecHN .

The energy density in the thermodynamic limit is

e(ρ ) = lim
L→∞,N/|Λ|=ρ

E0(N,Λ)/Ld .
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The scattering length I

Potential v is radial, positive with compact support.

−∆φ+
1

2
vφ = 0,

where

φ =

{
1− a/r , d = 3,

log(r/a), d = 2,
outside supp v .

Example:

vhc(x) =

{
+∞, |x | < a,

0, |x | > a.

Here φ = 0 inside hard core and the scattering length equals the radius of the core.
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The scattering length II

Let φδ = 2δφ, with δ = 1
2 (d = 3) and δ ≈ 1

| log(ρa2)| (d = 2) and ω = 1− φδ.

Then, with g = v(1− ω) = vφδ, the scattering equation can be reformulated as

−∆ω =
1

2
g , i.e. ω̂(k) =

ĝ(k)

2k2
, k ̸= 0,

and

8πa =

∫
R3

g <

∫
R3

v , d = 3,

8πδ =

∫
R2

g ≪
∫
R2

v , d = 2.
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The 3D Lee-Huang-Yang formula

Theorem

In the dilute limit ρa3 → 0,

e3D(ρ ) = 4πρ 2a
(
1 +

128

15
√
π

√
ρa3

)
+ o(ρ 2a(ρa3)1/2).

Lenz (1929), Bogoliubov (1947), Lee-Huang-Yang (1957).

Rigorous proof of leading term Dyson (1957, upper), Lieb-Yngvason (1998).

Upper bounds giving second order term: Erdős-Schlein-Yau (2008), Yau-Yin
(2009), (Aaen 2014), Basti-Cenatiempo-Schlein (2021). Hard core is open but
recent progress on hard core in GP-limit
(Basti-Cenatiempo-Olgiati-Pasqualetti-Schlein).

Lower bound in all cases SF-Solovej 2020-21.
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(2009), (Aaen 2014), Basti-Cenatiempo-Schlein (2021). Hard core is open but
recent progress on hard core in GP-limit
(Basti-Cenatiempo-Olgiati-Pasqualetti-Schlein).

Lower bound in all cases SF-Solovej 2020-21.



The 3D Lee-Huang-Yang formula

Theorem

In the dilute limit ρa3 → 0,

e3D(ρ ) = 4πρ 2a
(
1 +

128

15
√
π

√
ρa3

)
+ o(ρ 2a(ρa3)1/2).

Lenz (1929), Bogoliubov (1947), Lee-Huang-Yang (1957).

Rigorous proof of leading term Dyson (1957, upper), Lieb-Yngvason (1998).

Upper bounds giving second order term: Erdős-Schlein-Yau (2008), Yau-Yin
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The 2D formula

Theorem (SF, Girardot, Junge, Morin and Olivieri)

In the dilute limit ρa2 → 0,

e2D(ρ) = 4πρ2δ0

(
1 + (2Γ +

1

2
+ log(π))δ0

)
+ o(ρ2δ20),

with

δ0 :=
1

| log(ρa2| log(ρa2)|−1)|
=

1

| log(ρa2)|+ log(| log(ρa2)|)
where Γ = 0.577 . . . is the Euler-Mascheroni constant.

Schick (1971), Hines-Frankel-Mitchell (1978), Cherny-Shanenko (2001),
Mora-Castin (2009), Yang (2008).

Leading order by Lieb-Yngvason (2001).

GP regime Caraci-Cenatiempo-Schlein (2021-22).

Both upper and lower bound for general potentials including hard core.
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2D vs 3D

2D is hard core - even for soft potentials
Using the constant function as trial state gives

e(ρ) ≤ 1

2
ρ2

∫
v .

This is the wrong constant in 3D but the wrong order in 2D.

BEC
Our understanding of the energy is based on the Bogoliubov approximation that uses
BEC as an input. But there is no BEC in 2D at low positive temperature. However,
we only use and prove BEC on finite length scales. On these scales there is (we can
prove it!) BEC in both dimensions.
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Upper bound: Reduction to large box

The central trial state corresponds to a periodic box of sidelength Lu.

The state has N
particles and density ρ = N/(Lu)d .
This periodic state is then extended to a Dirichlet state of side length Lu + ℓu. Finally,
copies of these Dirichlet states are used to fill up the thermodynamic box.
Localization error N(ℓu)−2 N(Luℓu)−1,
New density ρ̃ = N/(Lu + ℓu)d ≈ ρ(1 + (ℓu/Lu)).
Need

ρ(Luℓu)−1 ≪

{
aρ2

√
ρa3, d = 3,

ρ2/(log(ρa2))2, d = 2,
and ℓu/Lu ≪

{√
ρa3, d = 3,

(log(ρa2))−1, d = 2.

So

Lu ≫ a

{
(ρa3)−1, d = 3,

(ρa2)−1/2(log(ρa2))3/2, d = 2.
N = ρ(Lu)d ≫

{
(ρa3)−2, d = 3,

(log(ρa2))3, d = 2.
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Ingredients of lower bound

Localize to boxes of size ℓ ≫ ρ−
1
2 | log(ρa2)|

1
2 . Localization needs to preserve

‘Neumann gap’. To get a priori information localize to smaller boxes of size

≪ (ρ)−
1
2 (log(ρa2))−

1
2 . Here Neumann gap can be used to control errors. Rest of

analysis carried out on large box. The interaction between localized particles is
denoted by w(xi , xj).

Condensation. Let P projection on constant function, Q orthogonal complement.

n0 =
∑

Pi , n+ =
∑

Qi .

A priori bounds control expected values ⟨n0⟩ and ⟨n+⟩. Energy error negligible if
localizing to subspace where n+ ≤ M nL+ ≤ M where M is between ⟨n+⟩ and n
and where nL+ counts the number of excitations with low momentum (≲ ℓ−1).
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Thank you for your attention.
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