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Some perspective

This talk is about quantum-mechanical many-body theory, a subject that
includes the theory of interacting quantum gases, quantum liquids (e.g.,
Landau-Fermi electron liquids), solids, crystalline matter, insulating
materials, etc. QM many-body theory is the theoretical basis of
condensed-matter physics. It is supposed to describe phenomena such as
Bose-Einstein condensation in three- or higher-dimensional interacting
Bose gases, Kosterlitz-Thouless transitions in 2D Bose gases and other
related systems, various manifestations of superconductivity, such as BCS
superconductivity or high-Tc supercond., the quantum Hall effect in
interacting 2D electron liquids, or in rotating Bose gases, etc..

Not a great deal is known about a mathematically rigorous quantum-
mechanical description of these and other related phenomena.
A standard strategy is therefore to study limiting regimes and idealized
models that reduce the mathematical complexity and enable one to come
up with mathematically precise results. In this talk, this strategy is
illustrated on the example of interacting Bose gases.

I thank the organizers for inviting me to speak – and, yes, let’s get
started!



Summary of the talk
I will review recent results, due to A. Knowles, B. Schlein, V. Sohinger
and myself, on the quantum theory of interacting Bose gases2.
I will make use of: (i) a representation of Bose gases as a kind of scalar
field theories resulting from a Hubbard-Stratonovich transformation,
(ii) Ginibre’s Brownian loop representation, (iii) an interpolation in the
number N of atom species, and (iv) simplifications appearing in various
limiting regimes, such as the mean-field- and the large-N imit.
Our purpose is to study phenomena related to Bose-Einstein conden-
sation (N →∞) and properties of polymer chains (N → 0).
Some novel support for the conjecture that λ|ϕ|4d -theory in d ≥ 4
dimensions is non-interacting will be described.

Remark: Related and further results on interacting Bose gases by:

• T. Balaban, J. Feldman, H. Knörrer and E. Trubowitz (BEC)

• M. Lewin, P. T. Nam and N. Rougerie (mean-field limit in 2 and 3 D )

• Manfred Salmhofer (use of functional integrals); and others.
I thank them for informing me about their important results.

2see also my 1994 Les Houches lectures on general many-body- and
transport theory, with applications to the quantum Hall effect, Fermi-liquid
theory, BCS theory, etc., and my 2018 lectures at Bad Honnef
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1. What is a non-relativistic Bose gas?
We consider a quantum gas of bosonic atoms, such as atomic
hydrogen, helium (4He), or rubidium (85Ru), confined to a box,
Λ, in physical space (Rd) with sides of length L. For simplicity, we
assume the atoms to be spinless (e.g., 4He). The Hamiltonian, Hn,
for n atoms on the Hilbert space Hn := L2(Λ, ddx)⊗sn is:

Hn := −

n∑
j=1

∆j

2M
+
λ

2

n∑
i ,j=1

v(xi − xj) (1)

M: mass of atom, (h̄ = 1); λ ≥ 0: coupling constant,
v : two-body potential of positive type (& pointwise positive),
continuous and of rapid decay.3

For simplicity, we choose periodic b.c. at ∂Λ.

Then Hn > 0 is self-adjoint on Hn, ∀n.

We are interested in studying the statistical mechanics of such
systems in thermal equilibrium at a positive particle density,
ρ := n

|Λ|
, and positive temperature, T .

3More natural would be a (regularized) van der Waals potential



2. Thermal equilibrium, limiting regimes

The Gibbs equilibrium state of a Bose gas at density ρ and
temperature T is given by a certain density matrix, Pn, on Hn:

Pn := ZΛ(β, ρ)
−1exp

(
− βHn

)
, n = ρ · |Λ|, β =

1

kBT
,

where ZΛ(β, ρ) := tr[exp
(
− βHn

)
] is the canonical partiton

function.
In the following, we set

β

M
=: ν, and either λ = λ0, or λ = λ0ν

2, (2)

with λ0 ≥ 0 fixed. Varying ν and λ0, we may set β = 1.
For later purposes, we also consider Bose gases with N = 1, 2, 3, ...
different species of atoms – all of mass M, and interacting among
each other through the two-body potential v .



Range of parameter values and limiting regimes
Parameters (all of them taking arbitrary non-negative values):

density ρ, (or chem. potential µ), ν, λ0,N

Limiting regimes:

(1) ν↘ 0, (M →∞), λ = λ0: Classical particle limit.

(2) ν↘ 0, λ = λ0ν
2: (EFT- or) mean-field limit.

(3) N →∞: (Spherical-model- or) Berlin-Kac limit;
N ↘ 0 : (SAW- or) de Gennes limit.

(4) Λ↗ Rd : Thermodynamic limit.

Goals:

• Analyzing limiting regimes (such as m-f limit) in different orders.

• Understanding BEC for large values of N, ν ≥ 0, (in d ≥ 4).

• Understanding the limiting system corresponding to v(x)→ δ(x),
ν ≥ 0, (ν = 0↔ λϕ4

d -theory, triviality in d ≥ 4). Etc.



3. Grand-canonical ensemble and 2nd quantization

It will be convenient to use the grand-canonical ensemble: Particle
number, n, fluctuates, but mean value, 〈n〉β,µ ≡ ρ · |Λ|, tuned by
appropriately choosing a chemical potential, µ. We set

βµ =: −νκ , (henceforth β = 1)

2nd quantization: Let

FΛ :=

∞⊕
n=0

Hn

be standard Fock space, and Φ∗ν(x), Φν(x) the usual creation- and
annihilation operators acting on FΛ, which satisfy the CCR:

[Φ#
ν (x), Φ

#
ν (y)] = 0, [Φν(x), Φ

∗
ν(y)] = ν · δ(x − y), (3)

Φν(x)Ω = 0, ∀x , where Ω = (1, 0, 0, . . . ) ∈ FΛ is the ‘‘vacuum”.

Similarly for N species of bosons: x 7→ (x , a), a = 1, 2, ...,N.



Hamiltonian, partition function, reduced density matrices
Hamiltonian – but not really

Hν,ρ,Λ :=
1

2

∫
Λ

dx
{
Φ∗ν(x)

(
[−∆+ 1]Φν

)
(x)+

+λν−2

∫
Λ

dy
[
Φ∗ν(x)Φν(x) − ρ

]
v(x − y)

[
Φ∗ν(y)Φν(y) − ρ

]}
(4)

acting on FΛ, with κ = 1 − λ
ν2 ρ
∫
dx v(x); (henceforth ρ is a parameter

that we will vary).

Grand partition function:

ΞΛ(ν, ρ) := tr
(
exp[−Hν,ρ,Λ]

)
(5)

Reduced density matrices:
γp(x ; x

′) :=

= ΞΛ(ν, ρ)
−1tr

(
exp[−Hν,ρ,Λ]Πp

j=1Φ
∗
ν(xj)Π

p
j=1Φν(x

′
j )
)

(6)

Similar formulae for N species of bosons! (...Remark on time-dep.
correlations.)



4. Thermal equilibrium in the grand-canonical ensemble –
in functional-integral representation4

Functional-integral representation (for N species of bosons):
We propose to express the grand partition function ΞΛ(ν, ρ) (and
the reduced p-particle density matrices γp) in terms of path
integrals. For this purpose, we introduce the formal (Lebesgue)
integration measure

"Dϕ∧Dϕ :=
∏

x∈Λ,τ∈[0,ν)

N∏
a=1

dϕa(τ, x)∧ dϕa(τ, x) "

4P.A.M. Dirac: “The Lagrangian in quantum mechanics”



Functional integrals, ctd.
We then find that (τ: imaginary time)

ΞΛ(ν, ρ) ∝ ↙ complex “Gaussian”

∝
∫
Dϕ∧Dϕ exp

(
−

∫ν
0
dτ

N∑
a=1

∫
Λ

dx
{
ϕa(τ, x)(K (0)ϕa)(τ, x)

+
λ

2ν

N∑
b=1

∫
Λ

dy [|ϕa(τ, x)|
2 − ν−1ρ] v(x − y) [|ϕb(τ, y)|

2 − ν−1ρ]
})

(7)
and we impose periodic b.c. at τ = 0, ν; define a “one-particle op.”

K (σ) :=
∂

∂τ
−
∆

2
+ 1 + iσ(τ, x), K (0) = K (σ ≡ 0).

Let dµλ(σ) be the Gaussian probability measure on S ′([0, ν)×Λ)
with mean 0 and covariance, C , given by

C (τ, τ ′; x , y) := δ(τ− τ ′) · λ
ν
v(x − y) . (8)



The Hubbard-Stratonovich formula
By (7) and (8),

ΞΛ(ν, ρ) = const.

∫
Dϕ∧Dϕ

∫
dµλ(σ) e

iNθ(σ)×

× exp
[
−

∫ν
0

dτ

∫
Λ

dx
N∑

a=1

ϕa(τ, x)(K (σ)ϕa)(τ, x)
]

(9)

=

∫
dµλ(σ) e

iNθ(σ) [det K (σ)]−N , θ(σ) :=
ρ

ν

∫ν
0

dτ

∫
Λ

dx σ(τ, x)

The second equation follows by interchanging integrations over (ϕa, ϕa)

and over σ. For an ideal Bose gas (λ = 0), Ξ
(0)
Λ (ν, ρ) = [det K (0)]−N ,

hence
ΞΛ(ν, ρ)

Ξ
(0)
Λ (ν)

=

∫
dµλ(σ) e

iNθ(σ)

[
det K (σ)

det K (0)

]−N

(10)

Next, we use that, for an arbitrary m ×m - matrix A (with A+ A∗ > 0),

det A = exp
(
tr[`nA]

)
= exp

(
−

∫∞
0

dt tr
[
(A+ t)−1 − (1 + t)−1

])
.



The Green function of K (σ)→ Functional-integral representation of grand partition function:

ΞΛ(ν, ρ)

Ξ
(0)
Λ (ν)

=

∫
dµλ(σ) e

iNθ(σ) eN
∫∞
0 dt tr

[
(K (σ)+t)−1−(K (0)+t)−1

]
(11)

We note that the trace appearing in the exponent on the R.S. of (11) is
finite, and the t-integration converges. Moreover, for

λ = O( 1

N
),

one can use the saddle point method to calculate asymptotics of (11), as

N →∞ : → “ 1
N

- expansion”!
Green function of K (σ) with periodic b.c.: For τ, τ ′ ∈ [0, ν),

[K (σ) + t]−1(τ, τ ′) =

∞∑
`=0

Θ(τ− τ ′ + `ν) Γ(τ, τ ′ − `ν; iσ+ 1 + t), (12)

where Θ = Heaviside step function, and Γ(τ, τ ′; q) is the “heat kernel”

∂

∂τ
Γ(τ, τ ′; q) =

(∆
2
− q(τ, ·)

)
Γ(τ, τ ′; q), Γ(τ, τ; q) = 1. (13)



Using the Feynman-Kac formula
In (12), the distribution σ(τ, x) := σ([τ], x), [τ] = τ mod ν, is defined to
be periodic in τ with period ν; Γ(τ, τ ′; q) can be evaluated by using the
Feynman-Kac formula :

Γ(τ, τ ′; q)xy =

∫
dWτ−τ ′

xy (ω) e−
∫
τ−τ ′
0

ds q
(
s+τ ′,ω(s)

)
(14)

After plugging (14) (with q := iσ+ 1 + t) into (12) and (12) into (11), a
straightforward calculation yields the identity:

ΞΛ(ν,ρ)

Ξ
(0)
Λ

(ν)
=

=

∫
dµλ(σ)e

iNθ(σ) eN
{∑∞̀

=1
e−`ν

`

∫
Λ

du
[
Γ(`ν,0;iσ)uu−Γ(`ν,0;0)uu

]}
(15)

=

∫
dµλ(σ)e

iNθ(σ) eN
{∑∞̀

=1
e−`ν

`

∫
Λ

du
∫
dW`νuu (dω)

[
e i

∫`ν
0 dsσ([s],ω(s))−1

]}
Note: Ambiguity at ` = 0 cancels when the partition function is
normalized by the one of the ideal gas. – Bound: (15) ⇒

ΞΛ(ν, ρ)/ Ξ
(0)
Λ (ν) ≤ 1



5. The loop ensembles of Ginibre and Symanzik

J. Ginibre K. Symanzik

In order to introduce a gas of interacting Brownian (paths and) loops
equivalent to the Bose gas, we expand the exponential in the integrand on
the R.S. of (15) and then carry out the integration over σ, term by term.
To describe the resulting expression, we define a “ 2-loop interaction”

V (ω,ω ′) :=
1

2

`(ω)−1∑
r=0

`(ω ′)−1∑
s=0

∫ν
0

dt v(ω(t + rν) −ω ′(t + sν)) ,

V (ω,ω) :=
∑

0≤r<s<`(ω)

∫ν
0

dt v(ω(t + rν) −ω(t + sν)) . (16)

In the 1st equation, ω 6= ω ′. And V (ω,ω): self-interaction of loop ω.



Ginibre’s representation of the Bose gas

Grand-canonical partition function as “loop gas partition function”:

ΞΛ(ν, ρ)

Ξ
(0)
Λ (ν)

= const.
∞∑
n=0

Nn

n!

{ ∞∑
`1,...,`n=1

∫
Λ

du1 · · ·
∫
Λ

dun ×

×
[ n∏
k=1

e−`kκν

`k

∫
dW`kν

ukuk (ωk)

]
e−

∑n
i,j=1

λ
ν
V (ωi ,ωj)

}
, (17)

with κ as after Eq. (4). This is Ginibre’s representation of the grand-
canonical partition function of the Bose gas with N species of particles as
a statistical sum over Brownian loops in an interacting “loop gas”.
Note: N appears as a parameter that can be given complex values!

It is easy to generalize (17) to a loop gas representation of reduced
density matrices, γp(x , a ; x

′, a), (see formula (6)):
[
In addition to the

Brownian loops present in (17), there appear open Brownian paths
connecting a point xj to a point x ′π(j), where π is an arbitrary

permutation of
{

1, ..., p
}

with the property that aj = aπ(j), j = 1, ..., p,

and in the end one has to sum over all such permutations.
]



Passage to Symanzik’s representation of scalar Euclidian
field theories with quartic self-interaction

We return to expressions (16) (interactions between loops) and (17)
(grand partition function). In these formulae, we set

λ =
λ0

N + 1
· ν2 (18)

Inspecting (16) and using (18), we see that, as ν→ 0, the sums over
`1, ..., `n in (17) should be interpreted as Riemann sum approximations to
the expression

lim
ν→0

ΞΛ(ν,ρ)

Ξ
(0)
Λ

(ν)
= lim
δ→0

constNδ
∑∞

n=0
Nn

n! ×

×
[ n∏
k=1

∫∞
δ

dTk

Tk
e−κδTk

∫
Λ

duk

∫
dWTk

ukuk (ωk)

]
e−

∑n
i,j=1

λ0
N+1V0(ωi ,ωj) ,

(19)
where constδ is indep. of λ0,N, κδ must be chosen to depend on δ in a
way that appropriately implements Wick ordering (see below), and

V0(ω,ω
′) =

1

2

∫T
0

dt

∫T ′

0

dt ′ v(ω(t) −ω ′(t ′)) .



Reconstructing the functional integral of a Euclidian field
theory

Let dµv (η) be the Gaussian probability measure on S ′(Λ) with mean 0
and covariance λ0

N+1v ; (η ∼ [σ]τ→0). We then find that

R.S. of (19) = lim
δ↘0

constNδ ×

×
∫
dµv (η) exp

{
N

∫∞
δ

dT

T
e−κδT

∫
Λ

du

∫
dWT

uu(ω)e i
∫T
0
η(ω(t))dt

}
(20)

Feynman-Kac shows that∫
Λ

du

∫
dWT

uu(ω)e i
∫T
0
η(ω(t))dt = tr

(
eT(∆2 +iη)

)
Carrying out the T -integration then implies that R.S. of (20) is given by∫

dµv (η)e
iNϑ(η)exp

{
−N tr

[
`n(−

∆

2
+ 1 − iη) − `n(−

∆

2
+ 1)

]}
=

∫
dµv (η)e

iNϑ(η)

[
det(−∆2 + 1 − iη)

det(−∆2 + 1)

]−N

, (21)

where ϑ(η) is chosen such as to cancel the term linear in η in the expo.



The hard-core Bose gas as a regularization of Euclidian
λϕ4-theory

Let ~φ(x) =
(
φ1(x), ..., φN(x)

)
, x ∈ Λ be a complex field with N

components. Its action functional is defined by

SΛ(~φ) :=
1

2

∫
Λ

dx

{
~φ(x) ·

(
− ∆+ 2

)
~φ(x) +

+
λ0

N + 1

∫
Λ

dy
[
|~φ(x)|2 − ρ

]
v(x − y)

[
|~φ(y)|2 − ρ

]}
By Hubbard-Stratonovich in reverse,

R.S. of(21) =
1

(Z
(0)
Λ )N

∫
D~φ∧D~φ exp

[
− SΛ(~φ)

]
(22)

The N →∞-limit is the Berlin-Kac spherical model, which is known to
have a phase transition with spontaneous symmetry breaking; (shown by
using saddle-point method!). In the limit, where

v(x − y)→ δxy ,

R.S. of (22) defines Euclidian λ|~φ|4-theory. Thus: Hard-core Bose gas in

d dimensions = regularization of Euclidian λ|~φ|4d -theory!



6. Summary of results and conjectures
It is time to ask what all this is good for and what it means!

1. Mean-field limit, ν↘ 0. The ideas reviewed in Sect. 5
[
Eqs. (17)

through (22)
]

imply that, for a suitable choice of ρ as a function of
ν (with ρ→∞, as ν↘ 0 in d ≥ 2), the limit ν↘ 0 of the Bose
gases exists and is given by the Euclidean field theory with action
functional SΛ(~φ) given in (22), above. This is actually a theorem!
To prove it, we assume that the potential v is continuous, of
positive type and of short range. Furthermore, a suitable
choice of ρ (“Wick-ordering” of the quartic term) is crucial: For
d = 1, the continuum limit and the mean-field limit are easy to
analyze and can be taken in arbitrary order, for arbitrary finite ρ.
For d = 2, 3, it suffices to “Wick order” the factors quadratic in |~φ|

in the quartic term of the action functional SΛ(~φ); (subtraction of a
divergent ρ). Consider the partition function

ZΛ(ρ) =

∫
dµv (η)e

iNϑ(η) ×

× eN
∫∞
0

dt tr
[
(−∆2 +1−iη+t)−1−(∆2 +1+t)−1

]
(23)



Continuum limt

To make sense of this expression in the continuum limit, in d = 2, 3,
one must choose ϑ(η) such that the term linear in η in the expo-
nent on the R.S. of (23) is finite. One then shows that the remai-
ning term in the exponent on the R.S. of (23) is well-defined and
has a negative real part in dimensions d = 2, 3. Thus ZΛ(ρ) exists
and is bounded above by 1 – as direct inspection of the R.S. of (22)
also shows.

For ν > 0, we must study

ΞΛ(ν, ρ)

Ξ
(0)
Λ (ν)

=

∫
dµλ(σ) e

iNθ(σ) eN
∫∞
0

dt tr
[
(K(σ)+1+t)−1−(K(0)+1+t)−1

]
,

(24)
which also has a well-defined integrand whose absolute value is
bounded above by 1, uniformly in ν; see (15)!

Thus, it suffices to verify that, in d = 2, 3 dim., (24) converges to
(23), as ν→ 0, i.e., in the mean-field limit. This is a relatively easy
problem in CQFT; (thanks to the uniform bounds on the integrands,
it suffices to establish L2-convergence of the exponents ...).



Triviality of scalar field theories; classical particle limit

2. “Triviality” of λ|~φ|4d -theory in dimension d ≥ 4 – Conjecture. To
construct the continuum limit (ε→ 0) is somewhat challenging for
Bose gases with hard-core potentials: v → δ. It appears that, for
Bose gases at finite density and temperature (arbitrary ν > 0), the
continuum limit exists in any dimension d! It is known that, for
d ≥ 4, hard-core Bose gases are identical to ideal (i.e., non-inter-
acting) Bose gases. This follows from the statement that two
Brownian paths in dimension d ≥ 4 never intersect. In view of the
results reviewed in Sect. 5 and in Result 1, this leads to the
conjecture that λ|~φ|4d -theory is trivial, i.e., equivalent to a Gaussian
(free) field theory, in dimension d ≥ 4. (This has been proven only
for a single (N = 1) complex scalar field in d > 4; and for a real
scalar field in d = 4, ↗ Aizenman & Duminil-Copin)

3. Classical particle limit. Consider a Bose gas in the continuum limit
at finite temperature (β > 0), in the limit where the mass, M, of
the atoms in the gas tends to ∞, but the interaction strength is
kept constant. This corresponds to the limiting theory where

ν↘ 0 , with λ = λ0 = const.



Classical particle limit
Recall Ginibre’s loop-gas representation (17)

ΞΛ(ν, κ) =

∞∑
n=0

Nn

n!

{[ n∏
k=1

∞∑
`k=1

∫
Λ

duk
e−`kκν

`k

∫
dW`kν

ukuk (ωk)

]
×

× e−
∑n

i,j=1
λ
ν
V (ωi ,ωj)

}
, (17 ′)

for the partition function of the Bose gas, with ν = 1
M , λ = λ0, (β = 1).

Choose a negative chemical potential, i.e., κ = κ(ν) > 0, in such a way
that

e−κ(ν)·νν−
d
2 =: z = const., for arbitrary ν > 0. (25)

Then, as ν↘ 0, i.e.,M →∞, only the terms with `k = 1,∀k = 1, ..., n,
survive, and – in view of definition (16) of the interactions V (ωi ,ωj) –
ΞΛ(ν, κ(ν)) is seen to converge to the classical partition function

ΞΛ(z) :=
∞∑
n=0

(zN)n

n!

[ n∏
k=1

∫
Λ

duk

]
exp
{
−
λ0

2

n∑
i,j=1

v(ui − uj)
}

(26)



Thermodynamic limit

4. Thermodynamic limit. Focus on Bose gases with ν > 0 and on
classical gases. We study convergence of the Gibbs potential

ΩΛ(ν, κ) :=
1

|Λ|
`nΞΛ(ν, κ), κ > 0,

and of the reduced density matrices γp, as Λ↗ Rd (Zd), as well as
analyticity properties of the limiting expressions, using a “cluster
expansion” converging for λ0 small enough, or for large N, assuming
that the two-body potential, v , decays “rapidly” (↗ D. Ueltschi).

Basic idea: Set

exp
{
−
λ0

ν
V (ωi ,ωj)

}
=: 1 + Gλ0(ωi ,ωj) . (27)

Then
|Gλ0(ωi ,ωj)| = O(λ0) ,∀i , j , (28)

uniformly in the loops ωi ,ωj , with rapid decay in dist(ωi ,ωj). The
cluster expansion is an expansion in powers of the small quantities
Gλ0(ωi ,ωj), with i 6= j . Using the “linked cluster theorem” and
standard combinatorics of the Mayer expansion, convergence is seen
to hold for small λ0...! (Similarly for classical gases – but simpler.)



N →∞ and Bose-Einstein condensation

5. N →∞, and BEC – Conjecture. Choosing λ = λ0
N+1 in expression

(17’) for ΞΛ(ν, κ), and using (27) and

|Gλ0(ωi ,ωj)| = O(
λ0

N + 1
) , ∀i , j ,

one shows by inspection that, in the limit N →∞, only “cactus
diagrams” survive in the cluster expansion. These diagrams can be
resummed, with the result that the system approaches an ideal Bose
gas of one species, but with a renormalized chemical potential. This
limiting system is known to exhibit BEC. – What about large, but
finite values of N? To study this question, one would attempt to
use renormalization group methods in the Hubbard-Stratonovich
rep., see (10), (11). (Perhaps, a variant of the “lace expansion”,
due to D. Brydges and T. Spencer, in the Ginibre rep. might also
lead to results.)

I conjecture that one can prove BEC, for large enough N, in d >
(=)

4.

But this remains to be proven.



N → 0 and regularised SAW

6. N → 0, and SAW – Conjecture. In the limit N → 0 all diagrams
with loops disappear. Thus the partition function ΞΛ tends to 1, as
N → 0.
More interesting is the study of the reduced density matrix γ2(x , y)!
Studying the selfinteractions, V (ω,ω), of Brownian paths
contributing to γ2(x , y), we see that this is a regularised version of
the Edwards-Anderson model of SAW . I expect that, in dimension
d ≥ 4, the critical properties of this theory are identical to those of
ordinary Brownian motion. But a proof remains to be developed.

That’s it for today!

7.
[
Remark on definition of ZΛ(ρ). Integrand in exponent on the R.S.

of Eq. (23), after subtraction of term linear in η, is given by

−

∫∞
0

dt tr
[
(−
∆

2
+κ+ t)−1 η (−

∆

2
+κ+ iη+ t)−1 η (−

∆

2
+κ+ t)−1

]
,

which has a negative-definite real part and is square-integrable in
η with respect to dµv (η).



7. Concluding remarks

The first statement follows by noticing that

N. R.(A(t)) =
{
z | < z ≥ κ+ t

} ⇒ N. R.(A(t)−1) =
{
z | < z ≥ 0

}
,

with A(t) := −∆2 +κ+ iη+ t, & N. R. := “num. range” (↗ Graf).
]

—

And this is really more important: “Survivre et Vivre” – 50 years later:

“... depuis fin juillet 1970 je consacre la plus grande partie de mon temps
en militant pour le mouvement Survivre, fondé en juillet à Montréal. Son
but est la lutte pour la survie de l’espèce humaine, et même de la vie
tout court menacée par le déséquilibre écologique croissant causé par une
utilisation indiscriminée de la science et de la technologie et par des
mécanismes sociaux suicidaires, et menacée également par des conflits
militaires liés à la prolifération des appareils militaires et des industries
d’armements. ...” (Alexandre Grothendieck)

Réveillez-vous, indignez-vous! (Stéphane Hessel)

Sincerely, JF


