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For the beginning, consider non-interacting spinless charged particles
in a constant magnetic field B confined to a finite 2d sample with
area L2 with reflecting resp. Dirichlet boundary condition in thermal
equilibrium.

Classical: Two contributions to the magnetic moment

» Magnetic moments of closed orbits: M. ~ m. L?
» Magnetic moment from boundary current /, of the skipping

orbits: M) ~ L2 |,
_% In thermal equilibrium the

A\ = two contributions cancel
exactly:

&) L 0= M = (me + h)L?.

/ A (Bohr-van Leeuwen theorem)
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Quantum: Let H(B) denote the Landau Hamiltonian on R?,
HL(B) its restriction to [0, L]?,

Fs(x):= =B tIn(L+e ™), and Fj(x)=(1+e™)
the Fermi-Dirac distribution.
The thermodynamic pressure is
pr(B, 1, B) = 45 tr (Fg(HL(B) — 1))

resp.
Poo (B, 11, B) := tr (xj0.112 F3(H(B) — 1))

and the magnetisation is

9 B
e pL(g};,) = stz tr (X A J) F(HL(B) = 1)) -
resp.
moo(ﬁ,,uy B) — M ‘

0B
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Macris, Martin, Pulé CMP '88
poo(ﬂn“» B) = Lli_)ngop/_(ﬂnuv B) and mOO(B?l““? B) = Lll—>n;o mL(ﬁ,M, B)

exist and myo(3, 1, B) = W_

moo(ﬁvuaB) = Itot(ﬁv”as) = hingotr(XhJI F/é(HE(B)_,u)) g

Hge(B) is the Landau operator
E on the upper halfplane, xj, the
characteristic function of the
N strip Sp, := [0, 1] x [0, h], and
= i[HE(B),Xl] the first
%4 component of the current
— operator.

x. b

tr (xnJ1 F5(He(B) — 1)) — lim tr (x5 J1 F5(He(B) — p))| < Ce™"

h—o0
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Bulk-edge correspondence for the Landau operator
In the quantum case the thermal equilibrium state of a large sample
has a non-vanishing magnetic moment M ~ m, L? # 0.

For the Landau-Hamiltonian one can explicitly split ms, into the two
contributions

de
me = 3 Fa gy g = et

The magnetic moment of a large sample is

Mot =~ Moo l? = me L% + myes L2
= ot L = hnag L2+ by L,

where the magnetisation current /.5 has density jin.e = curlm,
with mc(x) = me X {,>0}(x) and thus

hnag = / (curl me(x))1 dxe = mc/ d(x2) dxo = m .

—00
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Bulk-edge correspondence for the Landau operator

Transport coefficients:

The edge conductance is defined by

a/tr(/Ba My B) )

O'E(/BHUMB) = 8”

The Hall conductivity in the bulk (defined by linear response) equals

res I Y B
(5.1, 8) = 211 B)

= Bulk-edge correspondence for transport coefficients
of the Landau Hamiltonian at any temperature, i.e. for all 5 > 0,
uw,BelR

O—H(ﬁauv B) = UE(ﬁaMa B)



Bulk-edge corresp. for magnetic Schrodinger operators

Cornean, Moscolari, T. '21:

The equality between bulk magnetization and total edge current
holds very generally for non-interacting spinless charged particles in a
periodic and/or random potential.




Bulk-edge corresp. for magnetic Schrodinger operators

Cornean, Moscolari, T. '21:

The equality between bulk magnetization and total edge current
holds very generally for non-interacting spinless charged particles in a
periodic and/or random potential.

Assumptions: The Hamiltonian describing the bulk system is
Ho(B) = L (—iV - A - BAY? +V +V,,

densely defined on L?(R?).



Bulk-edge corresp. for magnetic Schrodinger operators

Cornean, Moscolari, T. '21:

The equality between bulk magnetization and total edge current
holds very generally for non-interacting spinless charged particles in a
periodic and/or random potential.

Assumptions: The Hamiltonian describing the bulk system is
Ho(B) = L (—iV - A - BAY? +V +V,,

densely defined on L?(R?).
Here V and A are Z2-periodic potentials, A(x) = (—x2,0), and
Vo) = 3 wru(x )
yEZ?

with u compactly supported and {w-}.cz2 a family of i.i.d. random
variables with values in [—1,1]. The functions A, V, u are smooth.



Bulk-edge corresp. for magnetic Schrodinger operators

Cornean, Moscolari, T. '21:

The equality between bulk magnetization and total edge current
holds very generally for non-interacting spinless charged particles in a
periodic and/or random potential.

Assumptions: The Hamiltonian describing the bulk system is
Ho(B) =1 (-iV—-A—-BA?+V+V, on [X(R?).
The Hamiltonian describing the edge system is
He o(B) i= Hu(B)li2(e) + Wo on L2(E)

with £ := {x € R?|x, > 0} and Dirichlet boundary conditions.
Here W, is a smooth random potential supported in a strip R x [0, d]
near the edge such that the family {Hg ,,(B)}., is still ergodic with
respect to integer translations in the xj-direction.
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Bulk-edge corresp. for magnetic Schrodinger operators

Theorem (Cornean, Moscolari, T. '21)

Also for ergodic magnetic Schrédinger operators it holds that for all
B8>0, uBeR

moo(ﬂuua B) = Itot(ﬁy,ua B) = hlLFf;QEtI"(SZth F/é(HE,(B)_:U'))

and 8,11,"700(57/% B) = a,ll,ltot(/@aua B)

If ¢ o(Hg), then (Cornean, Monaco, Moscolari JEMS '21)
Jim 0umsc(B,11,8) = fim Ogpoc(3. 1. B) = (o0, . B)
and thus
on(oo, p, B) = 5|Lmoc Oplot (B, 11, B) =: G(00, 1, B).

New proof of bulk-edge correspondence of transport
coefficients at zero temperature for such systems!
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However, in general for 5 < oo or € o(H(B)) we expect
O-H(ﬁvlua B) - aumres(ﬁa,ua B) 7é aumoo(ﬁnu’a B) 5

UE(/Bv H, B) - aultr(ﬁnu’a B) 7£ a}tltot(ﬁnu’ﬂ B) .

and

For periodic Schrédinger operators with simple Bloch bands only one
can define a splitting my, = m¢ + myes as in the pure Landau case
and show that

on(B, 1, B) = oe(B, 11, B).

For periodic Schrédinger operators with g in a simple Bloch band
or for 1 in a mobility gap one can define a natural splitting my, =
me + myes locally in energy around g . Then one finds (CMT '22)

‘O—H(Baua B) - UE(BaMa B)| = O(e_C5)'
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Previous rigorous results on oy = opat T =0

The literature on bulk-edge correspondence is vast, and | mention
only a few related rigorous results that consider equality of
transport coefficients at T = 0 defined in microscopic models:
Non-interacting particles:

» Schulz-Baldes, Kellendonk, Richter JPA '00

» Elbau, Graf CMP '02

» Kellendonk, Schulz-Baldes JFA '04

» Elgart, Graf, Schenker CMP '05

Interacting particles:
» Frohlich, Studer RMP '93
» Giuliani, Mastropietro, Porta CMP '17
» Antinucci, Mastropietro, Porta CMP '18
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w

and
OBPoo(B, 11, B) = h"_[T;O h~0p tr (X[o,1x (0,5 F8(HEw — 1))

using that “in the bulk”

F/D’(HE,w - M) ~ Fﬁ(Hw - M)'

» Show
Jim h~OE tr (x(o,11x (0, Fs(HE — 1)) = hot (B, 1, B) -



Bulk-edge corresp. for interacting electrons

We consider systems of interacting fermions on finite cylindrical
domains A = {—L,..., L}*> C 7?

The one-particle Hilbert space is

ba == 2(A,C%),
the N-particle Hilbert space
A N
ban == bp
and it will be convenient to work
on Fock space
W

s|A|

SA = @ bAN -
N=0

)




Bulk-edge corresp. for interacting electrons

The Hamiltonian describing an interacting gas of fermions on A is
assumed to be of the form

HY = Z ay Te(x,y)ay —i—Za;VaX
(x.y)en? xeh

+ Y dad(x - y)aa, + oy
(x,y)eN2

where
X2+

> 2B(xa—y1) T(x—y)

i

TB(va) = ¢

is a Peierls phase times a translation invariant nearest neighbour
hoppig amplitude T : Z¢ — L£(C®), V € L£(C?®) an external “periodic”
potential, and ¢ : Z9 — L(C?) a short range interaction potential.
Finally, ®5, is an arbitrary finite range local interaction supported in
a fixed strip at the boundary.



Bulk-edge corresp. for interacting electrons

For 3 > 0 and u, B € R denote the partition function by
Z(B, 1, B) = tr (e—ﬁ(Hé—uN)) ’

the Gibbs state by
o~ B(HE—uN)

A -
P (ﬁ,M,B) T Z(,B,/.L,B) )

the grand canonical pressure by

PNB, , B) = —L7267 1 In(Z(B, 1, B)),

and the magnetisation by

0
mA(ﬁwu» B) = ainA(ﬁal% B).



Bulk-edge corresp. for interacting electrons

The first component of the current operator is
h="1|x%, H| "

_>j£: ( X+€1 b X+ e, X ) _'ai Tl(b,x,x-+—e1)ax+el>
xEN

= Z .jl,x

xEN
and we define the total boundary current (at the lower edge) as

—L+/

W8 B) = tr( > o P81 B)).

xo=—1L



Bulk-edge corresp. for interacting electrons

Locality of the Gibbs state:

We say that (H3)a satisifes locality of the Gibbs state at (83, i, B),
iff there exist a state poo(f3, i, B) on the quasi-local algebra A and
constants ¢, C > 0 such that for all A€ £(Fx) C Aand A D X

(o) — pX(A)| < CllAJeed= o,

It follows from results by Kliesch et al. PRX 14 that there exists

Bo > 0 such that “locality of the Gibbs state” holds for all 5 < (g
uniformly in B and p.



Bulk-edge corresp. for interacting electrons

Theorem (Lampart, Moscolari, T., Wessel '22)

Assume locality of the Gibbs state for (3, , B).
Then there are constants ¢, C > 0 independent of L such that

| w8, 1,8) — 158, B)| < C (Lecf + i)

and

_ 1
‘a“m/\(ﬂ"u’ B) — Buly (B, s B)’ =€ <Le Cf‘f‘L) .



Bulk-edge corresp. for interacting electrons

Next steps:

> Relate d,m"(3, 1, B) and 8ult/2)’f(ﬁ,u, B) to transport
coefficients.



Bulk-edge corresp. for interacting electrons

Next steps:

> Relate d,m"(3, 1, B) and 8ult/2)’f(ﬁ,u, B) to transport
coefficients.

» Extend to low temperatures assuming “locality” (aka LPPL) for
the ground state.
(cf. Henheik, T., Wessel LMP '22; Bachmann, de Roeck,
Donvil, Fraas '22)



Bulk-edge corresp. for interacting electrons

Next steps:

> Relate d,m"(3, 1, B) and 8ult/2)’f(ﬁ,u, B) to transport
coefficients.

» Extend to low temperatures assuming “locality” (aka LPPL) for
the ground state.
(cf. Henheik, T., Wessel LMP '22; Bachmann, de Roeck,
Donvil, Fraas '22)

> Relate d,,m"(co, i1, B) and ault/(\)’f(oo,u, B) to transport
coefficients, using recent results on linear response in the
bulk at T =0
(cf. Bachmann, de Roeck, Fraas CMP '18; T. CMP '20;
Henheik, T. SIGMA '22)
= quantisation then follows from Hastings, Michalakis CMP
'15; Bachmann, de Roeck, Fraas CMP '20.



Bulk-edge corresp. for interacting electrons

Next steps:

> Relate d,m"(3, 1, B) and 8ult/2)’f(ﬁ,u, B) to transport
coefficients.

» Extend to low temperatures assuming “locality” (aka LPPL) for
the ground state.
(cf. Henheik, T., Wessel LMP '22; Bachmann, de Roeck,
Donvil, Fraas '22)

> Relate d,,m"(co, i1, B) and ault/(\)’f(oo,u, B) to transport
coefficients, using recent results on linear response in the
bulk at T =0
(cf. Bachmann, de Roeck, Fraas CMP '18; T. CMP '20;
Henheik, T. SIGMA '22)
= quantisation then follows from Hastings, Michalakis CMP
'15; Bachmann, de Roeck, Fraas CMP '20.

» Include repulsive Coulomb interaction.



Bulk-edge corresp. for interacting electrons

Next steps:

> Relate 9,m"(3, u, B) and 8ult/2)’f(ﬁ,u, B) to transport
coefficients.

» Extend to low temperatures assuming “locality” (aka LPPL) for
the ground state.
(cf. Henheik, T., Wessel LMP '22; Bachmann, de Roeck,

N L I A\

Thanks for your attention!

bulk at T =0
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