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N Spinless Fermions on Fixed Size 3D Torus

Hamilton operator
N
HN;:Z(_A,)+)\ Z V(xi — xj) with V:R> - R,
i=1 1<i<j<N

acting on the L2-space of antisymmetric wave functions of 3\ variables:

V(Xo(1)s Xo(2)s - - - s Xo(n)) = S8N(0)Y(x1, %2, ..., xn) Vo € Sy .

We are interested in the ground state energy

Evi= inf_ (1), Hyo) .
M= B\ )

[¥ll=1

The setting is still too general! We should look at a more specific physical situation.



Mean—Field Scaling Regime

Simplest situation: high density and weak interaction, “close to mean—field".

Mean-Field Scaling Regime [Narnhofer—Sewell '81, Spohn '81]
= high density: fixed volume (the torus) and N particles, with N — oo.

» weak interation: A = N~1/3 because

N
<Z (—A,-)> ~ N°/3  (Fermi energy) , <)\ Z V(xi — XJ)> ~ AN? .

i=1 1<i<j<N

Multiply the entire Hamiltonian x A2, with f := N~1/3;

N
v =Y (—120,) + % S V(x—x) .

i=1 1<i<j<N



Leading Order:
Hartree—Fock Theory



Hartree—Fock Theory = Restriction to Slater Determinants

Convergence to the Hartree—Fock energy [Bach '92, Graf-Solovej '94]:

|En — ENFl = o(N),  where ENF := inf (s, Hy) ,
1 is Slater

N
1
r = P= — sen = R Q® - , €L2T37
w5|ate J/:\l QOJ \/mﬂ—gsjlv g (77_)(}9 (1) 2 (N) SOJ ( )

The fermionic states with the least possible entanglement are sufficient to obtain the
dominant orders of the energy.

—itHn/h it stays close to a Slater

Stability: Evolve a Slater determinant in time by e
determinant but with orbitals ¢; ; evolved by the time-dependent Hartree—Fock
equation [B—Porta—Schlein '14].

HF evolution is optimal in the submanifold of Slater determinants [B-Sok—Solovej '18].



The Minimizing Slater Determinant

Introduce the Slater determinant of N plane waves fi(x) := (27)~3/2e/x:

YRt i= A fo.  Br=Fermiball:i={k € Z%: [k| < ke };
keBE
Under the assumptions \A/(k) > 0, on the torus and no external potential, with
mean—field scaling, with fully filled Fermi ball (N = |Bg|) one can show that plane
waves are the minimizer among Slater determinants [B—-Nam—Porta—Schlein—Seiringer
'21, Appendix]:
ER' == (Wi, HvolR') = ERT .

[Wigner '34]: How to compute the correlation energy Ey — ENF ?

Do better than Slater determinants by including non—trivial entanglement!



Next Order:
Random Phase Approximation



Upper Bound on the Correlation Energy

Theorem: [B-Nam-Porta—Schlein—Seiringer '20, B-Porta—Schlein—Seiringer '21]

Let

V(k)y>0  and >k V(k)? < o0
kez?

For ke > 0 let N := |Bg| = [{k € Z3: |k| < k}|. Then

En < ENF + ERPA 4 o(h)  for kg — o0

with the random phase approximation energy formula

ERPA =1 S |K] UOO log (1+ V/(k) (1 — Aarctan A7) ) dr — 1\7(k)] .
kez? 0 5




Lower Bound on the Correlation Energy

Theorem: [B-Nam-Porta—Schlein—Seiringer '21, B-Porta—Schlein—Seiringer '21]

Let
V(k)>0  and ST kIV(k) < 0.
kez3

For ke > 0 let N := |Bg| = [{k € Z3: |k| < k}|. Then

En > ENF+ ERPA £ o(h)  for kg — oo .

Remark: [Hainzl-Porta—Rexze '19] obtained a lower bound to second order in V,

En > ENF - hg(l —log2) 3 |k|V (k)2 + O(3) .
kez3



History of the Random Phase Approximation

= Macke ’'50 energy formula by resumming the most divergent term of each order
of formal perturbation theory with Coulomb potential

= Bohm-Pines '53 couple to an auxiliary boson field, introduce a coupling
constant to fix # degrees of freedom, invertible transformations, drop phase terms

» Sawada-Fukuda—Brueckner-Brout '57 treat ajaj as a bosonic particle, keep
only quadratic terms and diagonalize

= Gell-Mann—Brueckner ’57 refined resummation of formal perturbation series
produces even a further correction

= B '20 computation of the one—particle spectrum in the exact bosonic theory

= B—Nam-Porta—Schlein—Seiringer '21 Fock space norm approximation for the
dynamics of particle-hole pair initial data

= Christiansen—Hainzl-Nam ’21 ground state energy and one—particle spectrum
by a method similar to Sawada et al.



The Random Phase Approximation as Bosonization



Preparation: Separating the Slater Determinant

Hamiltonian in momentum representation written with CAR operators:

Hy = K2 Z |k|2a} a —|— — Z V(k )35+ k3s—k3sdg -
kez3 q,s kez3

Define the unitary map R (“particle—hole transformation”) on fermionic Fock space by

* k BC
RQ = yR" Rat R = { < oF
Ak k € B
Write 1y = R, expand R*HyR, normal-order: with e(p) := |h?|p|? — (3/47)%/3| get

(Un, Huon) = ENT + (Ew,s > elp)azap+ Y e(h)apan + Q En)
PEBE heBg

e

= e SEEn,

Plane—wave slater det. corresponds to &y = Q: in particular (Hy, + Q) Q2 =



Collective Particle—Hole Pairs

Key observation: if we introduce collective pair creation operators

* * ok
bk = Z 5p_h7kapah
pEBE
heBg

p ‘“particle” outside the Fermi ball
h  "hole” inside the Fermi ball

then

1 ¥ * * |k
Q=5 2 V(k)(2bbx + bEb i + b_ibk) + Qnon-pairea-
kez3

This is convenient because the by and b, have approximately bosonic commutators:
[b,t,b;k]:() ) [blva]:koni"i'g(kal)'
But how to express Hyi, through pair operators?

10



Linearizing the Kinetic Energy Locally in Patches

[Benfatto—Gallavotti '90]
[Haldane '94]
[Frohlich—Gétschmann—Marchetti '95]

[Kopietz et al. '95]

Localize to M = M(N) patches near the Fermi surface,

1
* L * ok
ak = ZpeB;mBa Op—hkapa, -
a,k heBrMBq

Linearize kinetic energy around patch center wy:

* 1 2 2\ % _%
Hkinba7kQ = m Zh,p 5p—h,k(P —h )apahQ

1 * _%
=% Sp-hk(p—h)-(p+h) a2,
Ney k P —_—— ——
=k ~2we

o 2Rk - Dbl 4 Q.

M
Hin = > > 2hua(k)?bY kbak,  ua(k)® := |k-Gal
keZ3 a=1
(similar to [Lieb—Mattis '65] for 1D Luttinger)

11



Quadratic Effective Hamiltonian

RecaII
Z V(k
keZ3
Decompose

="

4

2bzbk + b;’;bik oy b—k bk)+Qnon-paired [ ]

Mo,k by, i + lower order .

Normalization such that [|b}, Q[ = 1:

”i,k = #p-h pairs in patch B,
4m N2/3 .
~ — |k - Galua(k)? .

Effective Bosonic Hamiltonian

Heff hz Z ua

keZ3L «

kba k+

V(k)
M

with momentum k

2

75

(ua(k)uﬂ<k)bzz,kbﬂ,wua(k)uﬁ(k)b;,kb;,k+h.c>]

v
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Diagonalization of the Bosonic Hamiltonian

Heff = Z |:hefF(k) — %tr(D(k) + W(k)):|

keZ3

1 D+W W b
eff _ = *\T T o .
h (k) = - ((b )T b ) ( 77 D4 W) (b*) , (everything depends on k)

_ (diag(i?) 0 Lol 0 o o f 0 |uul
D‘( 0 diag(u§)>’ W‘V( 0 \u><ur>’ W‘V(u><u\ 0 )

Find a bosonic Bogoliubov transformation such that

peff — 2311 (e,yE; b, + e,y/2> , & eR.

In the limit of large number of patches, M — oo, the correlation energy becomes

hyo %tr(E(k) — D(k) — W(k)) — ERPA.
kez3 13



Spectrum

no interaction short—range interaction Coulomb interaction

momentum k of particle-hole pair momentum k of particle—hole pair momentum k of particle-hole pair

= plasmon mode (collective oscillation) emerges

= continuous spectrum qualitatively unchanged

A systematic approach to Bohm—Pines theory.

14



Proof of the Upper Bound



Trial State

The implementation of the Bogoliubov map makes sense on fermionic Fock space:

= exp ( > Z K(k)a,3b5 kb3, — h.c.) . K(k) =log|S]| .

keZ? a,p=1
We just need to compute the expectation value of R*HyR — EHF = Hyin + Q using

the "bosonic quasifree state” as trial state in fermionic Fock space

En=TQ.
Error terms:

CCR: [bak, b5l = da,p(0ks + Ea(k; 1)), [|€alk, Y]l < N9l

2
no (k)na(/)
Non—bosonizable terms: [{ah Qronpaicti)| = N~ N2ep) .

Thanks to Gronwall's lemma:

(TA\QNTTQ) < Cpe*™ YmeN . 15



Dangerous Excitations

The energy gap (due to lattice
spacing in momentum space) is
h2, but we want to compute an
energy of order h.

The h? gap still helps a bit, but
for getting good bounds the sys-
tem is to be treated as gapless.

16



Removing “Gapless” Excitations

Instead of b = ZﬁLl No kb7, ¢
consider

* ~ *
by ~ Zaez; Mok Doy ke 5

where
I;r = {oz:k-d)a> N_‘s}.

Difference controlled by

_ 1/2
(...) < CNY2=072 2y

Close to the equator, kinetic and excitation energy both vanish like u,(k)? = |k - @q].
This permits control of norms and matrix elements of the Bogoliubov kernel K(k). 17



Proof of the Lower Bound



Two central difficulties compared to the trial state argument:

= How to justify Hy ~ Dg outside commutators?
= Why is the expectation value of Qno—pair Smaller than order h?

Obtain simultaneous diagonalization by choosing a one—particle unitary

M
Z :=exp ( S > L(K)apblkbs—k — h.c.) :

keZ3 a,B=1

such that T*Z*H**ZT is (almost) completely diagonal.
In fact: write g = TZ&, and obtain
(TZ&, (Huin + Q) TZE) = (TZ¢, (Huin — D) TZE) + (TZE, (DB + Q) TZE) + (TZE, Qno-pair TZE)
~ (€, (Hhin — Dp)€) + (TZE, HTZE) + (TZE, (€1 + &) TZE) .

Eigenvalues bound the diagonal elements of —Dg.

&1 can be controlled by gapped number operators and kinetic a—priori estimate. 18



Specific Technical Tools

1. Kinetic a—priori estimate: ||b(k)v| < CN1/2HH1/2¢H [Hainzl-Porta-Rexze '19].
Thus
Hkin S C(Hkin + Q) S h.

2. Analytic number theory: |{lattice points on the sphere}| < C.N'/3+¢ thus
0=2/3
Ni=>Sata< > 1+ Y afa < CNY3T 4 N2BH, = O(NY3) .
i€z3 e(i)<N—? e(i)>N—°?

3. Gapped number operator wherever possible to avoid low—energy excitations:
1/2
okl < NG9l where N5 =30 0 1y,
4. Strong control on the Bogoliubov kernel K(k), e.g.,
ua(k) ug(k)
|K(K)a,g] < 5 min {42l ol (1)

19

ajaj, O to be optimized.




Bosonization of Fermionic Dynamics




Effective Bosonic Evolution

The diagonalized effective Hamiltonian is an (approx.) bosonic second quantization:

M
T*HT =~ ERA+ 7 Y Y E(K)a,bl ibsk
keZ3 a,f=1
~ ERPA + dlbosonic (7 @D E(K) ) -
keZ3
= HB
Consider a one—boson wave function
nebg:=Pch.
keZ3
Then
ne = efiHBT/hno

is the time—evolution in the (first quantized) one—boson space hg.
20



M
Define the boson creation operator b*(n) := ZkeZ3 Za:l b k(K-

Theorem: [B-Nam—Porta—Schlein-Seiringer '21]
Assume that V is compactly supported and non—negative. Let

1 1

fo:= 5 b'm) D), = 5 b me) b (i)

Then in (fermionic) Fock space norm

et /ART go — e ENHEI/ART || < Com B/ %]

s D

If Hgm; = ejm; then we have constructed an approximate eigenstate of the many—body
Hamiltonian, evolving up to times |t| < N/45 just with a phase:

e HNt/MRT €y o e—i(Eﬁlw+E,§PA+zj”;l ej)t/hRTg0 .

21
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