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BOSONS IN THE MEAN-FIELD REGIME

We consider N bosons described on L2(R3V) by

HN:Z(—AJH—% D vii—x)

1<i<j<N

GROUND STATE: Lieb, Seiringer: 9§ of Hy exhibits BEC , i.e. the
one-particle reduced density v,z = tro, n|1hy) (| satisfies

.....

Yyge = l@)(pl as N — o0

where ¢ denotes the Hartree minimizer. Note that ¢%° ~ ¢®".

DvyNawmics: We consider the many-body time evolution

iepn,e = Hytwe, with Pno ="  (then 7y, , = [@o)(¢ol).

Erdosz, Frohlich, Ginibre, Knowles, Lee, Pickl, Pizzo, Rodnianski, Schlein,
Yau...:

rwa,t — |§0t><§0t| as N —

and i9:pr = (—A + (v * |@:]?)) g+ solves the Hartree equation, but 9y, = 2",
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PROBABILISTIC DESCRIPTION

For a self-adjoint one-particle operator O on L2(R3) we define the random
variable 0V =1®---®1® 0®1®---® 1 with probability distribution

Py, [09 € A] = (¥n, xa (0V) ¥n), where ¢y € L3(R*")

and xa denotes the characteristic function of the set A C R.

QUESTION: Characterization [Py, through principles of classical probability
theory.

FACTORIZED STATES: %y, = ap?’v, correspond to 1.1.D. random variables.
They satisfy a LAW OF LARGE NUMBERS, i.e. for § >0

’NZO <P07O<P0>}>5 —0 as N — co.

| Does a LLN hold for .; ? |
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LAW OF LARGE NUMBERS

Let ¢n,: denote the solution to i0:n,: = Hytn,: with factorized initial data
Yo = @5

Ben Arous-Kirkpatrick-Schlein (2013): Let § > 0, then

N
530~ e0ei)] 4] =0

lim ]ID¢N .
N— oo ’

® Correlations of the particles do not affect the law of large numbers
® Law of large numbers is a consequence of BEC

® Similar statement holds for the ground state ¢} : for any 6 > 0

N
/\/leooP*ng [ Z (p, Op) ) ’ > 6] =0
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PROOF:

N
PTPN,t [ Z Sof’ O‘)Df ) | > 6]

N
]P)IZ)Nt Z |>1

N

(OFs10)]

_N252 '¢’N: Z N252E'¢’Ntzo O

i=1 ij=1
CN(N — ~ ~ N
S%trvﬁ;t (O®O> N252tmeo —0 as N—oo O
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CENTRAL LIMIT THEOREM

Ben Arous-Kirkpatrick-Schlein, Buchholz-Saffirio-Schlein:

N X
1 i 1 2,0 2
. 2 (i) _ —r°/2c
I\/ll_)l']'\oo ]P)’L/)N t |ﬁ — (O - <S0t7 O‘Pt>) ‘ < X‘| = — ﬂo-t /;oo e tdr
® The variance o7 = ||fo;||3 is determined by £

satisfying for s € [0, t]
iasfs;t = (hH(S) + Rl,s + JR2,5> fS;ty

with fi.: = q: Op:r = Op: — (@, Op:) and
hu(t) = =B + (v * [@c]?), _

Kie(xiy) = v(x = ¥)ee(X)@e(y): Ki,s = qsK1,5Gs,
Ka,t(x1y) = v(x — y)ee(x)pe(y), Ki,s = qsK1,5s.

® Similar results in more singular scaling regimes
(R.) and the ground state, too (R.-Schlein)

77 (edOle) 5
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LARGE DEVIATION ESTIMATES

The large deviation regime is characterized by the rate function, if it exists,
given by
1 1
/\wNJ(X) = NIme N log Py, , |N Z (O(') — (e, Osm)) | > x

i=1

Kirkpatrick-R.-Schlein, R.-Seiringer: If Ay, , exists, we have

2

Now () = =25+ 0(x*) forall 0<x<e /|0l .
t

® We assume v < C(1 — A) and O s.t.
IOl = 1A0(1 — A)lop < 00

® The variance is explictely given by
of = |Ifoell3
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CUMULANT GENERATING FUNCTION

Cramer’s theorem shows that for i.i.d. random variables, the rate function is
given through the Legendre tansform

/\Lpgg;N(X) = ir}\\f AX — /\W?N(A)

with /\;®N()\) = log(¢p, e’\(o(l)_W’OW)ga) the cumulant generating function.
0

Kirkpatrick-R.-Schlein, R.-Seiringer: For all 0 < \ < efeCt/H|O|

|, we have

eN(ATZU?*CtV)*O\ < By, |:e>\(zjl.vl(0m<w10w>)):| < eN(%zaf+Cz>\3)+C>\

The previous theorem on the rate function follows from a generalization of
Cramer’s theorem:

® upper bound follows from Markov's inequality

® |lower bound generalizes ideas from Cramer's theorem
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FLUCTUATIONS AROUND HARTREE DYNAMICS

We describe the system on the bosonic Fock space F = @n>0 12 (R3") with
creation and annihilation operators a*(f), a(f) and the vacuum Q.

FOCK SPACE OF EXCITATIONS (Lewin-Nam-Serfaty-Solovej ): Any
Py € L2(R®M) can be decomposed as

(N-1)

v =m0pe" +mef MY 4+ by, where 1y € L3, (R

We define the unitary U; : L2 (R3N) s FSN @po 2, (R3f) by

Lot
Usthy = {no, -+ 1w}
For f,g € LJ_W(]R3), the unitary satisfies the following properties
Ue 3 (p)alp) U = N = No(1), Ue 3 (Falg) Uy = 2" (Falg)
a"(Falpe) Us = a"(F)/N = No(t) = VN ()
Uy a*(pe)a(F) U = /N — Ny (t)a(f) = VNb(f).
The modified creation and annihilation operators b*(f), b(f) satisfy

[b(a), b(F)] = 16°(8). b"(F] = 0. [b(g). 6"(N] = (&) (1~ 25 )~ (Falg).
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FLUCTUATION DYNAMICS

We write thy,c = e MW oSN = e ™MV Q = Uy (Ue ™" UG ) Q and define the
FLUCTUATION DYNAMICS Whi(t;s)

i0:Wn(t;s) = Lu(t)Wh(t; s)
with L (t) = (i0e)Us + U Hulle, given for &1,& € FTl by

(€1, Lu(t)€2) = (&1, dT (hu(t) + Ki,e)62) + Re/ dxdy Ka,:(x; y) (€1, by by&a)

— o6, T (v [l Ko — )V () — 1)&2)

bR 6 N <)o)

+ % / dxdy v(x — y)Re pi(x){&1, ay ax by £2)

1 kK
o | dedy vix = )&, aiajacag)

Here hu(t) = —A + (v * [@:f*), Kie(xiy) = v(x = y)e:(x),(y).
Kai(x:y) = v(x — y)pe(x)@e(y), 2ue = [ dxdy v(x — y)lee(x)*|oe(y) .
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BOGOLIUBOV DYNAMICS

The LIMITING DYNAMICS W (t;s) on F,, with generator

(€1, Loo(t)62) = (&1, dT (hn(t) + Ki,e)E2) + Re/ dxdy Ka,e(x;y) (&1, axay &)

gives rise to a BOGOLIUBOV TRANSFORM: Let A(f; g) = a(f) + a*(g) for
fe Li% and g € JLi«Jt2 where Jg = g. Then,

Wi (t;s)A(f; g)Weo(t; 5) = A(O(t:5)(f: 8)),

for a two-parameter family of operators ©(t;s). Ben Arous-Kirkpatrick -
Schlein show
i0:0(t; s) = A(t)O(t; s)

At) = (hH(t)+ Kue ~JKa,ed )

where

Kot —J (hu(t) + Ki,e) J

Ref.: BoBman, Chen, Grillakis, Hepp, Lewin, Machedon, Margetis, Nam,
Napirkowski, Pavlovi¢, Petrat, Pickl, Schlein, Soffer, ...
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IDEA OF THE PROOF (UPPER BOUND)

We consider

A[YST (09— (er.000)]

j=1

N
_ <7/JN,t7e>\ [ZJZI(O(J)—(V%,OVM))] bae)

_ <Q, Wi(t: O)GAdr(ntqrMWm(qtowwlv(t; O)Q>

E1/’N,r €

with ¢4 (f) = b*(f) + b(f) and O = O — (ipr, Opy).

STEP 1: There exist constants C, ¢ > 0 such that for sufficiently small A

<Q7 Wff,(t O)ekdr(qtaqtﬂk\mm(qr O‘“)WN(t; O)Q>

< eCNHOH3)\3+C/\ <Q7 WITI(H O)e)\\/N¢+(<7t0¢t)/QeC)\HO\|N+(f)eA\/N¢+(QtO<Pt)/2WN(t; 0)Q>
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STEP 2: For given ¢ > 0 there exists a constant C > 0 such that for an
appropriately chosen «: and sufficiently small A

<Q7 Wi (t; 0)eVN@+ (@000 /201N () AV RO (0:020) 2y, (. 0)Q>

< GNNIIONIP+Cex <Q7 exmm(@;memmw)eAW¢+(fo;t)/2Q>
STEP 3: There exists C > 0 such that for sufficiently small A

<97exmm(fo;:)/zemmw)exm¢+(fo;f)/29> < NNl /2 CNNPIONP
STEP 4: Summarizing, we have shown

N
A[ZJZI(O‘J)—WUOW)] < ANIoel?/2 JCNAIOIP+Cex

Eﬂw,t €
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SUMMARY

® For the evolution of factorized initial data in the mean-field regime,
fluctuations of bounded one-particle observables satisfy a large deviation
estimates

® The rate function is up to quadratic order determined through the limiting
Bogoliubov dynamics

THANKS FOR YOUR ATTENTION.
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