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The Dirac-Klein-Gordon system

e Relativistic mean field theory of the nuclei

e Nucleon = Dirac particle of mass m, described by spinor ¥ : R3 — C*
e Nucleons generate and interact via meson fields

— o-mesons (mass m, ) described by classical scalar field S : R3 — R;

— w-mesons (mass m,,) described by classical vector field w = (V,w) : R® — R*;

0V = o (—iV — )V + (m+ S)BY + VU,
(02 = A+ m2)S = —gZps(V),
(02 — A+ m)w = g2J(V),

where g, 8, € R, & = (a1, ap,a3), 3 are the 4 x 4 Dirac matrices, and

pﬂ(w) - <6W7W>C47 J(\U) - (/)v-, J)v /)v(w) - <\U/ \U>C41 J(\U) - <wvaw>C4

e Stationary version studied by Rota Nodari, Esteban-Rota Nodari, Le
Treust-Rota Nodari, Lewin-Rota Nodari
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The strong coupling limit

iV =a-(—iV—-w)V+(m+S)V + VY,
(07 — A+ m3)S = —g2ps(V),
(07 — A+ m)w = g2 J(V),

e Regime m,, m,,, &, 8. large and of similar magnitude
— Expect S ~ —75p,(V) and w ~ 7, J(V) with 7, = g2/m2, 7., = g2/m?

Leads to the nonlinear Dirac equation
00 = &+ (—1V = (W)Y + (M — 4 (W))BY + 7, (V)Y
e Implicitly assumes for instance that £(9? — A)S < 1 with e = 1/m?2

e Several related works in the case with £(0? — A)S replaced by (0?2 — A)S

e For simplicity, assume in the following w =0 and g, = m, = M > 1.
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Main result
Theorem
Let s > 5/2 and Wy, € HS(R3,C*), (Sin, Sin) € H(R3,R) x H"}(R3,R). Let

Wnr € CO((iTNL TNL )a HS(R33C4))

min’ ' max

be the maximal solution to the nonlinear Dirac equation with initial condition
VN |i—0 = Win. Let M > 0 and

(WM sM)y e cO((— T M)y Hs(R3 C*) x H(R3,R))

min’ ' max

be the maximal solution to the Dirac-Klein-Gordon equation with initial conditions
Wf,@g =Wy, (SM,0,SM),_g = (Sin, Sin)- Then, we have

liminf TM 5 7NL

i = "min/max
M—s—+00 min/max /ma

and, forall 0 < Ty < TNL 0< T, < TNL and all 0 < s’ < s,

min’ max’

. M -
MW =W e g e o,y = O
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Main result: comments

e Existence of local-in-time solutions is standard (and only requires s > 3/2), with
blow-up criterion

M .
O < H00 = limsup [[(W(t), S(t))]| 1 = +o0.
t—T™M
min/max
. ng/max = +ooor T . = +00 only known for small initial data

(Bejenaru-Herr 2015, 2017)
e Result does not require that S is close to —p, (W) at initial time

e Explicit convergence rate M~ min(s=s"1) " Can be understood from

< 1

[l e

1
—F—u
H\/—A+M2

withs—1<s <sand M > 1.
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lllustration on a simple ODE
Consider the ODE with unknown (u,v) :R — C xR

v = vu 2 , 5
—— v = |ul|"u
v+ M2y = M?|ul? M—+oo

Notice that (Ju|?)’ = 2ReTu’ = 2ReT(—ivu) = 0, so that |u(t)|?> = |u(0)[?

sin(Mt) ,

= v(t) = cos(Mt)(v(0) — |u(0)[*) + == =>/(0) + [u(0)”

u(t) = exp (-/ /O " u(s) ds> u(0)

= et 4(0) exp <—i5i”§\yt) (v(0) — u(0)2)) exp <—i1_COS(Mt)v’(O))

M2

Conclusion: do not need that v(0) is close to |u(0)|? to obtain
u(t) — e~ tOF 4(0) as M — +oo.
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Going to PDEs: problems
Assume for simplicity that Si, = —po(Win) and Sy =0.

Duhamel formulation of the equation on S:

S(0) = cos(t/ = 1 )5, e [ IR, () g

Integrating by parts in s, one obtains

S() + o(W(1) = —5 s (o (W() — cos(tv/ =B+ M)y (V1))
2 ot
+ %—‘—/\/12 ./0 cos((t — s)V —A + M?)dsps (W(s)) ds,

Controlling S(t) + po(W(t)) in H* requires a bound on 9sp, (V(s)) in H*, which
by the equation on W requires a control on W in H*T1 which itself requires a
bound on S in H**1. . Loss of derivatives!
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Bounds for the reduced equation
e Introduce the reduced unknown S = S + p, (W), satisfying

(0F — A+ M?*)S = (9 — A)pa(V)
e V satisfies a Dirac equation = (02 — A)p, (V) = P(V,VV¥,VS)

(Gain of one derivative)

Lemma

Let s >5/2 and s’ € [s—1,s]. Then, for any R > 0 there exists C(R) > 0
independent of M such that for all M > 1 we have

o [(W, )l ee (o, 7wy < R
= V€ [0, ], (V. S)(B)llw- < [I(¥, 5)(0)]|w-e<"
o [(W,S)l|eg=(ro. 71,15y < R
= [[5(2) — cos(tv/~A + M2)S(0) | = 0,711 < C(RIM*

o[l (W, 5)l iz (fo, T,y < R == ||V — WNL | oo o, 7.1y < C(RYM® =

Julien Sabin Nonlinear dynamics of relativistic quantum systems 8/10



The many-body problem

e Replace W by v non-negative operator on L2(R3 C*)
(one-body reduced density matrix)
e “Many-body” Dirac-Klein-Gordon system
i0yy = [ac- (—=iV)+ (m+ S5)5,7]
(0t2 — A+ M2)5 = —sz)ﬂ,\/,
where pgy(x) 1= Tres(B7(x, x)).

e Analogue of Sobolev spaces for density matrices:

Yl$Hs = — Yy — S2-
[iedl I(L = A)*/24(1 — 8)72|
e Similar statement for initial data (yin, Sin, Sin) € H° x H® x H"1 (s > 5/2):

ylim 17 = Wl oo =7y, 7109y = O

Analogue of blow-up criterion in L for density matrices?
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Blow-up criterion for density matrices

For wavefunctions, use the Kato-Ponce inequality

luv]

He + [lull sl )
to infer [[(BW, W)Wy < ||V||7 ||W| 1= and deduce a blow-up criterion in L°°.

Replacement for density matrices:

we < C(Jlullev] He

Lemma

Let 3/2 < s’ <'s. Then, there exists C > 0 such that for all v € $° with v > 0
and for all f € H* we have

1/2 1/2
1F¥llse + IvFllss < COFIks IV 12 + 1 lleee 17]]5)

1/2 1/2
lovllme < ClAIE2 15
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