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Weird behaviour of non-selfadjoint operators

Seeley 85:

P(α) = e ixDx + αe ix , x ∈ R/2πZ, Dx = 1
i ∂x

σ(P(α)) =

{
C, α ∈ Z
∅, α /∈ Z

For all α ∈ C, P(α) is an elliptic Fredholm operator of index 0 !

E. Brian Davies 2007: Studying non-self-adjoint operators is like
being a vet rather than a doctor: one has to require a much wider
range of knowledge, and accept that one cannot expect to have as
high a rate of success when confronted with particular cases.
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Tight-binding model-Twisted bilayer graphene

We define the discrete Laplacian on the
honeycomb lattice H : `2(Z2;C2)→ `2(Z2;C2) by

H =

(
0 1 + τ∗1 + τ∗2

1 + τ1 + τ2 0

)
,

where (τiψ)n = ψn−ei .The Hamiltonian describing twisted bilayer
graphene is then given by

Hθ =

(
H W ∗

θ

Wθ H

)
: `2(Z2;C4)→ `2(Z2;C4),

where

(Wθψ)n = (w∗ψ)(Rθn) :=
∑
m∈Z2

w(Rθn−m)ψm with w ∈ S (R2;C2×2).
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The Bistritzer-MacDonald Hamiltonian
Massatt-Carr’20 showed that close to zero energy the model is effectively described by:

The Hamiltonian of two non-interacting sheets of graphene is

H =

(
HD 0
0 HD

)
with HD =

(
0 2Dz̄

2Dz 0

)
.

The interacting between sheets with twisting angle θ is through
tunnelling with Γ-periodic potentials

Vtun =

(
V (θz) U(θz)
U(−θz) V (θ)

)
.

The Bistritzer-MacDonald Hamiltonian is

HBM =

(
HD Vtun

V ∗tun HD

)
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The chiral model of TBG

H(α) :=

(
0 D(α)∗

D(α) 0

)
, D(α) :=

(
2Dz̄ αU(z)

αU(−z) 2Dz̄

)
,

z = x1 + ix2, Dz̄ := 1
2i (∂x1 + i∂x2)

U(z) :=
2∑

k=0

ωke
1
2

(zω̄k−z̄ωk ), ω := e2πi/3.

U(z + 4
3πiω

`) = ω̄U(z), U(ωz) = ωU(z), ` = 1, 2.

This limit is very important also for many-body effects cf.
Bernevig–Vishwanath-Zaletel et al.
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Review of symmetries

D(α) =

(
2Dz̄ αU(z)

αU(−z) 2Dz̄

)
, H(α) =

(
0 D∗

D 0

)

Lau = diag(ωa1+a2 , 1, ωa1+a2 , 1)u(z + 4
3 iπ(ωa1 + ω2a2)), a ∈ Z2

3,

C ku(z) = diag(1, 1, ω̄k , ω̄k)u(ωkz), k ∈ Z3

LaH = HLa, CH = HC , C La = LMaC , M =

(
0 −1
1 −1

)
.

Decompose into irreducible representions of this Heisenberg group:

L2(C/Γ) =
⊕

k,p∈Z3

L2
ρk,p

(C/Γ;C2)⊕L2
ρ(1,0)

(C/Γ;C2)⊕L2
ρ(2,0)

(C/Γ;C2)

ρk,p ←→ La ≡ ωk(a1+a2), C ≡ ω̄p
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Symmetry protected states

kerL2(C/Γ) H(0) = C4, Γ = 4iπ(ωa1 + ω2a2)

e1 ∈ L2
ρ1,0
, e2 ∈ L2

ρ0,0
, e3 ∈ L2

ρ1,1
, e4 ∈ L2

ρ0,1
.

H(α) = −W H(α)W ∗, W :=

(
1 0
0 −1

)
, W C = C W , LaW = W La

This implies that the spectrum of H(α)|L2
ρk,`

(C/Γ) is even

dim kerL2(C/Γ)(H(α)) ≥ 4, dim kerL2(C/Γ)(D(α)) ≥ 2
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Spectral characterization of flat bands

Hk(α) :=

(
0 D(α)∗ − k̄

D(α)− k 0

)
: H1

0(C/Γ)→ L2
0(C/Γ),

L2
0(C/Γ) := {u ∈ L2(C/Γ) : Lau = u, a ∈ 1

3 Γ/Γ}.

Bands: {Ej(α, k)}j∈Z\{0} = SpecL2
0
Hk(α), E±1(α, 0) = E±1(α,−i) = 0.

Flat band at 0 ⇐⇒ SpecL2
0(C/Γ)(D(α)) = C

Theorem (BEWZ ’20) There exists a discrete set A ⊂ C such that

SpecL2
0(C/Γ) D(α) =

{
3Γ∗ α /∈ A
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Proof of SpecL2(C/Γ) D(α) =

{
Γ∗ α /∈ A
C α ∈ A,

D(α) = 2Dz̄+αV =⇒ SpecD(α) = SpecD(α)+Γ∗, SpecD(0) = Γ∗

∀ α 0 ∈ SpecD(α) =⇒ if SpecD(α) is discrete then SpecD(α) = Γ∗.

∃ k (D(α)− k)−1 : L2 → H1 ⇐⇒ the spectrum is discrete

(D(α)−k)−1 = (I+αTk)−1(D(0)−k)−1, Tk := (D(0)−k)−1V, k /∈ Γ∗

α 7−→ (I + αTk)−1 meromorphic with poles at 1/α ∈ Spec(Tk)

We obtained a spectral characterization of magic angles θ = 1/α:

flat band ⇐⇒ SpecL2(C/Γ) D(α) = C ⇐⇒ 1/α ∈ Spec(Tk)
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Flat bands

The bands are eigenvalues of Hk(α) on L2
0(C/Γ), k ∈ C/3Γ∗:

Theorem (BHZ ’22; implicit in BEWZ ’20)

∃ k /∈ 3Γ∗ + {0,−i} E1(α, k) = 0 =⇒ ∀ k E1(α, k) = 0.
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A curious structure of the first band

k 7→ Ẽ1(α, k)/(max
k

Ẽ1(α, k)), 0.4 < α < 0.6

Rescaled plots remain almost fixed at k 7−→ |U(−4
√

3πik/9)|
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Exponential squeezing of bands

Theorem. (BEWZ ’20) There exist cj > 0 such that for all k ∈ C,

|Ej(α, k)| ≤ c0e
−c1α, j ≤ c2α, α > 0.

In practice, c1 = 1 and c2 can be taken arbitrarily large

Consequence of general results about quasimodes for semiclassical
(h = 1/α) non-normal operators:
Hörmander’69, Sato-Kawai-Kashiwara’73...Dencker-Sjöstrand-Z’04



Exponential squeezing of bands

Theorem. (BEWZ ’20) There exist cj > 0 such that for all k ∈ C,

|Ej(α, k)| ≤ c0e
−c1α, j ≤ c2α, α > 0.

In practice, c1 = 1 and c2 can be taken arbitrarily large

Consequence of general results about quasimodes for semiclassical
(h = 1/α) non-normal operators:
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Exponential squeezing of bands via solvability of PDE

Lewy ’57: (∂x1 + i∂x2 − 2i(x1 + ix2)∂x3)u = f has no solution near
any point x ∈ R3 for a generic f ∈ C∞(R3)

Hörmander ’60: P =
∑
|α|≤m aα(x)Dα

x , p(x , ξ) :=
∑
|α|=m aα(x)ξα

∃ (x0, ξ0) , ξ0 6= 0, p(x0, ξ0) = 0,

{p, p̄} :=
n∑

j=1

∂ξjp∂xj p̄ − ∂ξj p̄∂xjp|(x0,ξ0) 6= 0

=⇒ Pu = f is not solvable near x0 for a generic f ∈ C∞

Essential step: ∃ uh supported in B(x0, h
1
2
−) such that

∀N ∃CN ‖Puh‖L2 ≤ CNh
N , ‖uh‖L2 = 1

Sato–Kawai–Kashiwara ’73, Dencker–Sjöstrand–Z ’04: if aα’s are
analytic functions then

∃ c > 0 ‖Puh‖L2 ≤ e−c/h, ‖uh‖L2 = 1



Exponential squeezing of bands via solvability of PDE

Lewy ’57: (∂x1 + i∂x2 − 2i(x1 + ix2)∂x3)u = f has no solution near
any point x ∈ R3 for a generic f ∈ C∞(R3)
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SpecL2(C/Γ) D(α) =

{
Γ∗ α /∈ A
C α ∈ A,

Theorem (BHZ ’22) For all p > 1∑
α∈A

α−2p ∈ π√
3
Q and as a consequence |A| =∞.

σp := 1
18 trT 2p

k , Fk(α) := det
2

(I − α2T 2
k )

Theorem (BHZ ’22) The largest real eigenvalue of Tk, 1/α∗, is
simple and α∗ ∈ (0.583, 0.589).
Consequently, the flat band of H(α∗) is simple.
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Spectral characterization allows accurate computation of more α’s:

Numerically all of these are simple That is not the case for
complex α’s or for real α’s and more general potentials:
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Works for general potentials with Z2
3 o Z3 symmetries

Uθ(z) :=
2∑

k=0

ωk(cos2 θe
1
2

(z̄ωk−zω̄k ) + sin2 θe z̄ω
k−zω̄k

)

Theorem (BHZ ’22) For a generic potential flat bands are simple.
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Flat bands from theta functions

Tarnopolsky et al ’19: consider u ∈ L2
ρ1,0

(C/Γ;C2), D(α)u = 0

uk(z) := e
i
2

(z k̄+z̄k)fk(z)u(z), z 7→ e
i
2

(z k̄+z̄k)fk(z) periodic, ∂z̄ fk = 0

(D(α)− k)uk(z) = 0

Problem: fk with these properties will have poles

Solution: Look for α’s at which u has a zero!
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Flat bands from theta functions
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Problem: fk with these properties will have poles

Solution: Look for α’s at which u has a zero!

u(α, zS) = 0, α ∈ A, zS = 4
√

3
9 π, zS ≡ ωzS mod Γ/3

e
i
2

(z k̄+z̄k)fk(z) = e2π(ζ−ζ̄)k/
√

3 θ1(ζ + k|ω)

θ1(ζ|ω)
, z = 4

3πiωζ

Similar argument in Dubrovin–Novikov ’80

Theorem (BHZ ’22) α ∈ A simple ⇒ zS is the only zero of u.
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√

3 θ1(ζ + k|ω)

θ1(ζ|ω)
, z = 4

3πiωζ

θ1(ζ|ω) := −
∑
n∈Z

eπi(n+ 1
2

)2ω+2πi(n+ 1
2

)(ζ+ 1
2

)

θ1(ζ+m|ω) = (−1)mθ1(ζ|ω), θ1(ζ+nω|ω) = (−1)ne−πinω−2πiζnθ1(ζ|ω)

θ1(ζ|ω) = 0 ⇐⇒ ζ ∈ Zω + Z

k 7→ uk = e
i
2

(z k̄+z̄k)fk(z)u(z) is holomorphic Ledwith et al ’21

Felix Klein 1920: When I was a student, abelian functions were, as
an effect of the Jacobian tradition, considered the uncontested
summit of mathematics, and each of us was ambitious to make
progress in this field. And now? The younger generation hardly
knows abelian functions.
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Fine structure of eigenfunctions

For k ∈ Γ∗/3Γ∗ we determine which representation of G3

(Heisenberg group over Z3), uk falls into:

log |w | of the two component of u0 ∈ L2
ρ0,0
⊂ L2

0, both vanishing at
−zS . Except for vanishing at −zS this eigenstate exists for all α’s.

log |w | of components of ui ∈ L2
ρ2,1
⊂ L2

i .

This is the state considered by Cano et al ’21 with additional
symmetry [ψ(z), ϕ(z)] 7→ [−ϕ(−z), ψ(−z)].
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⊂ L2

i .

This is the state considered by Cano et al ’21 with additional
symmetry [ψ(z), ϕ(z)] 7→ [−ϕ(−z), ψ(−z)].
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Fine structure of eigenfunctions

Three dimensional representations come from {±ωk/
√

3}2
k=0:

α = α5 (fifth magic angle): vanishing determines symmetries;
despite appearances uωk/

√
3 do not vanish at other points.



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk

Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2

= ‖uk‖−2〈∂kuk,uk〉dk

Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk

Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk

Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2

= H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk

Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk

Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω

= −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk

Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk

Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk

Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk
Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α1 ' 0.58; concentration at i

≡ ωi mod 3Γ∗



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21
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Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk
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Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk
Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.
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Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk
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Chern class: c1 = i
2π

∫
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Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk
Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.
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∫
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Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk
Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

0.5

1

1.5

2

2.5

α6 ' 8.31; concentration at i ≡ ωi mod 3Γ∗



Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk
Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
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∫
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Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk
Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)
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Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk
Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
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∫
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Chern connection and curvature

C/3Γ∗ 3 k→ uk ∈ L2
0(C/Γ) defines a holomorphic line bundle

Ledwith et al ’21

Chern connection: η := ∂k log ‖uk‖2 = ‖uk‖−2〈∂kuk,uk〉dk
Curvature: Ω = dη = ∂̄k∂k log ‖uk‖2 = H(k)d k̄ ∧ dk, H(k) ≥ 0.

Chern class: c1 = i
2π

∫
C/3Γ∗ Ω = −1

Standard deviation: |C/3Γ∗|−1
∫
C/3Γ∗(H(k)/2π + c1)2dm(k)
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Some mathematical open problems

I Multiplicity issues; a stronger generic simplicity statement

I The fixed “shape” of the first band; what is a heuristic
explanation?

I Significance and explanation of the curvature “peak” at k = i

I Asymptotics of α ∈ A∩R+; in particular ∆α ' 3
2 ? Help from

Hitrik–Sjöstrand ’04... ’?
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