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The problem

Consider the one-dimensional Schrödinger operator

� d
2

dx2
� Fx+

X

n2Z
gn�(x� an) in L

2(R)

with F 2 R, a > 0, and g = {gn}n2Z ⇢ R.

We shall look at two particular cases:

Model I: gn ⌘ � 2 R.

Model II: gn = gn(!) are indep. r.v.’s with E![gn] = 0 and E![g
2
n] = �

2.

Question: How do spectral properties of these operators depend on the
parameters F, a, and �?

Q1: Is the spectrum discrete, p.p., s.c., a.c., or a combination thereof?

Q2: How do solutions of the eigenvalue equation decay/grow at ±1?
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Some background – Model I

LF,�,a = � d
2

dx2
� Fx+ �

X

n2Z
�(x� an), F > 0

The Hamiltonian arises in two di↵erent physical settings

1. a periodic crystal in a constant electric field,

2. a conducting ring with a point-like defect threaded by a magnetic flux

which increases linearly in time.

Its properties was a topic of discussion in solid state physics during the 80’s.

When F,� 6= 0 few mathematically rigorous results exist.

Berezhkovskii–Ovchinnikov ’76 and Borysowicz ’97 argued that �(LF,�,a) = R
and only p.p. or s.c. depending only on the size of �2

/(aF ).

Ao ’90, and independently Buslaev ’99, suggested that the nature of the
spectrum also depends on number-theoretic properties of a3

F .
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Some background – Model II

L
!
F,�,a = � d

2

dx2
� Fx+

X

n2Z
gn(!)�(x� an), F > 0

Studied (numerically) by Soukoulis et al. ’83 and later by Delyon, Simon,
Souillard ’84 and ’85.

Drastically di↵erent behavior than for disordered systems with F = 0 and/or if
the disordered potential is replaced by something more regular.

Specifically Delyon–Simon–Souillard ’85 proved that almost surely
�(L!

F,�,a) = R and

• if �2

aF is small then the spectrum is purely continuous, and

• if �2

aF is large then the spectrum is pure point spectrum with

eigenfunctions decaying as x��(F,�,a) when x ! +1.

If the disordered potential is replaced by white noise such behavior was
predicted by Prigodin ’80 and confirmed in Minami ’92.
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Main results

LF,�,a = � d
2

dx2
� Fx+ �

X

n2Z
�(x� an) with F, a > 0 and � 2 R

Theorem (Frank–L., ’21)

Fix F, a > 0 and � 2 R such that a3
F 2 ⇡

2Q+ and write a
3
F = ⇡2p

q with
p, q 2 N. Then

�ac(LF,�,a) = R , �sc(LF,�,a) = ; , �pp(LF,�,a) ✓
n
⇡
2

3q
m

a2
+
�

a
: m 2 Z

o
.

Remarks:

• Contradicts the predictions of Berezhkovskii–Ovchinnikov and Borysowicz
and partially confirms those of Ao and Buslaev.

• By translation by a the spectrum of LF,�,a is aF periodic so the possible
eigenvalues only depend on m through m mod q.

• The � is a critical case. If L = � d2

dx2 � Fx+ V then

I V 2 L1 \H�1/2(R/(aZ)) =) �ac(L) = R (Galina Perelman ’03)
I V =

P
�0(x� an) =) �ac(L) = ; (Avron–Exner–Last ’94, Exner ’95)
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Main results

L
!
F,� = � d

2

dx2
� Fx+

X

n2Z
gn(!)�(x� an), with F > 0 and gn(!) independent

random variables, at least one having ac distribution and for all n

E![gn] = 0 , E![g
2
n] = �

2
, E![|gn|� ] < C for some � > 4.

Theorem (Frank–L., ’21)

Almost surely L
!
F,�,a defines a self-adjoint operator in L

2(R) with
�(L!

F,�,a) = R. Moreover, the spectrum is almost surely

• purely singular continuous if �2

aF < 2,

• only pure point if �2

aF > 2.

Remarks:

• Improves the result of Delyon–Simon–Souillard ’85.

• For � d2

dx2 �Fx+�W! in L
2(R+) the analogue result was obtained by

Minami ’92 (confirming Prigodin’s prediction).

• Kiselev–Last–Simon ’97 proved an analogue for ��+ gn(!)

(1+|n|)1/2 in l
2(Z).
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Reduction to ODE’s

By Gilbert–Pearson subordinacy theory and in the random case the theory of
rank-one perturbations (spectral averaging) proof is reduced to analysing
solutions of the ODE

� 00(x)� Fx (x) = E (x) in R \ aZ
J (an) = 0 and J 

0(an) = gn (an) for n 2 Z .

where
Ju(x) = lim

"!0+

⇥
u(x+ ")� u(x� ")

⇤
.

Specifically:

1. Does there exist a solution of the equation subordinate at ±1?

2. If they exist, are the subordinate solutions square integrable?

Definition A non-trivial solution  is subordinate at +1 if for any lin. indep.
solution ⌘

lim
M!1

RM

0
| (x)|2 dx

RM

0
|⌘(x)|2 dx

= 0 .

Subordinacy at �1 is defined similarly.
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Reduction to ODE’s

By Gilbert–Pearson subordinacy theory and in the random case the theory of
rank-one perturbations (spectral averaging) proof is reduced to analysing
solutions of the ODE

� 00(x)� Fx (x) = E (x) in R \ aZ
J (an) = 0 and J 

0(an) = gn (an) for n 2 Z .

where
Ju(x) = lim

"!0+

⇥
u(x+ ")� u(x� ")

⇤
.

Specifically:

1. Does there exist a solution of the equation subordinate at ±1?

2. If they exist, are the subordinate solutions square integrable?

Gilbert–Pearson theory:

{E 2 R : 9sol.  2 L
2(R)} = point spectrum

{E 2 R : 9sol.  /2 L
2(R) subord. at both ±1} ⇠ s.c. spectrum

{E 2 R : 9direction in which no sol.  is subord.} ⇠ a.c. spectrum
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Main ODE results

Lemma (Both models)

For all E 2 R there exists a solution  of the eigenvalue equation subordinate
and square integrable at �1.

Proposition (Deterministic model)

For a3
F 2 ⇡

2Q+, a3
F = ⇡2p

q , and E 2 R \ {⇡2

3q
m
a2 + �

a : m 2 Z} there exists
no solution of the eigenvalue equation subordinate at +1.

Proposition (Random model)

Let F, a > 0, E 2 R and gn be independent r.v.’s as before. Then
almost surely there exist linearly independent solutions  ± of the eigenvalue
equation satisfying

Z M+1

M

| ±(x)|2 dx = M
� 1

2± �2

4aF +o(1) as M ! 1 .

In particular,  � is subordinate at +1.
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Relative Prüfer coordinates

There exists a function ⇣, which we call the reference solution, satisfying

�⇣00(x)� Fx⇣(x) = E⇣(x) and {⇣, ⇣̄}(x) 6= 0.

Lemma

There exists real-valued and increasing � 2 C
1(R) such that

⇣(x) = F
1/6 e

i�(x)

p
�0(x)

,

�(x) =
2
p
Fx3

3
+O(x1/2) ,

and the asymptotic expansion can be di↵erentiated.
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Relative Prüfer coordinates

Let  be a non-trivial solution of the eigenvalue equation then there exists
uniquely determined {↵(n),�(n)}n2Z ⇢ C \ {0} such that

 (x) = ↵(n)⇣(x) + �(n)⇣(x) for a(n� 1) < x  an .

Lemma

Set U(n) =
gn

�0(an)
, then

✓
↵(n+ 1)
�(n+ 1)

◆
= An

✓
↵(n)
�(n)

◆
with An = 1+

U(n)
2i

✓
1 e

�2i�(an)

�e
2i�(an) �1

◆
.

Furthermore, Z an

a(n�1)

| (x)|2 dx ⇠ |↵(n)|2 + |�(n)|2p
n

.

Aim: We want to understand behavior of the products AN · · ·A1 as N ! 1.
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Relative Prüfer coordinates

Let  be a non-trivial solution of the eigenvalue equation then there exists
uniquely determined {↵(n),�(n)}n2Z ⇢ C \ {0} such that

 (x) = ↵(n)⇣(x) + �(n)⇣(x) for a(n� 1) < x  an .

Lemma

Set U(n) =
gn

�0(an)
, then

✓
↵(n+ 1)
�(n+ 1)

◆
= An

✓
↵(n)
�(n)

◆
with An = 1+

U(n)
2i

✓
1 e

�2i�(an)

�e
2i�(an) �1

◆
.

Furthermore, Z an

a(n�1)

| (x)|2 dx ⇠ |↵(n)|2 + |�(n)|2p
n

.

Remarks:

1) Same structure as equations appearing for OPUC, An 2 SU(1, 1).
2) The non-linear phase � di↵ers from more classical case.

3) Random model closely related to one studied in Kiselev–Last–Simon ’97.
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Relative Prüfer coordinates

Assume that  is real-valued.

Then �(n) = ↵(n) and we define the Prüfer Radius and angle R, ⌘ : N ! R by

↵(n) =
R(n)
2i

e
i⌘(n) and let ✓(n) = �(an) + ⌘(n) ,

with ⌘(1) 2 (�⇡,⇡] and ⌘(n+ 1)� ⌘(n) 2 (�⇡,⇡].

Lemma

R(n+ 1)2 = R(n)2
h
1 + U(n) sin(2✓(n)) + U(n)2 sin2(✓(n))

i
,

cot(⌘(n+ 1) + �(n)) = cot(✓(n)) + U(n) .

Since U(n) = gn
�0(an) ⇠ n

�1/2 ! 0 (almost surely),

log
⇣R(n+ 1)

R(n)

⌘
=

U(n)

2
sin(2✓(n)) +

U(n)2

8
�

U(n)2

8

h
2 cos(2✓(n))� cos(4✓(n))

i
+O(|U |3)

⌘(n+ 1)� ⌘(n) = �
U(n)

2
+

U(n)

2
cos(2✓(n)) +

U(n)2

8

h
2 sin(2✓(n))� sin(4✓(n))

i
+O(|U |3)
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Repeated use of the equations yield

log
⇣
R(N + 1)

R(1)

⌘
=

1
2

NX

n=1

U(n) sin(2✓(n)) +
1
8

NX

n=1

U(n)2

� 1
8

NX

n=1

U(n)2
h
2 cos(2✓(n))� cos(4✓(n))

i
+O(1)

⌘(N + 1)� ⌘(1) = �1
2

NX

n=1

U(n) +
1
2

NX

n=1

U(n) cos(2✓(n))

+
1
8

NX

n=1

U(n)2
h
2 sin(2✓(n))� sin(4✓(n))

i
+O(1)

We are left with trying to understand exponential sums of the form

X

n1<nn2

⇣
gn

�0(an)

⌘m
e
iµ✓(n) with

8
><

>:

m = 1, 2 ,

µ = 2, 4 ,

gn ⌘ � or gn indep. r.v.’s

• We aim to treat ✓ = � + ⌘ as a perturbation of �.
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The random model gn(!) indep. r.v.’s with E![gn] = 0, E![g
2
n] = �

2.

Claim: for any R(1), ⌘(1) almost surely

log
⇣
R(N + 1)

R(1)

⌘
=

�
2

8aF
log(N)(1 + o(1)).

Proof follows closely Kiselev–Last–Simon ’97 using Martingale bounds and van
der Corput-type estimate.

This corresponds to that almost surely

kA!
N · · ·A!

1 k = N
�2

4aF +o(1) as N ! 1

where as before

A
!
n = 1+

U(n)
2i

✓
1 e

�2i�(an)

�e
2i�(an) �1

◆
.

Or that for fixed boundary condition at zero the corresponding solution of our
eigenvalue equation almost surely satisfies

Z M+1

M

| (x)|2 dx = M
� 1

2+ �2

4aF +o(1) as M ! 1 .
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The deterministic model

Problem: In general we are not able to accurately compute asymptotics of

NX

n=1

�e
2i�(an)+2i⌘(n)

�0(an)
as N ! 1.

However we can understand partial sums of lengths larger than O(1)
=) we can coarse grain our equations.

Recall: �(x) =
2
p
F

3
x
3/2 +O(x1/2) .

• Strong cancellations unless a�0(an) close to ⇡Z.
• Define Xl by a�

0(Xl) = ⇡l,

a�
0(an) =

p
a3Fn

1/2 +O(n�1/2) =) Xl =
⇡
2

a3F
l
2 +O(1),

natural scale is given by n ⇠ ⇡2

a3F
l
2 (or equivalently x ⇠ ⇡2

a2F
l
2).

• By combining Poisson summation formula and the method of stationary
phase we can accurately compute

X

n2Il

�e
2i�(an)

�0(an)
with Il =

�
⇡2

a3F

�
l � 1

2

�2
,

⇡2

a3F

�
l + 1

2

�2⇤
.
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Theorem (Frank–L., ’21)

Let  be a real-valued solution of the eigenvalue equation, then there exist

R,⇤ : N ! R such that for x 2
�

⇡2

a2F
(l � 1

2 )
2
,

⇡2

a2F
(l + 1

2 )
2
⇤

 (x) = =
h
R(l)⇣(x)ei⇤(l)�i�

p
dx/ae/(aF )

i
+O

⇣R(l)|⇣(x)|p
l

⌘
.

Moreover, R,⇤ satisfy

log
⇣R(l + 1)

R(l)

⌘
=
� sin(2⇥(l))p

2aF l
+

�
2

4aF l

h
1 + cos(4⇥(l))

i
+O(l�5/4) ,

⇤(l + 1)� ⇤(l) =
� cos(2⇥(l))p

2aF l
+O(l�3/4) ,

where

⇥(l) = �(l) + ⇤(l) and �(l) = � ⇡
3

3a3F
l
3 +

⇡

a3F
(a2

E � a�)l +
5⇡
8

,

Remarks:

• Does not assume a
3
F 2 ⇡

2Q.
• Started with  (x) = =[R(n)ei⌘(n)

⇣(x)] on (a(n� 1), an), the result is an
approximate analogue on the growing intervals Il (|Il| ⇠ l/(a2

F )).
• Implies that �(LF,�,a) = R for all F, a > 0,� 2 R.
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Theorem (Frank–L., ’21)

Set Il =
�

⇡2

a3F
(l � 1

2 )
2
,

⇡2

a3F
(l + 1

2 )
2
⇤
.

Then
Y

n2Il\Z
An = Ab⇡2

F (l+ 1
2 )2c · · ·Ad⇡2

F (l� 1
2 )2e = U(l + 1)T (l)U(l)�1

where T, U 2 SU(1, 1) are explicit. In particular,

T (l) =

 
1 + �2

4aFl � i�e�2i�(l)
p
2aFl

i�e2i�(l)
p
2aFl

1 + �2

4aFl

!
+O(l�5/4)

with �(l) = � ⇡
3

3a3F
l
3 +

⇡

a3F
(a2

E � a�)l +
5⇡
8

,

Note: Improved growth estimate for the norm of transfer matrices,

kAN · · ·A1k 
NY

n=1

kAnk ⇡
NY

n=1

⇣
1 +

|�|p
aFn

⌘
⇡ e

c
p
N

kAN · · ·A1k 

p
a3FNY

l=1

kT (l)k ⇡

p
a3FNY

l=1

⇣
1 +

|�|p
2aF l

⌘
⇡ e

c̃N1/4

.
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The deterministic model – the rational case

Question: What makes a3
F 2 ⇡

2Q special?

Write a
3
F = ⇡2

3
p
q and compute change of R,⇤ when from l = pk to

l = p(k + 1).

p(k+1)�1X

l=pk

e
2i�(l)+2i⇤(l)

p
l

⇡ e
2i�(pk)+2i⇤(pk)

p
pk

p�1X

j=0

e
2i(�(pk+j)��(pk))

Observation: Since �(l) = � ⇡
3

3a3F
l
3 +

⇡

a3F
(a2

E � a�)l +
5⇡
8

for all k, j 2 N

�(pk) = �⇡qp2k3

| {z }
2⇡Z

+
⇡p

a3F
(a2

E � a�)k +
5⇡
8| {z }

linear in k!

�(pk + j)� �(pk) = �3⇡qkj2 � 3pqk2
j| {z }

2⇡Z

�⇡q
p
j
3 +

⇡

a3F
(a2

E � a�)j

| {z }
independent of k

=) A new e↵ective problem with linear phase!

The Kronig–Penney model in a constant electric field S. Larson 16/17



Thank you for your attention!

The Kronig–Penney model in a constant electric field S. Larson 17/17


	The model

