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⇢Block = ⇢Thermal

t | i S = 0

Ut = exp(�itH)

[non-integrable, local Hamiltonian]

Closed quantum

| i S = 0

[Srednicki, Deutsch, Rigol]

Quantum Thermalization



Universal hydrodynamic features tend to emerge in the  
low-frequency, long-wavelength limit

[Doyon: arXiv 1912.08496]

Characterizing thermalization dynamics 

Emergent hydrodynamic relaxation: 
Diffusion

[Lüschen et al. ’17]

How to numerically extract hydrodynamics  
for a given microscopic model? 



Numerical complexity of many-body dynamics 

Directly simulate the time evolution within the  
full many-body Hilbert space | (t)i = e�itH | (0)i

‣ Complexity 
‣ Exact diagonalization methods  

(dynamical typicality) up to ~30 spins  

∝ exp(L)

| i =
X

j1,j2,...,jL

 j1,j2,...,jL |j1i|j2i . . . |jLi , jn = 1 . . . d



Matrix-Product States

Diagrammatic representation  

 j1,j2,j3,j4,j5 ⇡≈ A[1] A[2] A[3] A[4] A[5]

Aj
α,β = α β

A
α, β = 1…χ

j = 1…d

j

Low entanglement: Matrix-Product States dL ! Ld�2

ψj1,j2,…,jL ≈ ∑
α1,α2,…,αL−1

Aj1
α1

Aj2
α1,α2

…AjL
αL−1

(αj = 1…χ)

[M. Fannes et al. 92] 

‣ Efficient representation of ground states of  
gapped local Hamiltonians  [Hastings, Schuch, Verstraete,…] 



Numerical complexity of many-body dynamics 

Directly simulate the time evolution within the  
full many-body Hilbert space | (t)i = e�itH | (0)i

Matrix-Product State based numerics 

‣ Complexity  because of  
linear entanglement growth

∝ exp(t)

t

L

MPS

ED

‣ Complexity 
‣ Sparse exact diagonalization methods  

(dynamical typicality) up to ~30 spins  

∝ exp(L)

| i =
X

j1,j2,...,jL

 j1,j2,...,jL |j1i|j2i . . . |jLi , jn = 1 . . . d

[P. Calabrese and J. Cardy, Huse, Nahum]



“Information paradox"

Quantum quench from product state

Thermal state 
(locally)

⌧th t

#B
its

How to truncate entanglement without sacrificing crucial 
information on physical (local) observables?

Various approaches to address this problem:
[White et al.: PRB 2018] [Krumnow et al.: arXiv:1904.11999]
[Wurtz et al.: Ann. Phys. 2018]

[Schmitt, Heyl: SciPost 2018]
[Parker et al., PRX 2019] [Leviatan et al., arXiv:1702.08894]

[Klein Kvorning, arXiv:2105.11206]



Time-dependent variational principle (TDVP) 

Variational manifold: MPS states with fixed bond dimension 

 j1,j2,j3,j4,j5 = A[1]j1
↵ A[2]j2

↵� A[3]j3
�� A[4]j4

�� A[5]j5
�

[Haegeman et al. ’11, Dorando et al. ’09 ]

‣ Global conservation laws (energy, particles,…)

Classical Lagrangian

2

to a direct product of unit matrices representing the lo-
cal mixed states. When perturbed by a local operator at
the origin (e.g. imposing a spin up there), such a system
is expected to relax back to e↵ective local equilibrium
over a short timescale set by the local interactions. One
might hope that the local equilibrium state attained in
the process can again be described in terms of an MPO
(or purified state) with short range quantum correlations,
similar to the initial state. Unfortunately the exact time
evolution, leads to linear growth of the entanglement en-
tropy of the density matrix in time. Attempts to curb
the entanglement growth, while still capturing the exact
density matrix, have met with only partial success, al-
lowing to reduce the growth rate somewhat [23]. But the
fundamental problem of an exponentially growing bond
dimension remains.

Here we take a di↵erent approach, which aims to trun-
cate the entanglement growth within a systematic ap-
proximation, rather than attempting to capture the ex-
act dynamics. To this end we employ the time dependent
variational principle (TDVP) [24, 25] to time-evolve ma-
trix product states within a space of fixed bond dimen-
sion �, using an e�cient algorithm proposed by Haege-
mann et. al. [26]. The entanglement entropy in this ap-
proach is capped by log�. Hence, the MPS is not even a
nearly approximate description of the micro-state, which
would naturally evolve to volume law entanglement en-
tropy. In the language of time dependent matrix product
state calculations, the truncation error is bound to be-
come large after a short time.

Why then should the TDVP scheme nonetheless cap-
ture the long time dynamics of thermalizing systems? A
crucial feature for our purpose is that the TDVP respects
conservation laws regardless of the truncation. This is in
contrast to the common time evolving block decimation
(TEBD) scheme which violates them when the trunca-
tion error becomes large. Indeed the TDVP generates,
classical chaotic dynamics in the variational manifold,
driven by a classical Hamiltonian having the same sym-
metries as the original quantum Hamiltonian. Hence the
hydrodynamic behavior of local observables is guaran-
teed to emerge at long times even if we only keep a small
bond dimension. Of course, we are not guaranteed apri-
ori that the hydrodynamics in this scheme is governed by
the correct transport coe�cients. On physical grounds,
however, we expect that these are determined by quan-
tum processes that occur on rather short scales related to
the short thermalization time and possibly the thermal
coherence length. Such processes can in principle be cap-
tured by MPS with finite bond dimension. Increasing the
bond dimension of the variational family of states allows
to systematically improve the calculation and to assess
the accuracy of the result by checking for convergence
with �.

To test the new approach we consider the dynamics
of the Ising chain with both longitudinal and transverse

fields

H = J

N�1X

i=1

S
x
i S

x
i+1 + hx

NX

i=1

S
x
i + hz

NX

i=1

S
z
i . (1)

Here S
↵
i are spin-1/2 operators defined on site i. In our

calculations the chain length is N = 101. This model, in
a regime of parameters far from any integrable point is
commonly used as a testbed for thermalization dynamics.
A simplifying feature is the lack of any symmetries, which
leaves energy alone a conserved quantity.
We use the TDVP to compute the dynamics after a lo-

cal quench generated by local perturbation of an ensem-
ble of initial MPS that represents an infinite temperature
state. We compute two types of quantities. First we look
at relaxation of local observables following the quench to
find the expected long time tails associated with energy
di↵usion. From this we extract the energy di↵usion co-
e�cient. Second, we compute diagnostics of chaos from
which we extract a Lyapunov exponent and a ”butterfly
velocity” associated with the ballistic propagation of the
chaos front. Both types of quantities appear to converge
well with bond dimension �.
Method – We now describe the application of the TDVP
approach to the problem in some more detail. As men-
tioned, the TDVP imposes classical dynamics in a phase
space defined by the parameters of the variational state
| [↵] i through the e↵ective Lagrangian

L[↵, ↵̇] = h [↵] | i@t | [↵] i � h [↵] |H | [↵] i (2)

In our context the variational manifold is the space of
MPS with fixed bond dimension �:

| i =
X

�1···�N

A
1
�1

· · ·AN
�N

|�1 · · ·�N i (3)

The variational time evolution is implemented in each
step �t through application of e↵ective single site evolu-
tion operators on all the matrices A1 to AN in succession,
as prescribed in Ref. [? ]. To generate the e↵ective single
site evolution, the MPO representing the full evolution
operator of a time step is contracted from both sides with
the truncated MPS having the matrix corresponding to
that site removed.
Our goal is to compute the evolution of a perturba-

tion applied to a thermal ensemble. Thus we compute
the time dependent quantities following the quench as
averages over an ensemble of initial states chosen to rep-
resent the suitable canonical ensemble, perturbed by ap-
plication of a S

+ operator on one site in the middle of the
chain. Thus, for example, in the calculation shown in Fig.
we start from a random sample of product states, with
the direction of each spin on each site chosen indepen-
dently from a uniform distribution on the Bloch sphere.
This ensemble represents and infinite temperature state.
The quench consists of application of the single site S

+
i

Efficient evolution using a projected Hamiltonian 

[Leviatan, FP,  Bardarson, Huse, Altman, arXiv:1702.08894]

ℋ

χ



Time-dependent variational principle (TDVP) 

[Leviatan, FP,  Bardarson, Huse, Altman, arXiv:1702.08894]

XXZ Model with longer range interactions

H =
X

i>j

a
i�j(Sx

i S
x
j + S

y
i S

y
j +�S

z
i S

z
j )

‣ Diffusion constant changes when truncation kicks it!



Dissipation-assisted operator evolution method

Artificial dissipation leads to a decay of 
operator entanglement, allowing us to 
capture the dynamics to long times

[Rakovszky,  von Keyserlingk, FP,  PRB 105, 07513 (2022)]

‣ Discard information corresponding to  
n-point functions with .n > ℓ*

[von Keyserlingk, FP, Rakovszky PRB 105, 245101 (2022)]

‣ Errors induced by truncation (“backflow”)  
are exponentially suppressed in ℓ*

|D − DDAOE | ∼ e−𝒪(ℓ*)



Artificial dissipation that not affects hydrodynamics 

Basis of operators: Pauli strings ( )11,X, Y, Z
𝒮 = …ZX11YX1111Y… |q0(t)⟩ = ∑

𝒮

a𝒮 |𝒮⟩

Artificial Dissipator:

𝒟ℓ*,γ |𝒮⟩ = {
|𝒮⟩ if ℓ𝒮 ≤ ℓ*

e−γ(ℓ𝒮−ℓ*) |𝒮⟩ otherwise

‣ Cutoff length #non-trivial Paulis ℓ* =

‣ Dissipation strength: γ
‣ Should be larger than support of conserved densities!

ℓ𝒮 = 1
ℓ𝒮 = 2
ℓ𝒮 = 3

11111111X1111
Y111111X1111
Y11Z11X1111

C(x, t) ≡ ⟨qx(t)q0(0)⟩β=0 = ⟨qx |eiℒt |q0⟩, ℒ |qx⟩ ≡ [H, qx] = − i∂t |qx⟩

[Rakovszky,  von Keyserlingk, FP,  PRB 105, 07513 (2022)]



Artificial dissipation that not affects hydrodynamics Artificial dissipation that not affects hydrodynamics 

Modified evolution: dissipate after every Δt

| q̃x(NΔt)⟩ ≡ (𝒟ℓ*,γe
iℒΔt)

N
|qx⟩

𝒟ℓ*,γ |𝒮⟩ = {
|𝒮⟩ if ℓ𝒮 ≤ ℓ*

e−γ(ℓ𝒮−ℓ*) |𝒮⟩ otherwise

‣Key assumption: backflow from long  
to short operators is weak
(Cf.: Short memory time in Zwanzig-Mori memory matrix)

[Rakovszky,  von Keyserlingk, FP,  PRB 105, 07513 (2022)]

C(x, t) ≡ ⟨qx(t)q0(0)

Reduction of operator entanglement: 
Efficient MPS representation!



Non rigorous theory of “backflow” corrections

Dynamical correlations

Contributions from “backflow” exponentially  
small in : 
  

ℓ*

[von Keyserlingk, FP, Rakovszky PRB 105, 245101 (2022)]



Dissipation stops growth of operator entanglement

Represent dissipative evolution as tensor network

Time Evolving Block  
Decimation (TEBD)

Low-dimensional  
Matrix-Product Operator

0 5 10 15 20
Time t
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S
vN

[h̃
j(

t)
]

∞ = 0.25

∞ = 0.10

∞ = 0.05

∞ = 0.04

∞ = 0.03

Test on quantum Ising chain:

H = ∑
j

hj ≡ ∑
j

gxXj + gzZj + (Zj−1Zj + ZjZj+1)/2

gx = 1.4; gz = 0.9045

[Vidal ‘03]

[Rakovszky,  von Keyserlingk, FP,  PRB 105, 07513 (2022)]



Diffusion constant from mean-square displacement
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Time-dependent diffusion constant: 2D(t) ≡
∂d2(t)

∂t
Diffusive transport: D ≡ lim

t→∞
D(t)

C(x, t) ≡ ⟨qx | q̃0(t)⟩ d2(t) ≡ ∑
x

C(x, t)x2 (MSD)

[Rakovszky,  von Keyserlingk, FP,  PRB 105, 07513 (2022)]



High precision in various models

Ising: H = ∑
j

hj ≡ ∑
j

gxXj + gzZj +
1
2

(Zj−1Zj + ZjZj+1)

qx ≡ hj
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{gx, gz} = {1.4, 0.9045}

[Rakovszky,  von Keyserlingk, FP,  PRB 105, 07513 (2022)]



High precision in various models

XX ladder: H =
L

∑
j=1

∑
a=1,2

(Xj,aXj+1,a + Yj,aYj+1,a) +
L

∑
j=1

(Xj,1Xj,2 + Yj,1Yj,2)

D ≈ 0.95 [Steinigeweg et al., ’14]
qx ≡ (Zj,1 + Zj,2)/2
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(c) (d)[Rakovszky,  von Keyserlingk, FP,  PRB 105, 07513 (2022)]



Benchmark to other methods (work in progress)

XX ladder: H =
L

∑
j=1

∑
a=1,2

(Xj,aXj+1,a + Yj,aYj+1,a) + J⊥

L

∑
j=1

(Xj,1Xj,2 + Yj,1Yj,2)

[Hemery, Lovas, Mc Culloch,  von Keyserlingk, FP, Rakovszky (in progress)]

NESS (Znidaric et al ) DAOE CTWA (Polkovnikov et al.)



Benchmark to other methods (work in progress)

XXZ chain

[Hemery, Lovas, Mc Culloch,  von Keyserlingk, FP, Rakovszky (in progress)]

NESS (Znidaric et al ) DAOE CTWA (Polkovnikov et al.)

(Gopalakrishnan et al)

H =
L

∑
j=1

(XjXj+1 + YjYj+1 + ΔZjXj+1)



Dissipation-assisted operator evolution method

‣ Discard information corresponding to  
n-point functions with .n > ℓ*

[von Keyserlingk, FP, Rakovszky PRB 105, 245101 (2022)]

‣ Errors induced by truncation (“backflow”)  
are exponentially suppressed in ℓ*

|D − Ddaoe | ∼ e−𝒪(ℓ*)

Thank you!

[Rakovszky,  von Keyserlingk, FP,  PRB 105, 07513 (2022)]

Artificial dissipation leads to a decay of 
operator entanglement, allowing us to 
capture the dynamics to long times


