On the Huang-Yang energy correction for the
dilute Fermi gas

Emanuela L. Giacomelli

Department of Mathematics
LMU Miinchen

Mathematical results of many-body quantum systems
07/06,/2022

Joint work with
M. FalconiV, C. Hainzl®, P.T. Nam®, M. Porta(®

(1) Politecnico di Milano, (2) LMU Miinchen, (3) Sissa Trieste



The Setting

® N interacting spin 1/2 fermions in a box Az, := [0, L]?, with
periodic boundary conditions.

Zﬁmﬁ Z V(x B(Np, Ny) == L2(A} )@ L2(A}Y)

i<j=1
» N, = # particles with spin o € {,{} = N = N+ + N,.
> L2 (Ag”) is the antisymmetric sector of L?(Ap)®Ne.

> V >0 is the ‘periodization’ on Az, of a potential Vs on R3,
compactly supported and regular enough:

1 ip(x—y)7 > —ip-x
Ve-u =g X U0, Val) = [ doe V)
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The Setting

The ground state energy (g.s.e.) of the system is

R T
BL(Nn N o= | it o

The ground state energy density is

EL(N 7N)
er(prspy) = Ligi,

po = N, /L3 denotes the density of particles with spin o
= p+ + p, total density).
pP=pr TP y

We are interested in the thermodynamic limit: N,, L — oo
with p, fixed.

We focus on the dilute regime, i.e, p'/3a < 1.
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What is expected?

Huang-Yang conjecture (1957)

3. 22, 5 2
er(pr,py) = g(677)3(pf +p}) +8mapypy

411 —2log2) ( 3 \*? 5 7/3 7/3
A2 (30271 g ofy1,

47

® The first term o< p% is a purely kinetic term (Free Fermi Gas)

® The second and the third order corrections depend on the interaction
via the scattering length a, which describes the effective range of the
interaction:

8ma = /de(a:)f(x), —Af+ %Vf =0, lim f(zx)=1

|z]—o00

Remark: \7(0) > 8ma ~» correlations play a role (see the next slide).

[1] Huang, Yang, Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction, Phys. Rev. (1957).
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The Hartree Fock energy

ZAmqu Z V(z, — ;)

i<j=1

® Hy is spin indep. ~ fully antisymmetrized Slater determinant

1 .
Ppra(ry, - 2N) = ﬁdet( k;)(xﬂ'))lgi,jSN

f7 (@) = L7320 with k € By
o; =t for i € [1, Ny], 0; =] for i € [Ny + 1, N}]

® Energy of ®prg: (Prra, HNPrrc) = Fur(w) (Hartree-Fock)

EHF(UJ) = —trAw+ = Z/ dﬂcdyV(x - )(WU o(x CL’)WJ ol (y y) |w0 ol (:D y)‘ )

o0’

det(fi(z5))1<i,j<N = XreSy onf1(@r1))s N (@r(N)) 4/23



The Hartree Fock energy

ZAI7+ Z V(z, — ;)

i<j=1

® Hy is spin indep. ~ fully antisymmetrized Slater determinant
1 v
Pprc (21, TN) = —mdet( L)) I

fii(x) = L=3/2¢tk% with k € B%

; =1 for i € [1, Ny], 0; =] for i € [Ny +1,N|]

®* Energy of Pppq: <(I)FFG7 HNq)FFG> = Fyr (w) (Hartree-Fock)

Er(Ny,Ny) _ Eur(w) 3 2. 5 s
s S 3 =(67%)3 (0 +p}) + V(0) prpy + Olp
#8ma

~» we are missing correlations between particles 45



Rigorous Results
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Previous Rigorous Results

® It is well-known that [in units s.t. h=1, m =1/2]

3, 9.2, 2 5
er(pt,py) = 5(67T2)3 (pi +p}) + 8map,pr + o(p?) (%)
———
purely kinetic interaction term

(Free Fermi Gas) 2@ = scattering length of V'

® The first proof of (x) was done by Lieb-Seiringer-Solovej in [2].

® Extension to positive temperature Fermi gases by Seiringer in [3].

¢ Interacting lattice fermions (Hubbard model):

Giuliani [4] (upper bound) and Seiringer-Yin [5] (lower bound).

[2] Lieb, Seiringer, Solovej, Ground state energy of the low-density Fermi gas, Phys. Rev. A (2005).
[3] Seiringer, The Thermodynamic Pressure of a Dilute Fermi Gas, CMP (2006).

[4] Giuliani, Ground state energy of the low density Hubbard model: an upper bound, J. Math. Phys. (2007).

[5] Seiringer, Yin, Ground state energy of the low density Hubbard Model. J. Stat. Phys. (2008).

6/23



Main Result

Theorem (M. Falconi, C. Hainzl, E.G., M. Porta, (Ann. Henri Poincaré
(2021))

There exist Lo > 0 such that, for V€ C*(AL), V compactly supported,
V' >0 and for L > Lo, the following holds:

3 2, 5 5
er(pr,py) = 5(67r2)3(/)¢3 +p}) +8maprpy +rL(pr, pL),

where a is the scattering length of the potential V', and for some constant C
only dependent on V :

1 2
—Cp**s <ri(pr,py) < Cp°*o

® W.r.t. [2], we treat more regular interactions (no hard-core)

e Improved error est. w.r.t. [2]: —Cp*t39 < rp(pr,p,) < Cp>Tor

[2] Lieb, Seiringer, Solovej, Ground state energy of the low-density Fermi gas, Phys. Rev. A (2005).
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Towards the Huang-Yang Energy Correction

Optimal rate (E.G., C. Hainzl, P.T. Nam, M. Porta)

Under the same assumptions as before, the following holds:

3 2, 5 5
er(pr,py) = g(67r2)3(/)¢‘°’ +p}) 4+ 8maprp, +rrlpr, py),

where a is the scattering length of the potential V', and for some constant C
only dependent on V :

7
3

ri(ptspy) = Cp

® The optimal rate result allows to improve some of the a priori
estimates & has to be thought as a toy model for the proof of the
Huang-Yang conjecture.
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Previous Results: Comparison with Bosons

® Consider now a dilute Bose gas (3D):

> In the bosonic case, the interaction contribution to the ground
state energy is at the leading order.

»> Bosons minimize the energy occupying the lowest momentum
state, forbidden for fermions (Pauli principle).

® Lee-Huang-Yang (LHY) formula (3D)
e(p) = 4map® (1+ (128/15V7) (pa’)* +o0(V/pa®)),  aspa® =0,

» Leading order: upper bound Dyson [6], lower bound
Lieb-Yngvason [7]

» LHY correction: upper bound Yau-Yin [8] &
Basti-Cenatiempo-Schlein [9], lower bound Fournais-Solovej (10,
11]

[6] Dyson, Ground state energy of a Hard-Sphere Gas, Phys. Rev. (1957).
[7] Lieb, Yngvason, Ground state energy of the Low Density Bose gas, Phys. Rev. Lett. (1998).
[8] Yau, Yin, The Second Order Upper Bound for the Ground Energy of a Bose Gas, J. Stat. Phys. (2009).

[9] Basti, Cenatiempo, Schlein, A new second order upper bound for the ground state energy of dilute Bose
gases, Forum Math. Sigma 9, e74 (2021). .
[10] Fournais, Solovej, The energy of dilute Bose gases, Ann. Math. 2 (2020).
[11] Fournais, Solovej, The energy of dilute Bose gases II: the general case, arXiv:2108.12022 (2021). 9/23



Some ideas for the proofs
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Particle - Hole Transformation

* 1 9 * *
H= Z Z |k|2ak,gak,a + 5 Z V(k)ap+kaq7kaqap
o k k

P4

Wo.o' =000 Y [f5){fx] ~ 1PDM free Fermi gas fe =
keBE,

u,v: L2(AL;C?) — L2(AL;C?) sit. oo = w, wv =0

® R:F — F (unitary) to compare many-body g.s.e. <> FFG
energy

(RQO)WN) = dppg, (RQ)™ =0if n # N = (RQ, HRQ) = Eup(w).

ke k¢ B

Raj R =
: aro k€ BE

(implementing particle-hole transformation)
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Approximate Ground State

Let ¢ € F be a normalized state s.t. (¢, N,¢) = N,, N = Ny + N:

4

(¥, H) = Eur (@) + (R, HoR*¢) + (R*$, XR*¢) + Y (R", QiR"Y)

i=1

Ho = Z Hk|2 - Mu'az,o’&k,a7 Mo = (k’%‘)Q

I

k¢BY /
00" pp+kEBE o kg BY

Q4 = % Z Z Z V(k)a;_kkﬁaa;,aa;/,k,[,/a;/ya/ +h.c.

0,0’ peBE ,p+kgBE p’GB%I ,W*k%B%/

e If ¢ is an approximate ground state (¢ a.g.s. ), i.e.,

W, HY)
RS- DI

o=1l kEBY,

= (Y, HY) ~ Enr(w) + (R*, (Ho + Q1 + Qq) R*1))

< cp?
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The Correlation Structure: Pseudo-bosonic Operators

¢ Pseudo-bosonic operators:

* * *
bp’o. - Z ak,UakJrP’U
k:k+pg By
keBE

¢ Almost canonical commutation relation (CCR)

by b o1l = 0p.g00.0/|B%| + Error, bporbgor] =105 .,05 ]=0
[177 q,o] p,q~o, [;07 q, ] [p,o q,o]
=0(po) Y a.g.s.
= Error=o(p)
[p=po+po']

® We rescale the b operators:

e .
Cpo = Po ' bpo = [Cp,ach,a’] ~ 00,00p,q

Error =—

- X .
So,0! Xk k! €BG k+p.k! +a2BEY Ck b/ Ok g 00 Thtpic T Ohgp k4 g0kt o1 Okio
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The Correlation Structure: Hy, Qq, Qq

® Qq is quadratic w.r.t. ¢po,cC}

1 11 . L.
Qi = 2L3 Z Zp§ p2V(p)ep oty o + huc.

o0’ D

° If  a.gs. = L3(R*, NR*¢)) = o(p) = R*1) state with few
particles

~ <R*¢»H0R*¢> = <R*¢7KBR*¢>a

(R QRY) = grn 3 V)R, CpoGoy o R)

p,0,0’

575 2 VR, Go o R)
p,O’

Kp = % ZZ ‘p|2C;,uCp,fr Gpo = % Z ;c‘j*p’”cq’g
o P U
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Pseudo-bosonic Bogoliubov Transformation

l 2 * A ~ *
(Y, HY) ~  Eur(w) + e > PR P, & glpo BT )

p,o
1 11 e
* oo Z papl V() (R, e, 16, o R7Y) + hec.
p,0,0’
+ 2L9 Z V(p)<R 1/}7cqu,(rcq.o'cq/ﬁ,piyo./quya/R ¢}>
P.a,q’
1 N e .
o 2[6 Z V(p)<R wacq,anA,o-R w)
p,q,0

B~Hy, B~Qy W~Q

¢ Pseudo-bosonic Bogoliubov transformation

1 R 11
T(=T(p)) =exp {ﬁ Z Q(p)pEpfeprtp,| — h.c.}
P

[12] Benedikter, Nam, Porta, Schlein, Seiringer Optimal upper bound for the correlations energy of a Fermi
gas in the mean-fiel regime, CMP (2020).

[13] Benedikter, Nam, Porta, Schlein, Seiringer, Correlation energy of a weakly interacting Fermi gas,
Inventiones mathematicae (2021).

[14 ] Christiansen, Hainzl, Nam, The Random Phase Approzimation for Interacting Fermi Gases in the
Mean-Field Regime, arXiv:2106.11161 (2021) 14 /23



Extracting 8maprp,

(¥, ")) = Eur(w) + (R*, (Ho + Q1 + Qa) R™¥) + o(L%p?)

by . i1 . _
Ty := exp {ﬁ > @p)pZpZip e p — h.c.} = exp{\B}, T=T
p

1 * *
(R™, (Ho + Q1 + Qa)R™9p) = (T"R"%, (Ho +Q1)T*R*w>—/0 dX (T R™, [Ho + Q1, B]Tx R*¢)
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Extracting 8maprp,

(¥, ")) = Eur(w) + (R*, (Ho + Q1 + Qa) R™¥) + o(L%p?)

by . i1 . _
Ty := exp {ﬁ > @p)pZpZip e p — h.c.} = exp{\B}, T=T
p

1 * *
(R™, (Ho + Q1 + Qa)R™9p) = (T"R"%, (Ho +Q1)T*R*w>—/0 dX (T R™, [Ho + Q1, B]Tx R*¢)

1 *
(TR 6 QTR — [T, (00 BITR )
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Extracting 8maprp,

(¥, ")) = Eur(w) + (R*, (Ho + Q1 + Qa) R™¥) + o(L%p?)

A R T
Ty := exp {ﬁ Z G)pi pf prpy — h.c.} = exp{AB}, T=T
P

1
(R*¢, (Ho + Q1 + Qu)R™%) = (TR, (Ho + Ql)T*R*W—/O dXN(TXR™%, [Ho 4+ Q1, B]TX R™¢)
1
(TR 6 QTR — [T, (00 BITR )
= (T"R*¢,(Ho +Q1)T"R*¢) (> 0~ useful to est. the errors)

([Ho + Q1, B] >~ —Q4) —{(T*"R", [Ho + Q1, B]T*"R* ) + (T" R, QaT" R* 1))

[ = appr. g.s. (lower bound) / ¢ = RTQ (upper bound), i.e. 1 = TRQ = N-part. state]
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Extracting 8maprp,

(¥, ")) = Eur(w) + (R*, (Ho + Q1 + Qa) R™¥) + o(L%p?)

A R T
Ty := exp {ﬁ Z G)pi pf prpy — h.c.} = exp{AB}, T=T
P

1
(R*¢, (Ho + Q1 + Qu)R™%) = (TR, (Ho + Ql)T*R*W—/O dXN(TXR™%, [Ho 4+ Q1, B]TX R™¢)
1
TR 6 QTR — [N TR, (00 BIT R )
= (T"R"¢,(Ho +Q1)T"R*¢) (> 0~ useful to est. the errors)

(A0 =¢)+ V(1 - ) =0) —(T"R"y, [Ho + Q1, BIT"R"¢) + (T" R, QT" R" %))

[ = appr. g.s. (lower bound) / ¢ = RTQ (upper bound), i.e. 1 = TRQ = N-part. state]
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Extracting 8maprp,

(¥, ")) = Eur(w) + (R*, (Ho + Q1 + Qa) R™¥) + o(L%p?)

A R T
Ty := exp {ﬁ Z &P)p7 pf prpy — h.c.} = exp{AB}, T=T
P

(R, (Ho + Q1 + Q4)R™ )

(T*R*, (Ho + cz;@l)T*R*w)—/O1 dX (TY R, [Ho 4+ Q1, B]T5 R*¢)
HER QTR ) — [ aA TR, @, BT R

= (T"R™¢,(Ho + Q1)T*R*Y) (> 0~ useful to est. the errors)
(AL =)+ V(1—¢)=0) = (T" R4, [Ho + Q1, BIT"R* %) + (T" R4, QaT" R™¢)
+/01 /ﬁ dANAN' (T R, [Ho + Q1, B]T3 R*%)

(8mapypy + error «~)

1
_ /0 dX\ (Tx R* ¢, [Qa, B]TX R* %)

[ = appr. g.s. (lower bound) / ¢ = RT (upper bound), i.e. ) = TRQ = N-part. state]
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Comments

A R 11 . . R . R R
T = exp { Y > @p)pZpZép i p — h-C-}, Cp = D gk + p)i (k)anip,1an.1
P k

® All the bosonic properties of T" are only almost true:

* we work in the thermodynamic limit ~» we cannot approximate T’
as
T*(p)ap T (¢) = cosh(p)ap,o + sinh(p)a, _, + Err

~~ several error terms not trivial to control.

® We need uniform bounds w.r.t. the volume ~+ cut-off of the momenta
of the quantities involved in T, i.e., §, 4, ¥ (we do not need to use any
localization, our result is self-contained)

® In the constant term we extract using 7' we have to remove all the
cut-off in the momenta =- the interaction V' has to be regular
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The Role of the Cut-off

A R 11 . . R . R R
T = exp { Y > @p)pZpZiprép, —he. }, Cp = D gk + p)i (k)anip,1an.1
P k

® To induce a cut-off over ¢(p) (|p| > p”) we take ¢ as the solution of
the scattering equation in a ball centered at zero and with radius p~”
(0 < v < 1/3), satisfying Neumann boundary conditions:

8ma~, ~ 8ma + O(p”)

® The cut-off over 4, 0 ~ 4", 0":

0 for |k| <k%, o a
N o —B AT 1 for |k| S kF — P,
Ug(k) =41 for 2k% <|k| <p™ ", v,(k)= (a >1/3).
s 0 for |k| > k%,
0 for |k|>2p7",
N
7.0 Peled
g ! <
Nk 4 AKg
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Towards the Huang-Yang Energy Correction

Huang-Yang Conjecture

3213 o8 4
= 5(67T )E (pT +p] ) +8maprpy

ec(pripy) =
_ 4/3
4(11 — 2log2) ( 3 ) a2pT3 —|—0(p7/3).

u 3572 A

® A first step towards the proof of the Huang-Yang correction it is

to prove (optimal rate)

7/3.

— wlor

3 2 5
erpy,p1) = £(67%)3(p} + p}) + 8maprp, + Cp

(upper & lower bound)

[8] Huang, Yang, Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction, Phys. Rev. (1957)
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Upper Bound (Optimal Rate)

Upper bound (E.G., C. Hainzl, P.T. Nam, M. Porta )

There exist Lo > 0 such that, for V.€ C*(AL), V compactly supported,
V >0 and for L > Lo, the following holds:

z
3

3 2,5 5
er(pr,p1) < £(67°)3(pf +p}) + 8mapypy + Cp¥,

® We use again an almost bosonic Bogoliubov transformation of the
form

A . 11 . . . . . .
7= 7o) = o0 { 75 6000 ol turopihof, e = 3 an () on (R)owep s
p k

® The proof is a refinement of the one of the previous Theorem:

@ Better way to choose the cut-off
® Technical improvements in estimating the error terms
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Some Remarks - Upper Bound (Optimal Rate)

® The new cut-off over u(k), 0(k) are

0 for |k| < 2k%,
. or M <2E 1 for [k < k% —p°,
g (k) =q1 for 3kz < [k[<p™", 95(k) = o
s 0 for |k| > k%,
0 for |k|>2p7",
?vtk) /I/;,(K)
L~ .ﬁ
Ke-p [ ue 4

= we can take ¢ as the solution of the zero energy scattering
equation —A(1 — ) + V(1 — ¢) = 0 ~ effectively this is
supported for |k| > p3

= we then can improve several error estimates using that

~ ~ _2 2 2 |~ ~ 2
E : a;;,aa’kﬁ < Cp 3 § Hk“ - kF|a;::,o'a’k7U =p sHy
K[> 2k K

(@ >1/3).
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Lower Bound (Optimal Rate)

Lower bound (E.G., C. Hainzl, P.T. Nam, M. Porta )

There exist Lo > 0 such that, for V€ C*(AL), V compactly supported,
V' >0 and for L > Lo, the following holds:

z
3

ﬁw\cn

3 2 5
er(pr,p1) 2 5(67T)3( +p}) +8maprpy + Cp3,

1. The first step is to proceed as for the upper bound, using the
Bogoliubov transformation quadratic w.r.t. the almost bosonic
operators.

= (¢, HY) > EBup+(T*R*¢, (Ho+Qy ) T* R*¢)+87aprp, L*+Qu+E,

~ 1 11 . N
Q4:(2L322p3p;/(v(p)_v 90) p,o —pa/+hc)
o0’ p

same structure of Q, (quadratic in the &,é+)

&l < CL3p?

ckr<|p|<Ckr
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Lower Bound (Optimal Rate)

Lower bound (E.G., C. Hainzl, P.T. Nam, M. Porta )

There exist Lo > 0 such that, for V€ C*(AL), V compactly supported,
V' >0 and for L > Lo, the following holds:

z
3

3 2, 5 5
erpr,p1) 2 £(67°)3 (o} + p}) + 8mapypy + Cp¥,

2. To show that Q4 is O(p? L3) is not trivial in the lower bound
(not good a priori estimates as for the upper bound)

~» one has to cancel it using a modified scattering equation

~> this induces several technical problems.

3. One has to deal more carefully with the non-bosonizable term of

WAk Ak A9

the form “c*a*a
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Work in Progress
Rigorous Proof of the Huang-Yang Formula

3 2 5 3 4(11 — 2log?2) [ 3 \*/?
enlpn, ) = 267 (o} + p}) + Brapsp, + T2 21082 (E) a2 + ofp™?)

® An adaptation of the proof of the optimal rate should give the right
upper bound

® The lower bound is more involved (already true at the level of the
optimal rate)

T
3

® A long term project is to go beyond p3.
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Thank you for your attention!
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How to calculate higher-order corrections?
Work in progress with C. Hainzl, P.T. Nam, M. Porta

® One has to use a different transformation:

e { L3 Z Z Z <pT r ak+r,Tak7Tak—r',J,Clrgi—h.c.}

TEBT r EB¢
r+k¢BF '_k¢8¢

where @, (k) satisfies

(K 42k (r = )y () + T (8) — 75 V0~ )i () =0,

known as Bethe-Goldstone equation ~> the leading term is now

L6ZZ > VR (k)

reBl  r'eBl
r+k¢BF ukgsi
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How to calculate higher-order corrections?
Work in progress with C. Hainzl, P.T. Nam, M. Porta

® One has to use a different transformation:

e { L3 Z Z Z <pT r ak+r,Tak7Tak—r',J,Clrgi—h.c.}

TEBT r EB¢
r+k¢BF '_k¢8¢

where @, (k) satisfies

(K 42k (r = )y () + T (8) — 75 V0~ )i () =0,

known as Bethe-Goldstone equation ~> the leading term is now

L6ZZ Y V(k)r (k)

reBl  r'eBl
r+k¢8F ukggsi

Thank you for the attention!
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Some Comments on the scattering equation

® Hp, Q1 can be written in terms of ¢, ¢* provided they act on state with
few particles, with momenta |q| > p'/®

® R ~ TQ which is a superposition of states with momenta supported
in the support of ¢(p)

~+ we need to regularise ¢ so that it is supported on a ball

of radius 1 < R <K p_l/3

~ @~ sol. of the scattering equation in the ball B,—~(0), 0 <+ <1/3

1
A=)+ 5 Veo(1=9) = Ay(1=9y), oy =Viy =0 on 9B, (0)

® The ¢ we take is the periodization of ¢, i.e.,

LY e

627!'23
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Scattering equation in a ball

A Remember that we are looking to states with |¢| > p'/?

1 1 N
T =exp{ 5 32 6w0f o tpriop ~ e 6 st 2ple) = V) + (V5 D)) =

(R*¢, HR*Y) 3 2 5 3
% = Z(67)3 (pF +p}) +8mapypy + 0(p%)

® R*i) ~TQ ~ momenta of R* in the support of ¢(p) = we would
like ¢(p) to be supported for |p| > p*/3

4

we take into account o.: sol. of the scat. eq. in the ball B,-,(0)
(0 <y <1/3, oo = Voo =0 0n 9B,-~(0)). In p-space the eq. is:

2|pl*3(p) = Voo (p) + (Vi * $o0) (p) = A (1 — $cc),

5 Y ) [ doVal@)(1opn(e)) = 8ray, o] < Cp7
pe 273
V(=) = 5 £, 2mgs <P 7Y Voo (0)
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Ideas for the rigorous proof

(4, H) = Eur(w) + (R™Y, (Ho + Q1 + Qa)R*¢) + o(L?p?)
A s T B s _ _
Ty :=T = exp {E Z GP)pg pfeprlap,y — hAC.} = exp{\B}, T="T
P

® We can discard the interaction between particles with the same spin

® We need to regularized (cut-off in the momenta) the quantities
involved in T, i.e., ¢, u,w

1
(R4, (Ho + Q1 + Qu)R™9) = (T" R4, (Ho + Ql)T*RW})*/O (TXR"%, [Ho + Q1, BIT\ R %)
(R, QaR" )

= (T"R™¢,(Ho +Q1)T*R*Y) (> 0~ useful to est. the errors)

1
(~ 0 due to the scat. eq.) — / dX <T;R*’¢1, ([Ho 4+ Q1, B] — Q4)T:R*¢)
0
1
(8raprpy + error ) B R ) - [ TR TR )
0
[ = appr. g.s. (lower bound) / ¢ = RTQ (upper bound), i.e. 1 = TRQ = N-part. state]
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The correlation structure: H

® [t is convenient to rescale the b operators:
~1/2j

p,o = [ép,mé:;,a’]

= 50,0’51741

Cpoc = Po
® Hy, Q; do not have the same structure as Q4 but they behave as

almost bosonic operators on a suitable class of states.

Recall that Ho =3, , |[k|* — (k%)?|aj, ,ax,.. Moreover,

Ax -1 2 2\ A% A~
[Ho, éq,6] = po ® Z (Ik+al” = [k )aksq0ro = |q| €0
k:k+q€8%

kEB;‘ |k ﬁ('/y,lr .
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la|>po’

1 .
Kp = L3 Z |p|2cp,acpyo
p,o
HoéZ,JQ = [Ho, éZ,J]Q [KB, Cq U]Q Kbé; Q

~ if R*1 is a state with few particles (if the ¢ operators are true
bosonic operators = ¢; , is a state with one boson)

(R™¢,HoR" ) ~ (R"¢, KpR"¢)
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Extracting O(p?)

11
_eXP{L3Z<P TQprchpi_hC}

L™=3(TQNTQ)=0(p)
% =~
o If g ags. = L3 (RY,NRY) =o(p) ~ Ry = TQ

(R*h, HR* ) ~ (TQ,HTQ) = Egp(w) + 2L prpye(p)

() = 73 3 (pP60) ~ Vo) + 5 (7 + ) (p)o(r)

* If ¢ is the sol. of: 2[p2¢(p) — V(p) + (V % $)(p) =0 (scatt. eq.)

=>€<,0 - QLBZ
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Extracting O(p?)

1 SR R PO
T = exp {ﬁ D @P)pipEéprépy — h~C-}
P
L=3(TQNTQ)=0(p)
~~
SR, NR*Y) =o(p) ~ Ry "~ TQ
(TQHTQ) = Eur(w) + 2L prpye(p)

e Ifyags =L
(R™), HR™) =~

e(p) ng pI*@(p)? — V(p)$(p) +
= 0 (scatt. eq.)

—V(p)+ (V*@)(p) =

0= 5 VG o)

=] da Voo (2)(1—p(2))=8ma, L—oo
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+ 3V D)e0)

® If o is the sol. of: 2|p|?@(p)

L R
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