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Schrödinger equation
Many-body quantum systems are described by the Schrödinger eq.

i∂tψ = Hnψ. (SE)

where ψ = ψ(x1, . . . , xn, t) and Hn = n−particle Schrödinger opr,

Hn :=
n∑
1

−1

2m
∆xi +

∑
i<j

v(xi − xj). (1)

(For n particles of mass m interacting via a 2-body potential v .)

Global existence & unitar.⇐⇒ self-adjointness of Hn

Goal: Describe the space-time behaviour of solutions

Main problem: stability vs break-up or collapse.

Stability = localiz. in space & period. in time (atoms, ..., stars):

I stability w. r. to collapse (inf Hn > −∞)
I stability w. r. to break-up (inf Hn = eigenvalue).

Break-up (Local decay) =⇒ scattering



Scattering

The main mathematical problem of the scattering theory

Asymptotic completeness: As time progresses, a quantum system
settles in a superposition of states in each of which it is broken
into a stable freely moving fragments.

Theorem (Soffer-IMS (µ > 1), Dereziński (µ >
√

3− 1))

Suppose that the pair potentials vij(xi − xj) entering Hn satisfy
vij(y) = O(|y |−µ), with µ >

√
3− 1. Then the asymptotic

completeness holds.

Earlier works: Deift, Enss, Gérard, Graf, Mourre, Simon, Yafaev, ...

Open problem: Prove the asymptotic completeness
vij(y) = O(|y |−µ), with µ ≤

√
3− 1.



Including photons (NR QED)
To describe the real (at least visible) world, have to couple the particles
to photons (quantized electromagnetic field) =⇒

i∂tψt = Hκψt ,

where Hκ is the Hamiltonian on the state space H := Hp ⊗Hf :

Hκ =
n∑

j=1

1

2m

(
− i∇xj − κAξ(xj)

)2
+ U(x) + Hf . (2)

Here, κ = particle charge, U(x) = total potential, Hf = photon Hamiltn.

Aξ(y) = UV-regularized quantized vector potenial.

Infrared problem: photons =⇒ infinite clouds of gapless ‘excitations’.

Main qstn: Math. descript. of the processes of emiss. and absorp. of rad.

Bach-Fröhlich-IMS: stability of the ground state and instability of the
excited states of the particle system (say, an atom)
and emergence of resonances.

Further results: Th. Chen, Griesemer-Lieb-Loss, Hasler-Herbst, Hiroshima,

Hainzl-Seiringer, Hübner-Spohn, Miyao, Møller, A. Panati, Pizzo, Teufel, et al



Scattering

Consider the Rayleigh scattering, i.e. the scattering at the energy
< the ionization energy of atomic or molecular system.

Thm (Faupin-IMS, De Roeck-Griesemer-Kupiainen). Assume that
〈ψt ,Nphψt〉 ≤ C <∞ (satisfied in spec. cases1).

Then the asymptotic completeness holds.

Earlier results: Spohn, Dereziński-Gérard, Fröhlich-Griesemer-Schlein, et al

Open problem: Prove 〈ψt ,Nphψt〉 ≤ C <∞ for general particle
systems (like atoms).

1De Roeck-Kupiainen, spin-boson model, Faupin-IMS, some generalizations



Effective (Hartree and Hartree-Fock) Equations
Effective equations is a powerful tool in study of complex systems.
For the n-particle quantum systems, a key effective equation is the
Hartree-Fock equation

i∂tγ = [hγ , γ], (HF)

where γ is a (trace class) positive operator (density opr) and hγ is
the self-consistent Hamiltonian:

hγ := −∆ + V + g(γ),

with the self-interaction energy g(γ) = v ? ργ + exHF(γ). Here

ργ(x , t) := γ(x ; x , t) (charge density).

For fermions γ ≤ 1, for bosons, γ <∞ and exHF = 0

The HF eq trades the degrees of freedom for nonlinearity. It is widely
used in quantum chemistry and condensed matter physics.



Density functional theory
Replacing the the exchange term, exHF(γ), in the HF eq by a function
xc(ργ) (exchange and correlation energy) of the 1-particle (charge)
density ργ (LDA), one arrives at the (t-dep) Kohn-Sham equation

i∂tγ = [hργ , γ], (KS)

hρ := −∆ + v ∗ ρ+ xc(ρ) (self-consist ham), (SCH)

ργ(x , t) := γ(x ; x , t) (charge density). (CD)

Density functional theory (DFT): Runge-Gross (modelled on
Hochenberg-Kohn and Levy-Lieb theories): under certain conditions,

∃xc(ρ) : i∂tΨ = HnΨ =⇒ γ := Tr(n−1) PΨ satisfies (KS).

Quant Chem./Cond. Matt. Phys. : Design xc(ρ) depending on model.

Pusateri-IMS: Short-range scatt. |xc(ρ)| . ρβ , β > 1/min(d , 2)

Open problem: Long-range scattering

Earlier results: Reduced HF eq (xc = 0): Stability of ground states

(Lewin-Sabin, Th. Chen-Pavlovic)



Quantum liquids

However, the H and HF equations fail to describe quantum matter at
nano- and macro-scales: superconductors, superfluids and BE
condensates. For this, one needs another conceptual step:

Pass to the most general quasi-free (one-body) approximation to the
n−body dynamics, of which the HF approximation is a special case.

Such a step was made by Bardeen-Cooper-Schrieffer for fermions and by
Bogolubov, for bosons, and resulted in2

=⇒ The (time-dependent) Bogolubov-de Gennes (fermions)

and Hartree-Fock-Bogolubov (bosons) equations.

∗ ∗ ∗

Key problem: Existence and stability of the ground/equilibrium state -
static solution minimizing the free energy (locally, for translation
invariance) =⇒ symmetry breaking.

2See Bach-Bret-Chen-Fröhl-IMS, Chenn-IMS, Benedicter-Sok-Solovej



Hartree-Fock-Bogolubov system3

Neglecting the α-component and taking v = λδ, λ ∈ R for the pair
interaction potential, the HFB syst becomes (2−gas model)

i∂tφ = hφ+ λ|φ|2φ+2λργφ, (GP)

i∂tγ = [hγ,φ, γ], (HF)

where h = −∆ + V is a one-part. Schrödinger opr, ργ(x , t) := γ(x ; x , t),

hγ,φ := h + 2λ(ργ + |φ|2). (scSO)

These are coupled Gross-Pitaevskii and Hartree-Fock equations

Here the condensate of atoms (φ) is coupled to a cloud of the thermal
atoms (γ).

Problems: Existence, Ground (=equil) st., Condensation, Collapse
oscillat. for λ < 0 (correction to the Papanicolaou-Sulem2 collapse law?).

Partial results of transl. invar. case: NapiorkowskiReuvSol, BBCF
3See Bach-Breteaux-Chen-Fröhlich-IMS



Bogolubov-de Gennes system
For fermions (electrons), (γ, α) couple to the EM field. Let a be
the magnetic potential and take the gauge φelectr = 0. Then4

i∂tγ = [ha,γ , γ] + . . . ,

i∂tα = [ha,γ , α]+ + . . . ,

−∂2
t a = curl∗ curl a− j(γ, a),

(BdG)

where j(γ, a)(x) := [−i∇a, γ]+(x , x), the current density,

ha,γ = −∆a + gxc(γ), (3)

with ∆a := (∇+ ia)2, and [A,B]+ = AB + BĀ, Ā := CAC.

These are the celebrated Bogolubov-de Gennes equations. They
give the ‘mean-field’ (BCS) theory of superconductivity.

Key problem: Existence of the ground/equillibrium state (static
soln minimizing the free energy locally) and symmetry breaking?

4Chenn-IMS, Benedicter-Sok-Solovej



Gauge (magnetic) translational invariance

For the ground state (GS), look for the most symmetric state(s).

The BdG eqs are invariant under the (t-indep.) gauge transforms

T gauge
χ : (γ, α, a)→ (e iχγe−iχ, e iχαe iχ, a +∇χ) (4)

The simplest class of states: translationally invariant states for
a = 0 and the gauge-translationally invariant ones for a 6= 0.

Gauge (magnetically) transl. invariant states are invariant under

Tbs : (γ, α, a)→ (T gauge
χs

)−1T transl
s (γ, α, a),

for any s ∈ Rd . For d = 2, 3, χs(x) := b
2 · (s ∧ x) (special gauge).

Here T transl
s , s ∈ Rd , is the group of translations and b > 0 is a

parameter identified with a constant external magnetic field.



Ground State

Usually, the ground state (GS) has the max. symmetry ⇒

Depending on the magnetic field b, one expects:

GS is translationally invariant for b = 0,

GS is magnetically translationally (MT) invariant for b 6= 0.

Candidates for the ground state:

1. Normal states: (γ, α, a), with α = 0 (⇒ γ is Fermi-Dirac state).

2. Superconducting states: (γ, α, a), with α 6= 0 and a = 0.

Theorem (Hainzl-Hamza-Seiringer-Solovej). For b = 0, ∃
superconducting, normal, translationally invariant solution.

Theorem (Chenn-IMS). For b 6= 0, MT-invariance =⇒ normality (α = 0).

Corollary. For b 6= 0, superconductivity =⇒ symmetry breaking.



Vortex lattices

For the GS, look for states with minimal symmetry breaking =⇒

I Vortex lattice: ∃ lattice L in R2 and map χs : L × R2 → R:

T transl
s (γ, α, a) = T gauge

χs
(γ, α, a), ∀s ∈ L, and α 6= 0.

T transl
s is a group representation =⇒ χs satisfies the co-cycle relat:

χs+t(x)− χs(x + t)− χt(x) =
b

2
· (s ∧ t) ∈ 2πZ, ∀s, t ∈ L. (5)

Co-cycle relation (5) =⇒ the magnetic flux is quantized:

1

2π

∫
ΩL

curl a ≡ c1(χ) ∈ Z.

Here ΩL is a fundamental cell of L and c1(χ) is the 1st Chern #.



Existence of vortex lattices
Theorem. For the BdG syst without the self-interact. term:

(i) ∀n,T > 0 and L ∃ a static solution uTnL := (γ, α, a) satisfying

uTnL is L-equivariant: T transl
s uTnL = T gauge

χs
uTnL,∀s ∈ L, (6)

1st Chern number is n:

∫
ΩL

curl a = 2πn, (7)

unTL minimizes the free energy FT = E − TS on ΩL for c1 = n;

(ii) For the pair potential v ≤ 0, v 6≡ 0 and T and b sufficiently small,
uTnL is a vortex lattice (i.e. α 6= 0);

(iii) For n > 1, there is a finer lattice, L′ ⊃ L for which uTnL = uT1L′ ,
i.e. uTnL is L′-equivariant with c1 = 1.

∗ ∗ ∗
Remark: (ii) =⇒ Symmetry breaking in the ground state

Open problem: Is the vortex lattice a ground state?

Global minimizer (locally) vs emerging local minimizer.



Experiment
Experiment: the ground state is the hexagonal vortex lattice.

Theoretical description: the BdG system with the coarse-scale
approximation given by the Ginzburg-Landau system

∆aψ + κ2(1− |ψ|2)ψ = 0,

− curl2 a + Im(ψ̄∇aψ) = 0.

(|ψ|2 is the density of superconducting electrons)



Ginzburg-Landau equations: vortex lattices
Thm: For type II superconductors (κ > 1/

√
2), ∃b∗ s.t. for b > b∗,

the homogeneous soln, uhomb , with the constant magnetic field b, is
a local minimizer of EGL(u) and for b < b∗, it is not.

∀b < b∗ and lattice L, ∃ a soln, uLb , with the lattice L symmetry, with

1

2π

∫
ΩL

curl a = b, and EGL(uL) < EGL(uhom).

Thm(Tzanet-IMS): Soln uLb is formed by magn. vortices

arranged in a lattice L.

Thm (Tzanet-IMS): Vort. lattices are local minima of the GL energy
w.r.to (i.e. stable under) period & local perts.

Problem: Stability under more general lattice deformations?
Discussion: Global minimizer (locally) vs bifurcation of local minimizer?



Summary

We reviewed some results on quantum many-particle problem:

I n-particle scattering

I interaction of radiation and matter

I effective equations for quantum gases and quantum liquids
(HF, KS-DFT, HFB, BdG, GL equations)

I highlighted a number of basic open problems in these central
areas of quantum mechanics. They concentrated on

I Long-time behaviour

I Existence and stability of ground states

I Symmetry breaking



Thank-you for your attention


