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The problem

Consider the one-dimensional Schrodinger operator

d? )
o —Fm—l—égpﬁ(m —an) in L°(R)

with F € R, a > 0, and g = {gn}nez C R.

We shall look at two particular cases:

Model I: g, =X € R.

Model II: g, = gn(w) are indep. r.v.'s with E,[gs] = 0 and Ey,[g2] = A2

Question: How do spectral properties of these operators depend on the
parameters F),a, and \?

Q1: Is the spectrum discrete, p.p., s.c., a.c., or a combination thereof?

Q2: How do solutions of the eigenvalue equation decay/grow at £o0?
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Some background — Model |

d2
LF,/\,a:*@*FLE+AZ§(:L'7an), F>0

nez

The Hamiltonian arises in two different physical settings
1. a periodic crystal in a constant electric field,

2. a conducting ring with a point-like defect threaded by a magnetic flux
which increases linearly in time.

Its properties was a topic of discussion in solid state physics during the 80's.

When F, A # 0 few mathematically rigorous results exist.

'76 and '97 argued that o(Lrx,.) =R
and only p.p. or s.c. depending only on the size of A?/(aF).

'90, and independently '99, suggested that the nature of the
spectrum also depends on number-theoretic properties of a>F.
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Some background — Model Il

w d?
F,/\,a:7ﬁ7F$+Z!]n(UJ)5((E*aTL), F>0

nez

Studied (numerically) by '83 and later by
'84 and '85.

Drastically different behavior than for disordered systems with F' = 0 and/or if
the disordered potential is replaced by something more regular.

Specifically '85 proved that almost surely
(L% ,,) =R and
2
° if i—F is small then the spectrum is purely continuous, and
2
° if 2_F is large then the spectrum is pure point spectrum with

—B(F,\,a)

eigenfunctions decaying as x when x — +00.

If the disordered potential is replaced by white noise such behavior was
predicted by '80 and confirmed in '92.
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Main results

d? .
Lpya = —Fa:—i-/\Z(S(x—an) with Fia > 0and A € R

nez

Theorem (Frank-L., '21)

Fix F,a > 0 and \ € R such that o’ F € n°Qy and write o>F = "2 with

p,q € N. Then
A
Uac(LF,A,a) = R7 USC(LF,/\,a) = 07 Upp(LF,)\,a C {?q? +—-—:mc Z} .
Remarks:
® Contradicts the predictions of and

and partially confirms those of and

® By translation by a the spectrum of Ly, is aF' periodic so the possible
eigenvalues only depend on m through m mod q.

® The § is a critical case. If L = —% — Fz +V then

» VeL'NnH Y2(R/(aZ)) = 0ac(L) =R (Galina '03)
> V=6 (z—an) = cac(L)=0  ( '94, '95)
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Main results -

Ga=— — Fz + ZJn §(x —an), with F' > 0 and g,(w) independent
neL
random varlables, at least one having ac distribution and for all n

E,[gn] =0, Ew[gi]:AQ, Ew[\gn|ﬂ]<0 for some 3 > 4.

Theorem (Frank-L., '21)

Almost surely LY.  , defines a self-adjoint operator in L2(R) with
o(L% x,o) = R. Moreover, the spectrum is almost surely

5 5 0 /\2
® purely singular continuous if 25 < 2,

® only pure point lf = > 2.

Remarks:
° Improves the result of '85.
® For —-L, - Fx+AW, in L?*(R;) the analogue result was obtained by
92 (confirming prediction).
o '97 proved an analogue for —A + —22(2)__in 2(7).

(1+|n[)1/2
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Reduction to ODE's

By Gilbert—Pearson subordinacy theory and in the random case the theory of
rank-one perturbations (spectral averaging) proof is reduced to analysing
solutions of the ODE

—"(x) — Fop(x) = E(z) inR\aZ
Jy(an) =0 and Jy'(an) = gnp(an) forn € Z.
where

Ju(z) = lim [u(z +¢) — u(z — )]

e—0t
Specifically:

1. Does there exist a solution of the equation subordinate at +o00?

2. If they exist, are the subordinate solutions square integrable?

Definition A non-trivial solution 1) is subordinate at +oo if for any lin. indep.
luti M
solution 7 ) j‘o ‘w(x)|2 dr B

- =
Moo [0 In(x) | dz
Subordinacy at —oco is defined similarly.
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Reduction to ODE's

By Gilbert—Pearson subordinacy theory and in the random case the theory of
rank-one perturbations (spectral averaging) proof is reduced to analysing
solutions of the ODE
—"(x) — Fop(x) = E(z) inR\aZ
Jy(an) =0 and Jy'(an) = gnp(an) forn € Z.
where
Ju(z) = lim [u(z +¢) — u(z — )]
e—0Tt
Specifically:
1. Does there exist a solution of the equation subordinate at +o0?
2. If they exist, are the subordinate solutions square integrable?

Gilbert—Pearson theory:
{E €R:3sol. ¢ € L*(R)} = point spectrum
{E €R:3sol. ¢ ¢ L*(R) subord. at both + 0o} ~ s.c. spectrum

{E € R : Idirection in which no sol. 9 is subord.} ~ a.c. spectrum
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Main ODE results

Lemma (Both models)

For all E € R there exists a solution 1) of the eigenvalue equation subordinate
and square integrable at —oo.

Proposition (Deterministic model)

For a®F € 72Qy, a®F = "sz, and E € R\ {%a% + 2 :m € Z} there exists

no solution of the eigenvalue equation subordinate at +oc.

Proposition (Random model)

Let F,a >0, E € R and g, be independent r.v.’s as before. Then
almost surely there exist linearly independent solutions 1)+ of the eigenvalue
equation satisfying
gt 14 22
/ s ()|? de = M™2Eaar o) a5 M — 0.
M

In particular, y_ is subordinate at +oc.
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Relative Prufer coordinates

There exists a function ¢, which we call the reference solution, satisfying

—¢"(z) = Fx((z) = B¢(z) and {¢,C}H(x) #0.

Lemma

There exists real-valued and increasing v € C°°(R) such that

iv(z)
— pl/s € ,
(@) —
1) = 25E 1 o),

and the asymptotic expansion can be differentiated.
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Relative Prufer coordinates

Let ¢ be a non-trivial solution of the eigenvalue equation then there exists
uniquely determined {c(n), B(n)}nez C C\ {0} such that

Y(z) = a(n)(z) + B(n){(z) fora(n—1) <z <an.

Lemma
o dn
Set U(n) = Y (an)’ then
an+1)\ a(n) . _ U(n) 1 e~ 2v(an)
(6(” + 1)) = A, (ﬂ(n) with A, =1 + 2% _eQi”r(an) -1 .
Furthermore, ) )
P ol - O
/ G -

Aim: We want to understand behavior of the products Ay --- A1 as N — oo.
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Relative Prufer coordinates

Let ¢ be a non-trivial solution of the eigenvalue equation then there exists
uniquely determined {c(n), B(n)}nez C C\ {0} such that

Y(z) = a(n)(z) + B(n){(z) fora(n—1) <z <an.

Lemma
dn
Set U(n) = , th
et U(n) > (an) en
a(n+1) a(n) . U(n) 1 e~ 2v(an)
= A th A, =1 - ; .
(mn + 1)) (ﬂ(n) " T \menem
Furthermore, ) )
o la(n)|” + [B(n)|
|4 (z)|? do ~ = I
/a(n—l) Vvn
Remarks:
1) Same structure as equations appearing for OPUC, A, € SU(1,1).
2) The non-linear phase ~ differs from more classical case.
3) Random model closely related to one studied in '97.
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Relative Prufer coordinates

Assume that ) is real-valued.

Then B(n) = a(n) and we define the Priifer Radius and angle R,n: N — R by

R(n) RUICO)

o(n) = =5

with n(1) € (=7, 7] and p(n+1) — n(n) € (-7, «.

and let  0(n) =~(an) +n(n),

Lemma

R(n+1)® = R(n)? [1 + U(n)sin(20(n)) + U(n)? sin® (a(n))} :
cot(n(n + 1) +7(n)) = cot(6(n)) + U(n).

Since U(n) = S~ n~1/2 = 0 (almost surely),

log(R(I;L(:)l)) _ U(Qn)

Umn)? Un)?
s 8

sin(20(n)) +

[2 cos(26(n)) — cos(49(n))] T O(UP)

n n n 2 P
n(n+1) —n(n) = 7% + ? cos(20(n)) + U(B) [25in(20(n)) — sin(a0(n))] + O(IU?)

The Kronig-Penney model in a constant electric field S. Larson 11/17



Repeated use of the equations yield

(L) ZU )sin(20(n)) + éz:U(n)2

log

OO\|>—\
Mz

U(n)? [2 cos(26(n)) — Cos(49(n))] +0(1)

n=1

NN +1) =n(1) = -

N —
Mz
l\D\»—A

=

Z ) cos(20(n))

+

ol
M=

U(n)? [2 sin(20(n)) — sin(49(n))} +0o(1)

n=1

We are left with trying to understand exponential sums of the form

m=1,2,
Z ( gn ) e with { =124,

gn = A Of gp indep. r.v.'s

® We aim to treat § = v + n as a perturbation of ~.
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The random model g, (w) indep. r.v.’s with E,[gn] = 0, Ey[g2] = A%
Claim: for any R(1),7n(1) almost surely

log(R(g(S 1)) - 82217

log(N)(1 + o(1)).

Proof follows closely '97 using Martingale bounds and van
der Corput-type estimate.

This corresponds to that almost surely
w w ﬁ#»o(l)
[|[AN - - AT|| = N4aF as N — oo

where as before

w
An =T+ 2i \ —e?(em) -1

U(n) ( 1 efwm)l

Or that for fixed boundary condition at zero the corresponding solution of our
eigenvalue equation almost surely satisfies

M+1 5 1 32 )
/ W(z)>de = M~ 2T ar o) a5 M 5 oo
M
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The deterministic model

Problem: In general we are not able to accurately compute asymptotics of

N \e2ir(an)+2in(n)
as N — oo.
7' (an)

n=1

However we can understand partial sums of lengths larger than O(1)
= we can coarse grain our equations.

2V F
Recall: y(z) = ?\Fxs/z +0(z'?).
e Strong cancellations unless a7y’ (an) close to 7Z.
® Define X; by av'(X;) = 7l,

2
ay'(an) = VadFn'? + 0(n'?) = X, = ;;—Fl? + O(1),

. . 2 . 2
natural scale is given by n ~ ;—Flz (or equivalently = ~ E’Q—FZQ).
® By combining Poisson summation formula and the method of stationary
phase we can accurately compute

Ae?i"/(an)

7' (an)

with I = (57 (1= )", (14 )]
nel
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Theorem (Frank-L., '21)
Let ¢ be a real-valued solution of the eigenvalue equation, then there exist

R,A: N = R such that for z € (S=(l— 1), Z=(l+1)?]

2

b(a) = S[RA) (@) O~ MRTATER] | o(%i(“”)‘) .

Moreover, R, A satisfy

log(R(l + 1)) _ Asin(26()) it [1 + COS(4@(Z))] +0317%%,

+
R(1) V2aFl 4aFl
Acos(20(1)) —3/4
Al+1)—A(l) = ———=>+0( ,
(+1 -0 = 222D 4 o)
where 3 5
— —_ " B T (22E— on
o) =T()+ A1) and I'(l) = 3a3Fl + a3F(a E —a))l+ 3

Remarks:
® Does not assume a>F € 72Q.
® Started with ¢(z) = S[R(n)e™ ™ ¢(x)] on (a(n — 1),an), the result is an
approximate analogue on the growing intervals I; (|I;| ~ 1/(a*F)).
® Implies that o(LFpx,a) =R for all F,a > 0,A € R.
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Theorem (Frank-L., '21)

Set I, = (a;;(z—%), (A4 AP
Then

f— ... f— -1
11 A=A 10 A2 1 = U+ DTOUQ)

nel;NZ

where T, U € SU(1, 1) are explicit. In particular,

14 22 _ixe=2TO)
T(l) _ (iAezi‘a(il \/2aFl > + O(l75/4)
2aF1 1+ 4CLFl
with ™ 3 57T
- T (@PE-aNi+ X
() = —3 55l + (@B —aN)l + =

Note: Improved growth estimate for the norm of transfer matrices,

A c
Ay - A1II<H\|A I~ H( \/%)mm

n=1
Va3FN Va3FN 1/4
A - A < IT(0) (1+ )zeCN :
11;[1 1 \/2aFl
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The deterministic model — the rational case

Question: What makes a®>F € 72Q special?

Write WBF = % and compute change of R, A when from [ = pk to

w+n?

p(k+1)—1 p2i0 (1) +2iA(1) 21T (pk)+2iA (pk)

k)
~ Z 2i(T(pk+3j)—T(pk))
I=pk Vi v Pk §=0

3
. . T o1 .
Observation: Since I'(l) = 73a3Fl + —F(a E—a))l+ 5 forall k,j € N
T(pk) = —mqp’k’ + —(a E—a\k+ 2T
—— 3F 8
en’z . .
linear in k!
. o2 5 42. Tq.3
NW+ﬁ—NM%~wMJ7wMJ—;J+3F@E—M)
—_——

en
independent of k

=—> A new effective problem with linear phase!
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Thank you for your attention!
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