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Modulated energies and their variations



Coulomb/Riesz modulated energies I

Let us consider the class of Riesz interactions

(1.1) g(x) =


− log |x |, s = 0, d = 1, 2
|x |−s, d − 2 < s < d , d = 1, 2
|x |−s, d − 2 ≤ s < d , d ≥ 3.

▶ Coulomb case s = d − 2 well-motivated from physics (e.g., Coulomb
gas/one-component plasma)

▶ 1D log case has connections to random matrix theory Forrester 2010

▶ General Riesz case of interest for approximation theory
Borodachov-Hardin-Saff 2019

When studying systems of N distinct points xN = (x1, . . . , xN) ∈ (Rd)N with
interaction energy

(1.2)
∑

1≤i ̸=j≤N

g(xi − xj),

an effective way to compare empirical measures µN := 1
N

∑N
i=1 δxi to a

mean-field density µ is by considering a modulated energy.1



Coulomb/Riesz modulated energies II

(1.3) FN(xN , µ) :=
1
2

∫
(Rd )2\△

g(x − y)d(µN − µ)⊗2(x , y),

▶ Squared Coulomb/Riesz distance

▶ Excision of diagonal △ to remove infinite self-interaction of each particle

▶ First appeared in stat mech of Coulomb/Riesz gasses Sandier-Serfaty
2015, Rougerie-Serfaty 2016, Petrarche-Serfaty 2017; extended to derivation
of mean-field dynamics Duerinckx 2016, Serfaty 2020, Q.H.
Nguyen-R.-Serfaty 2021

▶ Think of as a “renormalization” of infinite quantity ∥µN − µ∥2

Ḣ
s−d

2

1The term modulated energy goes back to at least work of Brenier 2000 on
quasineutral limit of Vlasov-Poisson.



Electric reformulation I

▶ If d = 1, s = 0 or d ̸= 1, s > d − 2, the potential g is not the fundamental
solution for a local operator and also fails to be superharmonic.

▶ Both of these properties are restored by viewing g(x) = G(x , 0) as the
restriction of a potential in extended space Rd+k , i.e.
G : Rd+k \ {0} → (0,∞), G(X ) = g(|X |).

▶ As popularized by Caffarelli-Silvestre 2007, the function G is a fundamental
solution for a degenerate elliptic operator2,

(1.4) − 1
cd,s

div(|z|γ∇G) = δ0

in the sense of distributions in Rd+k , where γ := s + 2 − d − k .
▶ To regularize the interaction, one can introduce the truncated potential

Gη := min(G,G(η))

▶ One then defines the smeared point mass/charge

(1.5) δ
(η)
0 := − 1

cd,s
div(|z|γ∇Gη) =

η−s−1

cd,s
|z|γdσ∂B(0,η),

where σ∂B(0,η) is the uniform probability measure on the sphere in Rd+k .



Electric reformulation II

Introducing the “nearest-neighbor” length scale

(1.6) ri :=
1
4
min

(
min
j ̸=i

|xi − xj |, (N∥µ∥L∞)−1/d
)
, 1 ≤ i ≤ N,

one can re-express the modulated energy, for any choice of ηi ≤ ri ,

(1.7) FN(xN , µ) =
1

2cd,s

(∫
Rd+k

|z|γ |∇HN,η⃗|2dX − cd,s

N2

N∑
i=1

g(ηi)

)

− 1
N

N∑
i=1

∫
Rd
(g − gηi )(x − xi)dµ(x),

where HN,η⃗ := 1
N

∑N
i=1 Gηi (X − Xi)− G ∗ µ̃, with µ̃ := µδRd×{0}.

In general, FN is not nonnegative; but there exists a constant C > 0 such that

(1.8) FN(xN , µ) +
log(N∥µ∥L∞)

2Nd
1s=0 + C∥µ∥

s
d
L∞N

s
d −1 ≥ 0.

2An example of an elliptic operator with an A2 weight, for which there is a good
theory Fabes-Kenig-Serapioni 1982.



Localized modulated energies

For applications, also of interest to consider the “localized” modulated energy

(1.9) FΩ
N (xN , µ) :=

1
2cd,s

∫
Ω×Rk

|z|γ |∇HN ,̃r|2dX − cd,s

N2

∑
i:xi∈Ω

g(̃ri)


− 1

N

∑
i:xi∈Ω

∫
Rd
(g − gr̃i )(x − xi)dµ(x),

where Ω ⊂ Rd and r̃i is a modified nearest-neighbor distance to
accommodate boundaries.



Variation by transport I

In the context of mean-field limits, essential to control quantities that
correspond to differentiating FN along a transport field:

(1.10)
dn

dtn|t=0
FN

(
(I+ tv)⊕N(xN), (I+ tv)#µ

)
=

∫
(Rd )2\△

∇⊗ng(x − y) : (v(x)− v(y))⊗nd(µN − µ)⊗2(x , y),

where I is the identity on Rd and (I+ tv)⊕N(xN) := xN + t(v(x1), . . . , v(xN)).

The important control takes the form of a functional inequality: for n = 1,

(1.11) |RHS of (1.10)| ≤ C
(
FN(xN , µ) + N−α)

for some α > 0.
▶ First proved by Leblé-Serfaty 2018 in 2D Coulomb case s = 0; generalized

to all Coulomb/super-Coulombic Riesz cases max{d − 2, 0} ≤ s < d
and 1D log case in Serfaty 2020

▶ Reinterpretation as a commutator estimate R. 2020; this POV used to
generalize (1.11) to all cases 0 ≤ s ≤ d Q.H. Nguyen-R.-Serfaty 2021 and
broader class of g’s that are of Riesz-type (e.g. Lennard-Jones)



Variation by transport II

▶ FIs crucially used to prove CLTs for fluctuations of Coulomb gasses
Leblé-Serfaty 2018, Serfaty 2021; even more important for MF limits of
classical particle systems Serfaty 2020, Duerinckx-Serfaty 2020,
Bresch-Jabin-Wang 2019-2020, R. 2020-2022, Golse-Paul 2020, Q.H.
Nguyen-R.-Serfaty 2021

▶ Second-order FIs (i.e. (1.11) for n = 2) were shown in Serfaty 2020, R.
2020 in the Coulomb case and Q.H. Nguyen-R.-Serfaty 2021 for the full
Riesz case 0 ≤ s < d ; important for fluctuations and MF limits with
multiplicative noise

▶ Exponent α in error term is explicit in d , s.
▶ By only counting nearest-neighbor (with typical distance of N−1/d )

interactions, one expects FN is at least of order N
s
d −1

▶ FN ≥ −CN
s
d −1, where C = C(∥µ∥L∞) > 0

▶ Known that min |FN | is of order N
s
d −1 Sandier-Serfaty 2015,

Rougerie-Serfaty 2015, Petrarche-Serfaty 2017, Cotar-Petrarche 2019,
Hardin et al. 2017

▶ Optimal error only been shown for Coulomb case Leblé-Serfaty 2018,
Serfaty 2020, R. 2021



New functional inequalities



New functional inequalities I

Theorem 1 (R.-Serfaty 2022)
There exists a constant C = C(d , s) > 0 such that TFH. Let
µ ∈ L1(Rd) ∩ L∞(Rd) with unit mean and v : Rd → Rd be Lipschitz. Let Ω be
a closed set containing a 2λ-neighborhood of supp v, and assume that λ < 1.
Then for any pairwise distinct xN ∈ (Rd)N , it holds that

(2.1)

∣∣∣∣∣
∫
(Rd )2\△

(v(x)− v(y)) · ∇g(x − y)d
(
µN − µ

)⊗2
(x , y)

∣∣∣∣∣
≤ C∥∇v∥L∞

(
FΩ

N (xN , µ)−#IΩ
( log λ

2N2

)
1s=0 + C

#IΩ
N

∥µ∥L∞(Ω̂)λ
d−s

)
.

▶ Ω ⊂ Rd is meant to represent the support of the transport field v

▶ λ := (N∥µ∥L∞(Ω))
− 1

d , which can be viewed as the typical inter-particle
distance, and Ω̂ is the λ

4 -neighborhood of Ω

▶ IΩ := {xi}N
i=1 ∩ Ω, and let #IΩ denote the cardinality



Sketch of proof I

Focusing on the Coulomb case, the starting point as in past work is electric
reformulation3 of modulated energy as a renormalization of quantity

(2.2)
∫
Rd

|∇HN |2dx , HN := g ∗ (µN − µ).

Key observation = stress-energy tensor structure:

2
∫
Rd

∫
Rd

v(x) · ∇g(x − y)d(µN − µ)(y)d(µN − µ)(x) =
∫
Rd

v∇HN∆HNdx

=

∫
Rd

v div THN dx ,(2.3)

where tensor T ij
HN

:= 2∂iHN∂jHN − |∇HN |2δij .

IBP and using ∥THN∥L1 ≤ C∥∇HN∥2
L2 allows one to conclude

Preceding calculations formal, since we ignored excision of diagonal and
∥∇HN∥2

L2 is infinite. But computation can be properly renormalized, which is
the main technical roadblock.



Sketch of proof II

Unclear how to make a pure stress-tensor approach work for higher-order
estimates n ≥ 2; delicate proofs in Leblé-Serfaty 2018, Serfaty 2020 do not seem
extendable to n ≥ 3

We exhibit a stress-tensor structure in higher-order variations, involving not
only HN but also iterated commutators of HN .

Given a distribution f (e.g. f = µN − µ), hf := g ∗ f its Coulomb/Riesz
potential, and a vector field v , we define the first commutation of hf as

(2.4) k f :=

∫
Rd

∇g(x − y) · (v(x)− v(y))df (y) = hdiv(vf ) − v · ∇hf .

Relationship between commutator and stress-tensor through

(2.5)
∫

κf df =

∫
v div Thf = −

∫
Dv : Thf .

Polarizing (2.5) and applying it instead to f and −∆κf , Cauchy-Schwarz
yields

(2.6)
∫
Rd

|∇κf |2dx ≤ C∥∇v∥L∞

∫
supp v

|∇hf |2dx .



Sketch of proof III

To evaluate the second variation of the energy, we thus need to compute the
first variation of div THN when again µN and µ are pushed forward by I+ tv .

It suffices to compute the derivative of H t
N at t = 0, and since

HN = g ∗ (µN − µ), the definition of the push-forward yields that
d

dt| t=0
H t

N = g ∗ (div(v(µN − µ)). This involves again higher derivatives of

f = µN − µ and terms that we cannot directly control by the energy
∫
|∇HN |2.

But introducing the commutator κf , we can decompose the second order
variation as

(2.7)

−
∫
Rd

Dv :
(
∂iHN∂j(v · ∇HN)+ ∂i(v · ∇HN))∂jHN −∇HN · ∇(v · ∇HN)δij

)
dx

−
∫
Rd

Dv :
(
∂iHN∂jκ

f + ∂iκ
f∂jHN −∇HN · ∇κf δij

)
dx .

Thanks to Ḣ1 estimate for κf , the second line can directly be controlled by
Cv
∫
|∇HN |2, while the first line can be transformed into appropriate terms

with IBP of v · ∇.



Sketch of proof IV

Argument can be iterated at next order by introducing

(2.8) κ
(n),f
t :=

∫
Rd

∇⊗ng(x − y − tv(y)) : (v(x)− v(y))⊗ndf (y),

which obey recursion relation (a transport equation)

(2.9) ∂tκ
(n)
t = −κ

(n+1)
t − v · ∇κ

(n)
t .

Algebra becomes increasingly more complicated, but proof is transparent in
terms of using IBP and lower-order commutator estimates. Ultimately, we
show, for any n ≥ 1, the control

(2.10)
∫
Rd

|∇κ(n),f |2dx ≤ Cv

∫
supp v

|∇hf |2dx ,

where the constant C is n-linear in v and involves L∞ norms of derivatives up
to order n of v .



Sketch of proof V

So far ignored the delicate question of “renormalization,” which is that of
dealing with the singularities in the Diracs and in HN . But it can be handled
via the point-dependent charge smearing/potential truncation mentioned at
the beginning of the talk.

Writing kv (x , y) := (v(x)− v(y)) · ∇g(x − y), we can decompose

(2.11)
∫
(Rd )2\△

kv (x , y)d

(
1
N

N∑
i=1

δxi − µ

)⊗2

(x , y) =
3∑

j=1

Termj ,

where...



Sketch of proof VI

(2.12) Term1 :=

∫
(Rd )2

kv (x , y)d

 1
N

N∑
j=1

δ
(ηi )
xj − µ

⊗2

(x , y),

(2.13)

Term2 :=
1
N

N∑
i=1

∫
(Rd )2

kv (x , y)d

 1
N

N∑
j=1

δ
(ηj )
xj − µ

(x)d
(
δxi − δ

(ηi )
xi

)
(y),

(2.14)

Term3 :=
1
N

N∑
i=1

∫
(Rd )2\△

kv (x , y)d

 1
N

N∑
j=1

δxj − µ

(x)d
(
δxi − δ

(ηi )
xi

)
(y).

For Term1, apply commutator estimates. For Term2,Term3, estimate directly.

3As previously mentioned, this reformulation is available for the super-Coulombic
Riesz case, but not in the same way for the sub-Coulombic case s < d − 2. This
restricts us to d − 2 ≤ s < d .



Higher-order functional inequalities I

By a similar, more complicated approach, in the cases s = d − 2, s = d − 1
we can obtain higher-order functional inequalities of the form

(2.15)

∣∣∣∣∣
∫
(Rd )2\△

∇⊗ng(x − y) : (v(x)− v(y))⊗nd
( 1

N

N∑
i=1

δxi − µ
)⊗2

(x , y)

∣∣∣∣∣
≤ C

((
∥∇v∥L∞ + λ∥∇⊗2v∥L∞

)n
+

∑
0≤c1,...,cn≤n
c1+···+cn=n

∥∇⊗c1 v∥L∞ · · · ∥∇⊗cn v∥L∞

)

×

(
FΩ

N (xN , µ)−#IΩ
( log λ

2N2

)
1s=0+C

∥µ∥L∞(Ω̂)#IΩ
N

(
λd−s + λ2 log(ℓ/λ)1s=d−2

))

+
Cλ2

ℓ2+s

(
∥∇v∥n

L∞ + ∥∇v∥n−1
L∞ ∥∇⊗2v∥L∞λ

+ (λ∥∇⊗2v∥L∞)2
(
∥∇v∥L∞ +

λ2∥∇⊗2v∥L∞

ℓ

)n−2
)

+ Cλd−s∥µ∥L∞

(
∥∇v∥n−2

L∞ ∥∇⊗2v∥L∞(∥v∥L∞ + λ∥∇v∥L∞) + ∥∇v∥n
L∞

)
+Cλ2∥∇v∥n−1

L∞

(
∥∇v∥L∞ + ℓ∥∇⊗2v∥L∞

)(
∥µ∥L∞ log(ℓ/λ) + ℓ−d∥µ∥L1

)
1s=d−2.



Higher-order functional inequalities II

▶ Above, there’s an additional parameter ℓ ≫ λ, which we think of as the
typical length scale of Ω.

▶ If s = d − 1, the estimate is sharp in λ dependence, but probably room
for improvement in dependence on ℓ.

▶ If s = d − 2, the λ dependence is off from the sharp λ2 by a log factor.

▶ The cases s = d − 2, d − 1 are special because g or G is the
fundamental solution of a local operator. Same argument doesn’t quite
work (though morally should be true) for remaining Riesz cases due to
presence of weights |z|γ . Even the proof in first-order case has to be
modified somewhat to treat these Riesz cases.

▶ Work-in-progress on remaining cases in (d − 2, d − 1) ∪ (d − 1, d);
difficulty in still obtaining estimates that can be localized to Ω.



Classical applications



Optimal rate of convergence for MF limits I

With new functional inequalities, we can obtain optimal rate of convergence
for the mean-field limit of first-order systems

(3.1)


ẋ t

i =
1
N

∑
1≤j≤N:j ̸=i

M∇g(x t
i − x t

j ) + V(x t
i )

x t
i |t=0 = x0

i

i ∈ {1, . . . ,N}.

▶ M is a real d × d matrix. M = −I corresponds to gradient
flow/dissipative dynamics; M antisymmetric corresponds to
Hamiltonian/conservative dynamics.

▶ V is some external force (e.g. −∇Vext)

▶ Summation over j = i excluded because no self-interaction



Optimal rate of convergence for MF limits II

Limiting equation for empirical measure 1
N

∑N
i=1 δx t

i
is

(3.2)

{
∂tµ = −div((V +M∇g ∗ µ)µ)
µ|t=0 = µ0,

(t , x) ∈ R+ × Rd .

From our n = 1 functional inequality, we obtain

(3.3) FN(x t
N , µ

t) +
log
(
N∥µt∥L∞

)
2Nd

1s=0 ≤ eC1
∫ t

0 (∥∇
⊗2g∗µτ∥L∞+∥∇V∥L∞ )dτ

×

(
FN(x0

N , µ
0) +

log
(
N∥µ0∥L∞

)
2Nd

1s=0

+ C2N
s
d −1

∫ t

0
(∥∇uτ∥L∞ + ∥∇V∥L∞)∥µτ∥

s
d
L∞dτ

)
.



Optimal rate of convergence for MF limits III

Much work over the years on MF limits:

▶ W 2,∞ potentials Dobrushin 1979, Sznitman 1991

▶ sub-Coulombic s < d − 2 Hauray 2009, Carrillo-Choi-Hauray 2014

▶ Coulomb/super-Coulombic d − 2 ≤ s < d Duerinckx 2016,
Carrillo-Ferreira-Precioso 2012, Berman-Önnheim 2019, Serfaty 2020

▶ all cases 0 ≤ s < d Bresch-Jabin-Wang 2019, Q.H.
Nguyen-Rosenzweig-Serfaty 2021

Previously, only in the Coulomb case s = d − 2 has the sharp error been
obtained. With our result, question of sharp error only remains for
sub-Coulombic case 0 ≤ s < d − 2



Effective equations for large Newtonian systems

Consider Newtonian dynamics for N indistinguishable particles:
(3.4)

ẋi = vi

v̇i = − 1
ε2N

∑
1≤j≤N:j ̸=i

∇g(xi − xj)−
1
ε2 ∇Vext(x t

i ),
i ∈ {1, . . . ,N}

▶ (xi , vi) ∈ Rd × Rd are position/velocity of i-th particle
▶ ε is a parameter which encodes physical information about the system
▶ g is an interaction potential (e.g. Coulomb −∆g = cd,sδ0); Vext is an

external, confining potential

Question: What is the effective behavior of the system when N is very large
and ε somehow varies with N?

To answer this question, we consider possible convergence as N → ∞ of the
empirical measure

(3.5) f t
N(x , v) :=

1
N

N∑
j=1

δ(x t
j ,v

t
j )
(x , v).



Why do we care?

In theory, one can solve the system of ODEs (3.4) given initial data
(x0

i , v
0
i )

N
i=1.

But in practice, the number of particles N is very large (e.g. 1023);
computationally expensive or unfeasible to directly study N-body dynamics

Goal: Obtain a reduction in complexity by showing that typical solutions to
the system (3.4) are “close” to a solution of a nonlinear PDE when N ≫ 1: if
f 0
N −−−−⇀

N→∞
f 0, then

(3.6) f t
N −−−−⇀

N→∞
f t , t > 0,

where f t is a solution to a certain nonlinear PDE to be determined.

To have any hope of achieving this goal, we need to impose some
assumptions on the relationship between ε and N.



Scaling choices

There are many scaling regimes of potential interest for the system (3.4), but
let us consider the following scenario.

Suppose that each pairwise interaction ∇g(x t
i − x t

j ) = O(1). What is the size
of the force term

(3.7)
1

ε2N

∑
1≤j≤N:j ̸=i

∇g(x t
i − x t

j )?

ε ≫ 1 In the subcritical regime, force term formally vanishes as N → ∞ and
expect f to solve free transport equation

ε ∼ 1 In the critical regime, called mean-field, the force term is O(1) as
N → ∞ and expect f to solve Vlasov equation

ε ≪ 1 In the supercritical regime, force term formally diverges as N → ∞
and expect singular behavior; a priori unclear whether there is a limiting
equation



Formal derivation of supercritical effective equation I

Suppose ε > 0 is fixed. Then a formal calculation shows that the empirical
measure f t

N := 1
N

∑N
i=1 δ(x t

i ,v
t
i )

converges as N → ∞ to a solution of Vlasov
equation

(3.8)


∂t fε + v · ∇x fε − 1

ε2 ∇(Vext + g ∗ µε) · ∇v fε = 0,
µε =

∫
Rd dfε(·, v),

fε|t=0 = f 0
ε .

Suppose that fε → f and µε → µ̄, where µ̄ minimizes the potential energy

(3.9)
1
2

∫
(Rd )2

g(x − d)dµ⊗2(x , y) +
∫
Rd

Vext(x)dµ(x)

(i.e., µ̄ is the equilibrium measure).



Formal derivation of supercritical effective equation II

Then writing

(3.10) ε−2∇(Vext + g ∗ µε) = ε−2∇(Vext + g ∗ µ̄) + ε−2∇g ∗ (µε − µ̄),

the first term vanishes on supp(µ̄) since µ̄ is the minimizer. Now if
ε−2g ∗ (µε − µ̄) → p, then f should satisfy

(3.11)


∂t f + v · ∇x f −∇p · ∇v f = 0,
µ̄ =

∫
Rd df (·, v),

f |t=0 = f 0.

In the case where µ̄ ≡ 1, (3.11) is known as the kinetic incompressible Euler
equation (KIE) Brenier 1989

Introduce the current J(x) :=
∫
Rd vdf (x , v). Since

∫
Rd df (x , ·) = µ̄ (i.e.

constant in time), follows from KIE that div J = 0. Through some calculus,
one finds

(3.12) ∂tJ + div
∫
Rd

v⊗2df (·, v) + µ̄∇p = 0.



Formal derivation of supercritical effective equation III

Making the monokinetic/cold ansatz f (x , v) = µ̄(x)δ(v − u(x)), follows that
J = µ̄u and

(3.13)

{
∂tu + u · ∇u = −∇p
div(µ̄u) = 0.

(3.13) known as Lake/Anelastic equation and appears in modeling of
atmospheric flows Ogura-Phillips 1962, Masmoudi 2007, superconductivity
Chapman-Richards 1997, Duerinckx-Serfaty 2018, shallow water
Levermore-Oliver-Titi 1996. “Pressure” p is a Lagrange multiplier:

(3.14) −div(µ̄∇p) = div(µ̄u · ∇u).

▶ Nowhere above did we assume specific form of potential g

▶ Suggests that the Lake/KIE equations should be “universal” effective
equation for empirical measure f t

N in limit as ε+ N−1 → 0



Interpretations of the supercritical mean-field regime
Non-neutral plasmas
▶ System (3.4) describes evolution of trapped system of ions (e.g. Paul,

Penning traps) Dubin-O’neil 1999; also applications to trapped systems of
neutral atoms Wineland-Bollinger-Itano-Prestage 1985,
Mendonca-Kaiser-Tercas-Loureiro 2008

▶ ε has interpretation of Debye (screening) length - scale below which
charge separation in plasma occurs

▶ If ε ≪ 1, Debye length is below length scale of an observer and plasma
appears neutral; ε → 0 is called quasineutral limit Brenier-Grenier 1994,
Grenier 1995-1999, Brenier 2000, Masmoudi 2001,
Barré-Chrion-Goudon-Masmoudi 2015, Han Kwan-Hauray 2015, Han
Kwan-Rousset 2016, Han Kwan-Iacobelli 2017, Griffin Pickering-Iacobelli
2018-2020, Iacobelli 2021

▶ ε+ N−1 → 0 is then a combined mean-field and quasineutral limit

Hydrodynamic limit Rescale time and velocity by setting
(y t

i ,w
t
i ) := (xεt

i , εvεt
i ),

(3.15)


ẏ t

i = w t
i

ẇ t
i = − 1

N

∑
1≤j≤N:j ̸=i

∇g(y t
i − y t

j ).



What’s known?

Mean-field
▶ Case where g is regular (e.g., ∇g is Lipschitz) is classical Neunzert-Wick

1974, Braun-Hepp 1977, Dobrushin 1979

▶ Convergence to Vlasov-Poisson known if d = 1 Trocheris 1982, Hauray
2014

▶ For d ≥ 2, only partial results: |∇g| ≲ |x |−1+ Hauray-Jabin 2007-2015,
regularized Coulomb g at small length scale vanishing as N → ∞
Boers-Pickl 2016, Lazarovici 2016, Lazarovici-Pickl 2017, Graß 2021

▶ d ≥ 1 monokinetic case f t(x , v) = µtδ(v − ut(x)) Duerinckx-Serfaty 2020,
for which (µt , ut) solve pressureless Euler-Poisson system

Supercritical mean-field Suppose the density of f t
N is uniform as N → ∞

▶ In analogy with quasineutral limit Grenier 1996-1999, Han Kwan-Hauray
2015, Han Kwan-Iacobelli 2016, supercritical MF limit should be false in
general. Only work is by Griffin-Pickering-Iacobelli 2018 starting from a
regularized version of (3.4).

▶ Monokinetic/cold electrons - Han Kwan-Iacobelli 2021,4 R. 2021

4This work introduced in the terminology supercritical mean-field limit.



Returning to supercritical MF limit I

Let’s return to question of limiting equation for f t
N := 1

N

∑N
i=1 δz t

i
as

ε+ N−1 → 0, where z t
i := (x t

i , v
t
i ) solve

(3.16)


ẋi = vi

v̇i = − 1
ε2N

∑
1≤j≤N:j ̸=i

∇g(xi − xj)−
1
ε2 ∇Vext(xi).

Want to rigorously derive Lake equation

(3.17)

{
∂tu + u · ∇u = −∇p
div(µ̄u) = 0.

from system (3.16) under optimal assumptions on size of ε relative to N.



Second-order modulated energy
Introduce second-order modulated energy

(3.18) HN,ε(z t
N , u

t) :=
1
N

N∑
i=1

|v t
i − ut(x t

i )|2 +
1
ε2 FN(x t

N , µ̄+ ε2Ut)

+
2

ε2N

N∑
i=1

ζ(x t
i ).

▶ Here, ut is an extension of the solution of Lake equation to all of Rd and
Ut is a certain “corrector” obtained from ut . “Morally,” Ut = (−∆)

d−s
2 p

▶ Function ζ := g ∗ µ̄+ Vext − c, where c is the modified Robin constant.
Uniquely characterizes minimizer µ̄.

▶ Functionals of form HN,ε with general µt (but without ζ,Ut ) introduced by
Duerinckx-Serfaty 2020 in derivation of pressureless
Euler-Poisson/Euler-Riesz

▶ Idea to add corrector Ut originates in Han Kwan-Iacobelli 2021; motivation
comes from earlier work of Brenier 2000 on quasineutral limit of
Vlasov-Poisson

▶ Addition of ζ term new to trapped setting; motivated by work of Barré et
al. 2015 on quasineutral limit of VP with confinement



Past work

On Td and with Vext = 0, µ̄ ≡ 1, and g Coulomb Han Kwan-Iacobelli 2021
proved a Gronwall relation of form

(3.19) |HN,ε(z t
N , u

t)| ≤ e−Ct
(
|HN,ε(z0

N , u
0)|+ ε−2N− 2

d(d+1)

)
.

For “well-prepared” initial data, RHS vanishes provided error term vanishes
as ε+ N−1 → 0.

Since µ̄ ≡ 1, Lake equation is nothing but incompressible Euler equation! So
their result provides a rigorous derivation of Euler’s equation from Newton’s
second law in this scaling regime.

Using sharp n = 1 FI for Coulomb g, R. 2021 improved the error term to
ε−2N− 2

d ; Argued that this is the optimal error size



New result

Theorem 2 (R.-Serfaty 2022)
Let z t

N = (x t
N , v

t
N) be a solution to Newtonian system. Let µ̄ be the

equilibrium measure for

(3.20)
1
2

∫
(Rd )2

g(x − d)dµ⊗2(x , y) +
∫
Rd

Vext(x)dµ(x),

and suppose that on the interior of its support Σ, µ̄ is sufficiently regular. Let
u be an extension from Σ◦ to Rd of a solution of the Lake equation, such that
u ∈ L∞([0,T ],Hσ(Rd)) for σ > d+2

2 . Then there exist continuous functions
C1, . . . ,C4 : [0,T ] → R+, which depend on d , s, and norms of u, and an
exponent β ∈ (0, 1), such that

(3.21)
∣∣∣∣HN,ε(z t

N , u
t) +

logN
2dNε2 1s=0

∣∣∣∣ ≤ eCt
1

(
HN,ε(z0

N , u
0) +

logN
2dNε2 1s=0

+
C t

2N
s
d −1

ε2 + C t
3N−β + C t

4ε
2
)
.



Comments on theorem I
In particular, if

(3.22) lim
ε+N−1→0

(
HN,ε(z0

N , u
0) +

logN
2dNε2 1s=0 +

N
s
d −1

ε2

)
= 0,

then

(3.23) ∀t ∈ [0,T ], f t
N −−−−−−⇀

ε+N−1→0
dδut (x)(v)d µ̄(x)

in the weak-* topology for measures.

The error size ε−2N
s
d −1 is optimal in the sense that there exists a solution z t

N
to Newtonian system (3.16) such that f t

N −⇀ µ̄δ(v − ut(x)), but HN(z t
N , u

t)
does not vanish as N → ∞.
▶ If x0

N minimizes the microscopic energy
∑

i ̸=j g(xi − xj) +
∑

i Vext(xi),
then z t

N := (x0
N , 0) is a stationary solution of (3.16)

▶ Since 1
N

∑N
i=1 δx0

i
−⇀ µ̄, follows f t

N −⇀ µ̄δ(v), but
(3.24)

HN,ε(z t
N , 0)+

logN
2dNε2 1s=0 =

1
ε2

(
FN(x0

N , µ̄) +
logN
2dN

1s=0

)
= Cd,s,Vext

N
s
d −1

ε2



Comments on theorem II

▶ Proof is by a Gronwall argument for modulated energy HN,ε(z t
N , u

t)

▶ Main ingredient is the sharp n = 1 FI for all super-Coulombic Riesz
cases

▶ Need estimates for how fast ζ(x) and its derivatives grow as x detaches
from the support of µ̄. For this, use connection between minimizers µ̄ of
interaction energies and solutions of fractional obstacle problem Silvestre
2007, Caffarelli-Silvestre-Salsa 2008, regularity of the free boundary for the
latter Jhaveri-Neumayer 2017.

▶ The corrector

(3.25) Ut := (−∆)
d−2−s

2 div(∂tu + u · ∇u).

Needed to cancel out term of form

(3.26)
1
N

N∑
i=1

(vi − u(xi)) · (∂tu(xi) + u(xi) · ∇u(xi))

appearing after computing time derivative of modulated energy.



Last words



Last words

▶ Didn’t discuss sub-Coulombic case 0 ≤ s < d − 2. Have estimates for
variations of modulated energies Q.H. Nguyen-R. Serfaty 2021, but a ways
off from being sharp.

▶ These modulated energies have quantum analogues Golse-Paul 2020, R.
2021, which are useful for obtaining uniform-in-ℏ rates of (supercritical)
mean-field convergence for many-body Bose systems with
Coulomb/Riesz interactions

▶ Would be interesting to develop a theory for energies with interactions
beyond binary; seem very far away from that



The End

Thank you for your attention!
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