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Modulated energies and their variations



Coulomb/Riesz modulated energies |

Let us consider the class of Riesz interactions
—log|x|, s=0,d=1,2

(1.1) g(x) =< |x]7%, d-2<s<d d=1,2
|x]~3, d-2<s<d, d>3.

» Coulomb case s = d — 2 well-motivated from physics (e.g., Coulomb
gas/one-component plasma)

» 1D log case has connections to random matrix theory Forrester 2010

» General Riesz case of interest for approximation theory
Borodachov-Hardin-Saff 2019

When studying systems of N distinct points x,, = (X1, ..., xn) € (RN with
interaction energy
(1.2) > a9l - x),

1<i#<N

an effective way to compare empirical measures uy = Z,’.\L 10 toa
mean-field density 1 is by considering a modulated energy.



Coulomb/Riesz modulated energies

(13) Fu(Xn ) = o a(x — y)d(un — 1)*3(x,y),

© 2 )gopva

» Squared Coulomb/Riesz distance
> Excision of diagonal A to remove infinite self-interaction of each particle

> First appeared in stat mech of Coulomb/Riesz gasses Sandier-Serfaty
2015, Rougerie-Serfaty 2016, Petrarche-Serfaty 2017; extended to derivation
of mean-field dynamics Duerinckx 2016, Serfaty 2020, Q.H.
Nguyen-R.-Serfaty 2021

» Think of as a “renormalization” of infinite quantity ||uy — u|? c—g
H 2

1The term modulated energy goes back to at least work of Brenier 2000 on
quasineutral limit of Vlasov-Poisson.



Electric reformulation |

>

lfd=1,s=0o0rd #1,s > d— 2, the potential g is not the fundamental
solution for a local operator and also fails to be superharmonic.

Both of these properties are restored by viewing g(x) = G(x, 0) as the
restriction of a potential in extended space R*, i.e.

G : RT\ {0} — (0,00), G(X) = g(|X]).

As popularized by Caffarelli-Silvestre 2007, the function G is a fundamental
solution for a degenerate elliptic operator?,

(1.4) 701

d,s

div(|z|"VG) = &

in the sense of distributions in R%**, where v := s+ 2 — d — k.

To regularize the interaction, one can introduce the truncated potential
G, := min(G,G(7n))
One then defines the smeared point mass/charge

—s—1
(15) 6= div(lz"ve,) = L

d,s ,S

|z|" doas(o,n),

where o550, is the uniform probability measure on the sphere in RITK,



Electric reformulation I

Introducing the “nearest-neighbor” length scale

(1) = g min (mink =l (V=) 9) 1P
4 J#

one can re-express the modulated energy, for any choice of n; <r;,

- ZCdys

N
1 c
(1.7) Fn(xn. 1) < / . |21 X — ,(‘,’;Zg(n,-)>
i=1

N
1
W2 [0 e e,
where Hy,; := % Sy Gy (X — Xi) — G fi, With fi 1= 1650, (oy-
In general, Fy is not nonnegative; but there exists a constant C > 0 such that

| N oo S S _
(18 Aty + BTy it 20

2An example of an elliptic operator with an A, weight, for which there is a good
theory Fabes-Kenig-Serapioni 1982.



Localized modulated energies

For applications, also of interest to consider the “localized” modulated energy

Q _ 1 ¥ 12 _%
(19) Ao = 5o ( /Q VIV ox S off )

ix;€Q

~ 3 2 [ e a)x - x)du(x)

IX,GQ

where Q c R? and ¥; is a modified nearest-neighbor distance to
accommodate boundaries.



Variation by transport |

In the context of mean-field limits, essential to control quantities that
correspond to differentiating Fy along a transport field:

(1.10) dtf'il;/—w((ﬂ + ) (), (T V) )

- / VEG(x — y) - (V(x) — V(1) da — 1)P2(x. ),
(RI)2\ A

where T is the identity on R? and (I + tv)®V(x,) := xy + t(v(x1), ..., v(xn)).
The important control takes the form of a functional inequality: for n =1,
(1.11) IRHS of (1.10)| < C(Fn(xpy, 1) + N™%)

for some a > 0.

» First proved by Leblé-Serfaty 2018 in 2D Coulomb case s = 0; generalized
to all Coulomb/super-Coulombic Riesz cases max{d — 2,0} < s < d
and 1D log case in Serfaty 2020

> Reinterpretation as a commutator estimate R. 2020; this POV used to
generalize (1.11) to all cases 0 < s < d Q.H. Nguyen-R.-Serfaty 2021 and
broader class of g’s that are of Riesz-type (e.g. Lennard-Jones)



Variation by transport II

» Fls crucially used to prove CLTs for fluctuations of Coulomb gasses
Leblé-Serfaty 2018, Serfaty 2021; even more important for MF limits of
classical particle systems Serfaty 2020, Duerinckx-Serfaty 2020,
Bresch-Jabin-Wang 2019-2020, R. 2020-2022, Golse-Paul 2020, Q.H.
Nguyen-R.-Serfaty 2021

» Second-order Fls (i.e. (1.11) for n = 2) were shown in Serfaty 2020, R.
2020 in the Coulomb case and Q.H. Nguyen-R.-Serfaty 2021 for the full
Riesz case 0 < s < d; important for fluctuations and MF limits with
multiplicative noise

> Exponent « in error term is explicit in d, s.

» By only counting nearest-neighbor (with typical distance of N='/9)
interactions, one expects Fy is at least of order N3~

> Fy>—CNa~' where C = C(||ulli=) >0

» Known that min | Fy| is of order N9~ Sandier-Serfaty 2015,
Rougerie-Serfaty 2015, Petrarche-Serfaty 2017, Cotar-Petrarche 2019,
Hardin et al. 2017

» Optimal error only been shown for Coulomb case Leblé-Serfaty 2018,
Serfaty 2020, R. 2021



New functional inequalities



New functional inequalities |

Theorem 1 (R.-Serfaty 2022)

There exists a constant C = C(d, s) > 0 such that TFH. Let

w € L'"(RY) N L>°(R?) with unit mean and v : R — R? be Lipschitz. Let Q be
a closed set containing a 2\-neighborhood of supp v, and assume that A < 1.
Then for any pairwise distinct x,, € (R%)", it holds that

(2.1)

®2
/(Rd)z\a(v(x) —v(y)) - Vg(x — y)d(u,v - u) (x, y)‘

log A I _
< C[[ V= <Fﬁ(xN, 1) — o (e )15 o+c#“u e )

> Q c RYis meant to represent the support of the transport field v

> )= (N|\u||Lm(Q))‘%, which can be viewed as the typical inter-particle
distance, and € is the %-neighborhood of Q

> Iy = {x}¥, NQ, and let #/, denote the cardinality



Sketch of proof |

Focusing on the Coulomb case, the starting point as in past work is electric
reformulation® of modulated energy as a renormalization of quantity

2.2) [, Ivhhfdc Hi=g s (o p).
R

Key observation = stress-energy tensor structure:

2 / / v(x) - Vg(x — y)d(un — p)(¥)d(pn — p)(x) = /

VVHNAHNO'X
R

(2.3) :/ vdiv Ty, dx,
R

where tensor T}, := 20;Hnd;Hy — |V H|?5;.
IBP and using || Ty, ||+ < C||VHn||?. allows one to conclude

Preceding calculations formal, since we ignored excision of diagonal and
|V Hn||% is infinite. But computation can be properly renormalized, which is
the main technical roadblock.



Sketch of proof Il

Unclear how to make a pure stress-tensor approach work for higher-order
estimates n > 2; delicate proofs in Leblé-Serfaty 2018, Serfaty 2020 do not seem
extendable to n > 3

We exhibit a stress-tensor structure in higher-order variations, involving not
only Hy but also iterated commutators of Hy.

Given a distribution f (e.g. f = un — ), h' := g = f its Coulomb/Riesz
potential, and a vector field v, we define the first commutation of h' as

(2.4) K= / Va(x — y) - (v(x) — v(y))df(y) = K™ —v. TH.
RA
Relationship between commutator and stress-tensor through

(2.5) /;«/df:/vdiv Ty = f/Dv: Ty

Polarizing (2.5) and applying it instead to f and —A«x’, Cauchy-Schwarz
yields

(2.6) / \Vn’|2dx§C||Vv|\Loo/ |Vh Pdx.
RY supp v



Sketch of proof Il

To evaluate the second variation of the energy, we thus need to compute the
first variation of div Ty, when again uy and p are pushed forward by I + tv.

It suffices to compute the derivative of H, at t = 0, and since
Hn = g * (un — 1), the definition of the push-forward yields that

di”t:Ova = g x* (div(v(un — p)). This involves again higher derivatives of

f = un — p and terms that we cannot directly control by the energy [ |V Hy|?.

But introducing the commutator x!, we can decompose the second order
variation as

(2.7)
— / Dv : (6;HN6/'(V . VHN) + 8,‘(V . VHN))(‘)/HN — VHy- V(V . VHN)(S,'/) adx
R

— / Dv : (8,'HN81'K,f + 8,/1’8/HN — VHy - VKf5ij) dax.
Rd

Thanks to H' estimate for ', the second line can directly be controlled by
Cv [ |VHn/[?, while the first line can be transformed into appropriate terms
with IBP of v - V.



Sketch of proof IV

Argument can be iterated at next order by introducing

@8 K= [ TG0y — () (V) = V() el(y),
R

which obey recursion relation (a transport equation)

(2.9) Ol =~k v v,

Algebra becomes increasingly more complicated, but proof is transparent in
terms of using IBP and lower-order commutator estimates. Ultimately, we
show, for any n > 1, the control

(2.10) / VR Paix < cv/ VH P,
RY supp v

where the constant C is n-linear in v and involves L* norms of derivatives up
to order n of v.



Sketch of proof V

So far ignored the delicate question of “renormalization,” which is that of
dealing with the singularities in the Diracs and in Hy. But it can be handled
via the point-dependent charge smearing/potential truncation mentioned at
the beginning of the talk.

Writing kv (x, y) := (v(x) — v(¥)) - Vg(x — ¥), we can decompose

N ®2 3
1
(2.11) / kv (X, y)d( Ox; — ,u) (x,y) = Term,,
(RI2\ A N 12:1: /§:1: I

where...



Sketch of proof VI

®2

N
1 .
(212)  Term; = /(W)Zkv(x,y)d N —n | (),
j=1
(2.13)

N N
1 1 (m) _ _ stm)
Term; := N ;:1 /(Rd)z kv(x,y)d N /§:1 5)(,- K (X)d(dxi O )(Y),

(2.14)
N

Terms := N Z /]Rd . v(x,y)d Z (5x, — 5 i )(y)

For Termy, apply commutator estimates. For Termy, Terms, estimate directly.

8As previously mentioned, this reformulation is available for the super-Coulombic
Riesz case, but not in the same way for the sub-Coulombic case s < d — 2. This
restrictsustod —2 < s < d.



Higher-order functional inequalities |

By a similar, more complicated approach, inthecases s=d —2,s=d — 1
we can obtain higher-order functional inequalities of the form

(2.15)

Joa FETO0 )£ (00— vy Z by 1), y)‘

n
‘C<(IIVVILM+A|v®2vIILw) + > ||V®°1v|Loo~-|V®C"vllt°°>

0<cy,...,cn<n
Ci+-++Cp=n

log A llell oo @y FEl2 /4
x (Fﬁ(xN, )=l (e ) 1s-0 C—0= (X7 + A% log(t/ M) 1s=-2)

%
* s <|VV|L°° + IVV]|7=[VE2 V| A

b A vaZavi s n-2
4 (A\|v®2v||Loo>2(|\VvuLoc n M)

L
+ Ol (IVVIE2I T2V e (Ve + NIV Vo) + [ 9V )

+CNVVIE= (I Vil + €192Vl ) (llleos Tog(e/A) + €~ llls ) Toma-:



Higher-order functional inequalities Il

> Above, there’s an additional parameter ¢ > A, which we think of as the
typical length scale of Q.

» If s =d — 1, the estimate is sharp in A dependence, but probably room
for improvement in dependence on /.

> If s = d — 2, the A dependence is off from the sharp A2 by a log factor.

» The cases s = d — 2,d — 1 are special because g or G is the
fundamental solution of a local operator. Same argument doesn’t quite
work (though morally should be true) for remaining Riesz cases due to
presence of weights |z|”. Even the proof in first-order case has to be
modified somewhat to treat these Riesz cases.

» Work-in-progress on remaining cases in (d —2,d — 1) U (d — 1,d);
difficulty in still obtaining estimates that can be localized to Q.



Classical applications



Optimal rate of convergence for MF limits |

With new functional inequalities, we can obtain optimal rate of convergence

for the mean-field limit of first-order systems

. 1
X = N Z MVg(x — x) + V(X))

(3.1) 1< <Ny ie{t,..

Xii‘f:O = Xio

> Mis areal d x d matrix. M = —1I corresponds to gradient
flow/dissipative dynamics; M antisymmetric corresponds to
Hamiltonian/conservative dynamics.

> Vis some external force (e.9. —V Vext)

» Summation over j = i excluded because no self-interaction

. N}



Optimal rate of convergence for MF limits Il

Limiting equation for empirical measure lNZ,'L ]

X

(3.2) {a’“ =~ div((V+ MV« p)u) (t,x) € Ry x RY.

ple=o = 1°,
From our n = 1 functional inequality, we obtain

I N t o0 T
(3.3)  Fn(xy, 1)) + 7%( 2')\’;(1‘“ )13:0 < gl ST ERgupT || oo +[ WV oo )diT

log (N|| u°]] oo
X (FN(X?\/7M0)+g( 2||,<7d”L )15:0

t s
+CoNa™ /0 (VU= + IIVVIILw)IIMTIfde>-



Optimal rate of convergence for MF limits Il

Much work over the years on MF limits:
» W2 potentials Dobrushin 1979, Sznitman 1991
» sub-Coulombic s < d — 2 Hauray 2009, Carrillo-Choi-Hauray 2014

» Coulomb/super-Coulombic d — 2 < s < d Duerinckx 2016,
Carrillo-Ferreira-Precioso 2012, Berman-Onnheim 2019, Serfaty 2020

» all cases 0 < s < d Bresch-Jabin-Wang 2019, Q.H.
Nguyen-Rosenzweig-Serfaty 2021

Previously, only in the Coulomb case s = d — 2 has the sharp error been
obtained. With our result, question of sharp error only remains for
sub-Coulombiccase 0 <s< d -2



Effective equations for large Newtonian systems

Consider Newtonian dynamics for N indistinguishable particles:
(3.4)

X,‘IV,‘
V= — Z va(x — Xx) —*Vvext(x,) ie{1,....,N}

1<j<Nj;£l
> (x;,v;) € RY x RY are position/velocity of i-th particle

> ¢ is a parameter which encodes physical information about the system

> g is an interaction potential (e.g. Coulomb —Ag = Cg,s00); Vex is an
external, confining potential

Question: What is the effective behavior of the system when N is very large
and € somehow varies with N?

To answer this question, we consider possible convergence as N — oo of the
empirical measure

N
(3.5) fu(x,v) = Z vt



Why do we care?

In theory, one can solve the system of ODEs (3.4) given initial data
(le7 Vio)i/i1 .

But in practice, the number of particles N is very large (e.g. 10%);
computationally expensive or unfeasible to directly study N-body dynamics

Goal: Obtain a reduction in complexity by showing that typical solutions to
the system (3.4) are “close” to a solution of a nonlinear PDE when N > 1: if
£y — f°, then

— 00

(3.6) i —— f, t>0,

N— oo
where f! is a solution to a certain nonlinear PDE to be determined.

To have any hope of achieving this goal, we need to impose some
assumptions on the relationship between ¢ and N.



Scaling choices

There are many scaling regimes of potential interest for the system (3.4), but
let us consider the following scenario.

Suppose that each pairwise interaction Vg(x/ — xj’) = O(1). What is the size
of the force term

1 t t
(3.7) 2N Z Va(xi — x;)?

1<jSNyj#i

e > 1 Inthe subcritical regime, force term formally vanishes as N — oo and
expect f to solve free transport equation

e ~ 1 Inthe critical regime, called mean-field, the force term is O(1) as
N — oo and expect f to solve Viasov equation

e < 1 Inthe supercritical regime, force term formally diverges as N — oo
and expect singular behavior; a priori unclear whether there is a limiting
equation



Formal derivation of supercritical effective equation |

Suppose ¢ > 0 is fixed. Then a formal calculation shows that the empirical
measure f{; .= Zf‘; d(xt vty cONverges as N — oo to a solution of Viasov
equation

Oife + v - Vxf. — ;TV(Vext + g% Ms) -Vyf. =0,
(3.8) pre = [pa df-(-, V),
foli—o = 1.
Suppose that . — f and . — [, where i minimizes the potential energy

1

3.9 =
( ) 2 ([Rd)Z

g(x — d)du®2(x,y) + /Rd Vext(X)dp(x)

(i.e., iz is the equilibrium measure).



Formal derivation of supercritical effective equation I

Then writing
(310) e "V (Vou + g pre) = ¢ “V(Vou +g* i) + Vg (e — fi),
the first term vanishes on supp(z) since [ is the minimizer. Now if
729 * (e — i) — p, then f should satisfy
M+ V- Vif—Vp -V, f=0,
(3.11) i = [ou df(,v),
fli—o = f°.

In the case where i = 1, (3.11) is known as the kinetic incompressible Euler
equation (KIE) Brenier 1989

Introduce the current J(x) := [, vdf(x, v). Since [, df(x,-) = F (i.e.
constant in time), follows from KIE that div J = 0. Through some calculus,
one finds

(3.12) a,J+diV/ vO2df(-,v) + iVp = 0.

R



Formal derivation of supercritical effective equation llI

Making the monokinetic/cold ansatz f(x, v) = a(x)d(v — u(x)), follows that
J = pu and

ou+u-Vu=-Vp
3.13
( ) {div(ﬁu) =0.

(3.13) known as Lake/Anelastic equation and appears in modeling of
atmospheric flows Ogura-Phillips 1962, Masmoudi 2007, superconductivity
Chapman-Richards 1997, Duerinckx-Serfaty 2018, shallow water
Levermore-Oliver-Titi 1996. “Pressure” p is a Lagrange multiplier:

(3.14) —div(aVp) = div(au - Vu).

» Nowhere above did we assume specific form of potential g

» Suggests that the Lake/KIE equations should be “universal” effective
equation for empirical measure f} in limitase + N~ — 0



Interpretations of the supercritical mean-field regime
Non-neutral plasmas

» System (3.4) describes evolution of trapped system of ions (e.g. Paul,
Penning traps) Dubin-O’neil 1999; also applications to trapped systems of
neutral atoms Wineland-Bollinger-ltano-Prestage 1985,
Mendonca-Kaiser-Tercas-Loureiro 2008

> ¢ has interpretation of Debye (screening) length - scale below which
charge separation in plasma occurs

> If ¢ < 1, Debye length is below length scale of an observer and plasma
appears neutral; e — 0 is called quasineutral limit Brenier-Grenier 1994,
Grenier 1995-1999, Brenier 2000, Masmoudi 2001,
Barré-Chrion-Goudon-Masmoudi 2015, Han Kwan-Hauray 2015, Han
Kwan-Rousset 2016, Han Kwan-lacobelli 2017, Griffin Pickering-lacobelli
2018-2020, lacobelli 2021

» ¢4+ N~' — 0is then a combined mean-field and quasineutral limit

Hydrodynamic limit Rescale time and velocity by setting

et

viw) = (" evih),
j/,- = W ’
(3.19) w = N Z vay - y).

1<j<N:j#i



What’s known?

Mean-field

» Case where g is regular (e.g., Vg is Lipschitz) is classical Neunzert-Wick
1974, Braun-Hepp 1977, Dobrushin 1979

» Convergence to Vlasov-Poisson known if d = 1 Trocheris 1982, Hauray
2014

> For d > 2, only partial results: |[Vg| < |x|~'" Hauray-Jabin 2007-2015,
regularized Coulomb g at small length scale vanishing as N — oo
Boers-Pickl 2016, Lazarovici 2016, Lazarovici-Pickl 2017, Graf3 2021

» d > 1 monokinetic case f'(x, v) = u'§(v — u'(x)) Duerinckx-Serfaty 2020,
for which (!, u') solve pressureless Euler-Poisson system

Supercritical mean-field Suppose the density of f}; is uniform as N — oo

» In analogy with quasineutral limit Grenier 1996-1999, Han Kwan-Hauray
2015, Han Kwan-lacobelli 2016, supercritical MF limit should be false in
general. Only work is by Griffin-Pickering-lacobelli 2018 starting from a
regularized version of (3.4).

» Monokinetic/cold electrons - Han Kwan-lacobelli 2021,* R. 2021

4This work introduced in the terminology supercritical mean-field limit.



Returning to supercritical MF limit |

Let’s return to question of limiting equation for f, := ‘N Zf’ﬂ 0, as
e+ N~" =0, where zf := (x!, v/) solve

Xi =V
3.16 - 1 1
( ) Vi = _ﬂ Z Vg(x,- — X/) — gvvext(xi)~

1<j<N:j#i

Want to rigorously derive Lake equation

(3.17) 8,.ujiu~Vu:pr
div(pu) = 0.

from system (3.16) under optimal assumptions on size of ¢ relative to N.



Second-order modulated energy
Introduce second-order modulated energy

N
1 1
(3.18)  Hue(zy, u) = 3 DI — ' (x)° + vy, 7o+ £°)

i=1
2 N
t
+ 7€2N ;C(X,)

> Here, u' is an extension of the solution of Lake equation to all of R? and
. . . d—
4! is a certain “corrector” obtained from u!. “Morally,” $(' = (~A)“Z p

» Function ¢ := g * i + Vext — C, Where c is the modified Robin constant.
Uniquely characterizes minimizer f.

» Functionals of form Hy, . with general ' (but without ¢, $(") introduced by
Duerinckx-Serfaty 2020 in derivation of pressureless
Euler-Poisson/Euler-Riesz

> ldea to add corrector 4’ originates in Han Kwan-lacobelli 2021; motivation
comes from earlier work of Brenier 2000 on quasineutral limit of
Vlasov-Poisson

> Addition of ¢ term new to trapped setting; motivated by work of Barré et
al. 2015 on quasineutral limit of VP with confinement



Past work

On T¢ and with Ve = 0, & = 1, and g Coulomb Han Kwan-lacobelli 2021
proved a Gronwall relation of form

(319 [Hue(zh, U] < % (IHe (2R o)+ °N @),

For “well-prepared” initial data, RHS vanishes provided error term vanishes
ase+ N 0.

Since i = 1, Lake equation is nothing but incompressible Euler equation! So
their result provides a rigorous derivation of Euler’s equation from Newton’s
second law in this scaling regime.

Using sharp n = 1 Fl for Coulomb g, R. 2021 improved the error term to
Argued that this is the optimal error size



New result

Theorem 2 (R.-Serfaty 2022)

Let z}, = (x},, v},) be a solution to Newtonian system. Let i be the
equilibrium measure for

(3.20) %/(Rd)z g(x — d)du®?(x,y) + /Rd Vext(x)dp(x),

and suppose that on the interior of its support X, [i is sufficiently regular. Let
u be an extension from ¥° to RY of a solution of the Lake equation, such that
u € L>([0, T], H° (R?)) for o > 252. Then there exist continuous functions
Ci,...,C4: [0, T] — Ry, which depend on d, s, and norms of u, and an
exponent 3 € (0,1), such that

log N

log N
2aNez 10| <

t t
(3.21)  |Hn,(zy,u') + 20dNe?

< (HNE(ZN,U )+ 1

CZ’ZT 4 CIN® 4+ Cle 2)



Comments on theorem |
In particular, if

. 0o 0 log N Na—? _
(3.22) im (HN,g(;N,u )+ gz 1s-0+ — ) -0,
then
(3.23) vte [0, T, fy s Ayt (V) AR(X)

in the weak-* topology for measures.

The error size e “2N3~ " is optimal in the sense that there exists a solution z},
to Newtonian system (3.16) such that ff, — zd(v — u'(x)), but Hy(Z!,, u")
does not vanish as N — oo.
> If x% minimizes the microscopic energy 2 i 9% — %) + 325 Vet (X)),
then zi, := (xY,0) is a stationary solution of (3.16)
> Since 4 SV, 8,0 — fi, follows fi, — mé(v), but
(3.24)

HN,E(;;\/? O)+

s

log N 1 log N Na—!
W1s:o = ?<FN(XN’N) + 5 2dN Soan 1s= 0) = Cd,SyVextsiz



Comments on theorem Il

>

Proof is by a Gronwall argument for modulated energy H.. (2}, u')

» Main ingredient is the sharp n = 1 FI for all super-Coulombic Riesz

cases

Need estimates for how fast ¢(x) and its derivatives grow as x detaches
from the support of . For this, use connection between minimizers f of
interaction energies and solutions of fractional obstacle problem Silvestre
2007, Caffarelli-Silvestre-Salsa 2008, regularity of the free boundary for the

latter Jhaveri-Neumayer 2017.

The corrector

d—2—s

(3.25) U= (=A) 2 div(du+ u- Vu).

Needed to cancel out term of form
(3.26) Z(v, - (8ru(x;) + u(x) - Vu(x))

appearing after computing time derivative of modulated energy.



Last words



Last words

» Didn’t discuss sub-Coulombic case 0 < s < d — 2. Have estimates for
variations of modulated energies Q.H. Nguyen-R. Serfaty 2021, but a ways
off from being sharp.

» These modulated energies have quantum analogues Golse-Paul 2020, R.
2021, which are useful for obtaining uniform-in- rates of (supercritical)
mean-field convergence for many-body Bose systems with
Coulomb/Riesz interactions

» Would be interesting to develop a theory for energies with interactions
beyond binary; seem very far away from that



The End

Thank you for your attention!
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