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New definition of the N -point function

The usual N-particle translation-invariant Hamiltonian in a box Λ of

volume |Λ|, and particle density ρ = N/|Λ|, is

H = − 1
2

∑
1≤j≤N ∆j +

∑
1≤i<j≤N V (|xi − xj|).

Its ground-state wave function Ψ(x1 . . . , xN ) is unique and positive,

and we normalize it by
∫
ΛN Ψ = 1.

We assume the 2-body potential V is positive, radial and integrable.

A limit case is the hard-core V of radius (and scattering length) a

The new n-body density, which is not quadratic in Ψ, is

gn(x1, . . . xn) = |Λ|n
∫
ΛN−n Ψ(x1, . . . , dxN ) dxn+1 . . . xN .

By translation invariance, g0 and g1 equal 1, and g2(x1, x2) =: g(|x1 − x2|).

We want to find suitable equations for g and hence for e := E/N , the

ground-state energy/particle.
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Quick ’derivation’ of simple equation, 1963

From Schrödinger’s equation HΨ = NeΨ, we integrate to obtain

2e/ρ =

∫
g(x)V (x)dx . Next, we integrate Ψ over (N − 2) x′s and get

[− 1
2
(∆1 + ∆2) + V12]g

2(1, 2) = eg2(1, 2) − 2ρ
∫
g3(1, 2, 3)V2,3dx3

− 1
2
ρ2

∫ ∫
g4(1, 2, 3, 4)V3,4dx3dx4.

This is motivated by a similar equation in classical stat mech where the

role of Ψ is played by the Boltzmann factor e−βH .

We write g(x) := 1 − u(x) .

To make progress we now make assumptions about how g3, g4 are related

to g2. These are presumably quite reliable to leading order when ρ ≪ 1 .

For example g3(1, 2, 3) ≈ [1− u(1, 2)][1− u(1, 3)][1− u(2, 3)] and similarly for

g4. Then (in the limit |Λ| → ∞)∫
g3(1, 2, 3)V (2, 3)dx3 = g2(1, 2)

[
2e/ρ −

∫
u(1, 3)g2(2, 3)V (2, 3)dx3

]
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Quick ’derivation’ of simple equation, 1963

I confess to having been sloppy by leaving out O(1/|Λ|) corrections. They

play no role in the calculation of g3 above, but they do play a role in the

calculation of g4 in terms of g2. All these approximations remain to be

proved. But they work quite well, as we shall see.

The final equation for the 2-body function g =: 1 − u is

(−∆ + V (x))g(x) = ρg(x){2K(x) − ρL(x)} with

L(1, 2) =
∫ ∫ {

u(1, 3)u(2, 4){g(1, 4)g(2, 3) − 1
2
u(1, 4)u(2, 3)}g(3, 4)V (3, 4)

}
d3d4

K(1, 2) =
∫
u(1, 3) g(2, 3)V (2, 3) d3 = (u ∗ gV )(x1 − x2).

This is quite a complicated ‘differential-integral’ equation. It is the

‘BIG simple equation’. We have investigated it numerically and the results

agree with the less accurate ‘SMALL simple equation’ which is obtained

from this big equation by taking leading terms from the big equation–as

follows:
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The ‘small simple equation’

Recalling g = 1 − u and
∫
V (1 − u) =

∫
V g = 2e/ρ, and taking the main

terms from the big equation:

(
−∆ + 4e + V (x)

)
u(x) = V (x) + 2eρ(u ∗ u)(x). ∗ ∗

There are 2 supplementary conditions: (a) u(x) → 0 as x → ∞;

(b)
∫
V (1 − u) = 2e/ρ.

We also expect to find that u(x) ≤ 1, otherwise g = 1−u is not non-negative.

If there is such a solution then, by integrating the equation,
∫
u = 1/ρ.

There is a unique solution that satisfies these conditions, as we prove.
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Existence and uniqueness

We fix e and proceed by iteration of the u ∗ u term.

u0 :=(−∆+ 4e+V (x))−1V . un+1 :=(−∆+ 4e+V (x))−1
[
V + 2eρnun ∗un

]
where ρn is defined by 2e/ρn :=

∫
V (1 − un) ,

and is exact if there is a solution. Note that (· · · )−1 is a positive kernel.

(Important:We might have used
∫
un =: 1/ρn, but that doesn’t work!)

LEMMA: un(x) ≤ 1 (miracle) and un+1(x) ≥ un(x), ρn+1 ≥ ρn ∀n ≥ 0, ∀x.

The proof is then by iteration. It is not very long but is omitted for lack

of time.

We prove uniqueness too. That is, for each e there is one and only one

ρ(e). Unfortunately, we do not known how to prove that there is only one

e for a given ρ, although the numerical solution makes this evident.
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Small equation challenges

(A) We have seen that e determines ρ, but we need to prove that ρ

determines e uniquely. This would lead to Monotonicity of the function

e(ρ), which is required for physics. (We are able to prove continuity.)

(B) The physical requirement of stability (i.e., remove a partition and the

density equilibrates) means that the function ρ → ρe(ρ) must be convex.

In terms of the inverse function e → ρ(e), this means that ρ̇(e)2 − ρρ̈ ≥ 0.

This is equivalent to e → 1/ρ(e) must be convex.

Numerical solution of the equation shows unambiguously that A and B

are true.

(C) Repeat this whole story for the ‘Big’ simple equation.

(−∆ + V (x))u(x) = ρg(x){2K(x) − ρL(x)}.
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Some numerical results
To get accurate numerical solutions is surprisingly tricky. Here are re-

sults for V (x) = exp(−|x|) in 3D. We find a ≈ 1.2544. Graph #1 shows that

e(ρ) starts as 2πρa and ends as 1
2
ρ
∫
V .
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Graph #2 shows the convexity of ρe(ρ) as a function of ρ.
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Energy comparison with quantum Monte Carlo
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Analytic solution for small ρ

We solve the small equation analytically for small ρ. First, D = 3.

Step 1: To leading order (−∆+V )g1 = 0, so g1 = 1−u1 is the zero energy

scattering solution with scattering length a. Then e1 ≈ 2πρa.

Step 2: In the full equation, replace V (1−u) by 2πρaδ(x) and solve it by

Fourier transforms. The result is: û2(k) =
4e3/2

π2ρ

(
k2 + 1− k(k2 + 2)1/2 − 1

2
k−2

)
The second term, e2, is obtained by inserting e1 in this formula and inte-

grating V u2, which is essentially 2πρa û2(0). We can integrate û2(k). This

is a familiar integral and the final result (for D=3) is the famous

e ≈ 2πρa(1 + 128
15

√
π

√
ρa3). proved by Fournais & Solovej!!

Something similar can be done for D=2, and we obtain Schick’s formula,

which he obtained (as late as 1971 !) using Bogolubov’s method, but

only after summing infinitely many diagrams. A rigorous proof was given

(in 2001 !) by L–Yngvason. e ≈ 2πρ/ log(ρa2).
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Condensate fraction

The usual way to define the condensate fraction (the fraction of particles

in the 1-body ground state ϕ0(x) = |Λ|−1/2) is N−1× the largest eigenvalue

of the 1-body density matrix. In our case, we use that our integral over Ψ

measures the overlap of Ψ with the totally condensed state ϕ⊗N
0 .

Define the projector Pi by PiΨ = |Λ|−1
∫
Ψdxi. So, if we add µ

∑
i P1 to

the Hamiltonian H, and then differentiate the energy w.r.t. µ at µ = 0,

we will have computed the expected number of zero-momentum particles

in the ground state.

In the next slide we graph η̃, which is the fraction of particles predicted

to be not condensed and compare this number with what Quantum Monte

Carlo tells us. The 2-body potential is V (x) = 1
2
exp(−|x|). The agreement

is excllent! Note that η̃ is small for both small and large ρ, as it should

be!!!
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Condensate fraction
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2-particle correlation function

In a similar fashion we can define the 2-particle correlation function C̃2

by functionally differentiate the energy with respect to the 2-body potential

V . We compute it from the solution to the (Small or Big)-equation.

Here is a result for 2 exponential potentials potentials, with comparison

to Monte Carlo. The accuracy of the Big equation is unexpectedly good –

even to the little extra bump at medium density.
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Summary

• We have analyzed a ’Theoretical Physics’ approach to the ground state

of a Bose gas. It utilizes the wave function itself as a probability distribu-

tion.

• The approach is unusual, even by ’Theoretical Physics’ standards, but

produces exceptionally good agreement with Quantum Monte Carlo calcu-

lations for the Energy, Condensate fraction, and Pair correlation functions

in many cases.

• Much remains to be done on the pure mathematical physics level with

regard to justification, and possible connection to Feynman–Kac integrals.

• Of special interest is the fact that the approach reveals properties at

intermediate densities. It might be said that ’new physics’ is revealed,

which might lead to interesting new physics accessible to experiments.
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THANKS FOR LISTENING !
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