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Many-body Hamiltonians with 2-body interactions

Consider N identical particles in a box ΩL = [0, L]d (Dirichlet or
periodic b.c.). Dimension: d = 1, 2, 3.
The most basic translation invariant many-body Hamiltonian:

HN =

N∑
i=1

−∆i +
∑

1≤i<j≤N
v(xi − xj)

2-body potential: v : Rd → [0,∞] spherically symmetric,
compact support.

Hilbert Space Bosons: HN (ΩL) =
N∨
L2(ΩL) or L2(ΩN

L )

Hilbert Space (spin-J) Fermions: HN (ΩL) =
N∧
L2(ΩL;C2J+1)
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The thermodynamic limit

Our focus will be on the Ground State Energy:

EL(N) = inf SpecHN (ΩL)(HN )

We will be interested in the Thermodynamic Limit:

e(ρ) = lim
L→∞

N/Ld→ρ

eL(N)

of the energy per volume

eL(N) = L−dEL(N).

We will write eB(ρ) or eF (ρ) for Bosons or Fermions.
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Examples

Free gas: v = 0

efree
B (ρ) = 0, efree

F (ρ) = Cdρ
(d+2)/d, d = 1 : efree

F (ρ) =
π2

3
ρ3

The Bosonic state is pure condensate:
Ψ(x1, . . . , xN ) =

∏N
i=1 φ(xi), φ ≈ const.

If we use this as a trial state for v 6= 0 we get eB(ρ) ≤ 1
2ρ

2
∫
v.

Note for 1D:

efree
F (ρ) ≤ 1

2
ρ2

∫
v, if ρ ≤ 3

2π2

∫
v.

Hard core potential:

va(x) =

{
∞, |x| < a
0, |x| > a
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Exactly solvable examples in 1D

For d = 1 we have for the hard core gas

eHC
B (ρ) = eHC

F (ρ) =
π2

3
ρ3(1− ρa)−2

Like a free Fermi gas π2

3 Nρ
2 with a smaller volume:

ρ→ ρ(1− ρa)−1.
The Lieb-Liniger model for bosons has v = 2cδ0. It can be solved
exactly (Lieb-Liniger 1963). In particular,

eLL
B (ρ) ≥ π2

3
ρ3(1− ρa)−2, a = −2/c.

The lower bound is asymptotically right as ρ|a| → 0.

Main goal here is to explain that π2

3 ρ
3(1− ρa)−2 is asymptotically

correct for all v.
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The scattering length

For supp(v) ⊆ BR. Let φ be unique solution to

−∆φ+
1

2
vφ = 0, on BR, φ(x) = 1 for |x| = R

Then φ(x) = f(|x|) and for range(v) < r < R, we have

f(r) =


(r − a)/(R− a) for d = 1

ln(r/a)/ ln(R/a) for d = 2

(1− ar2−d)/(1− aR2−d) for d ≥ 3,

with some constant a ∈ R ∪ {∞} called the (s-wave) scattering
length.
For hard core and Lieb-Liniger a is the scattering length.
For v = 0, φ = 1, i.e., a = 0 for d ≥ 2, a = ±∞ for d = 1.
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Dilute limit for bosons

Theorem (Dilute limit for bosons)

If range of v is R0 then as ρ|a|d → 0

1D: eB(ρ) = π2

3 ρ
3
[
(1− ρa)−2 +O((ρR)6/5)

]
.

with R = max{R0, 2|a|}. Error depends on R
∫
vreg.

2D: eB(ρ) = 4πρ2
(
| ln(ρa2)|−1 + o(| ln(ρa2)|−1)

)
.

Error depends on R0/a.

3D: eB(ρ) = 4πρ2a
(

1 + 128
15
√
π

√
ρa3 + o(

√
ρa3)

)
.

Upper bound requires v ∈ L1. Error depends on R0/a.

The 1D case is joint work with Agerskov and Reuvers.
The 2D case is work of Lieb-Yngvason.
The lower bound in 3D is joint work Fournais.
The upper bound in 3D is Yau-Yin and Basti-Cenatiempo-Schlein.
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Dilute limit for fermions

Theorem (Spin-1/2 fermions in 3D, Lieb-Seiringer-Solovej)

eF (ρ↑, ρ↓) = C3(ρ
5/3
↑ + ρ

5/3
↓ ) + 8πaρ↑ρ↓ + o(aρ2)

Theorem (Spin-less fermions in 1D, Agerskov-Reuvers-Solovej)

eF (ρ) =
π2

3
ρ3
[
(1− ρap)−2 +O(ρap)

6/5)
]
.

Here ap ≥ 0 is the 1D p-wave scattering length.
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Dilute limit for fermions (Continued)

Theorem (Spin-1/2 fermions in 1D, Agerskov-Reuvers-Solovej
2022)

The absolute (total spin zero) ground state energy density satisfies

eF (ρ) ≤ π2

3
ρ3 [1− 2eHρa+ 2(1 + eH)ρap + o(ρap)] .

where eH is the thermodynamic limit of the ground state energy
per spin of the Heisenberg antiferromagnet chain with Hamiltonian∑

i

Si · Si+1.

In fact, eH = − ln 2 (Bethe-Hulthén). We conjecture that this is
the correct asymptotics. The result agrees with the hard core case
where a = ap and the delta-function gas (ap = 0) (Yang).

Dilute Bose and Fermi gases in dimensions 1–3 Jan Philip Solovej Slide 10/15



The 1D upper bound (bosons)

The trial state has to capture free Fermi energy, as well as
correction due to scattering process. Hence we consider for
x = (x1, . . . , xN )

Ψ(x) =

{
ω(R(x)) |ΨF (x)|

R(x) if R(x) < b

|ΨF (x)| if R(x) ≥ b
, R(x) = min

i<j
(|xi − xj |)

ω is the suitably normalized (ω(b) = b) scattering solution and
ΨF is the free Fermi gas wave function (Dirichlet b.c.)
We can calculate higher correlation functions for ΨF using Wick’s
Theorem. We use the diamagnetic “inequality”∫
|∇|ΨF ||2 ≤

∫
|∇ΨF |2.

Localization: We get errors that behave badly in N and we must
therefore localize, i.e. write the trial state as products from smaller
boxes.
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The 1D lower bound: Dyson’s Lemma

Lemma (Dyson)

Let R > R0 = range(v) and ϕ ∈ H1(R), then for any interval
I 3 0 ∫

I
|∂ϕ|2 +

1

2
v|ϕ|2 ≥

∫
I

2

R− a
(δR + δ−R) |ϕ|2,

where a is the s-wave scattering length.

Hence for a many-body wave function we have, denoting
ri(x) = minj 6=i(|xi − xj |)∫ ∑

i

|∂iΨ|2 +
∑
i<j

v(xi − xj)|Ψ|2 ≥∫ ∑
i

|∂iΨ|2χri(x)>R +
∑
i

2

R− a
δ(ri(x)−R)|Ψ|2.
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The 1D lower bound: Reducing to the Lieb-Liniger model

Define ψ ∈ L2([0, `− (n− 1)R]n) by

ψ(x1, x2, ..., xn) = Ψ(x1, R+ x2, ..., (n− 1)R+ xn),

for x1 ≤ x2 ≤ ... ≤ xn and symmetrically extended. Then
(ignoring some finite volume and lower order corrections)

〈Ψ|HN |Ψ〉 ≥ ELL(N, L̃ = L−NR, c̃ = 2/(R− a))〈ψ|ψ〉

” ≥ ”N
π2

3
ρ2(1− ρR)−2(1 + ρ(R− a))−2〈ψ|ψ〉

≥ N π2

3
ρ2(1 + 2ρR− 2ρ(R− a))〈ψ|ψ〉

= N
π2

3
ρ2(1 + 2ρa)〈ψ|ψ〉.

We need to control that 〈ψ|ψ〉 is close to 1.
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A norm estimate

1− 〈ψ|ψ〉 ≤ const. R2

∑
i<j

∫
Bij

|∂iΨ|2 +
∑
i<j

∫
vij |Ψ|2

 .

where Bij = {x‖ ri(x) < R} and we assume R > max{R0, 2|a|}.
This allows us to control the missing mass by the energy using a
bootstrap argument. Again there are errors that behave badly in N
and we must localize by going to a grand canonical formulation
(choose µ appropriately):

EL(N) ≥ M inf
n

(ENeumann
L/M (n)− µn) + µN

≥ M inf
n≤(const.)ρL/M

(ENeumann
L/M (n)− µn) + µN.

Now the errors will depend only on ρL/M and this will close the
argument.
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Conclusion

I have discussed the asymptotics of the ground state energy of
dilute Bose and also Fermi gases in 1–3 dimensions.
Some open problems are:

• General Spin-1/2 Fermions in 1–3 D

• Higher order corrections

• Large density limits

Dilute Bose and Fermi gases in dimensions 1–3 Jan Philip Solovej Slide 15/15


	Outline
	Many-body Hamiltonians with 2-body interactions
	Thermodynamic limit
	Examples
	Exactly solvable examples in 1D
	The scattering length
	The dilute limit
	Dilute limit for fermions
	The 1D upper bound
	The 1D lower bound: Dyson's Lemma
	The 1D lower bound: Reducing to the Lieb-Liniger model
	A norm estimate
	Conclusion

