
On the wave turbulence theory for a stochastic
KdV type equation

Minh-Binh Tran
Texas A&M University

Joint work with
Amirali Hannani (Paris Dauphine), Matthew Rosenzweig (MIT),

Gigliola Staffilani (MIT)

Herrsching
May 27, 2022

Minh-Binh Tran Some Results On Wave Turbulence Herrsching 2022 1 / 48



OUTLINE OF THE TALK

1 Brief introduction to wave turbulence

2 Sketch of the proof - How to handle the difficulties

Minh-Binh Tran Some Results On Wave Turbulence Herrsching 2022 2 / 48



BRIEF INTRODUCTION TO WAVE TURBULENCE
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Wave Turbulence: The Physical History
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What is Wave Turbulence?

Wave Turbulence: non-equilibrium statistical system of many randomly interacting
waves. Kinetic equations of Wave Turbulence describe evolution of the wave energy in
Fourier space.

Wave Equations −→Waves

Kinetic Equations −→ Particles

Wave Turbulence (Wave Kinetic Equations)−→ Using Kinetic Equations to
describe (Weak) Nonlinear Waves
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Physical History: Formal Derivations + Applications

Origin in the works of Peierls (1929) and Hasselmann (1961)

Modern point of view Benney-Saffman-Newell (1966), Zakharov (1966)

Recent developments Newell, Zakharov, L’vov, Pomeau, Nazarenko and many
others

Vast range of application:

I Inertial waves due to rotation
I Alfvén wave turbulence in the solar wind
I Waves in plasmas of fusion devices
I Oceanography and climate science
I Quantum physics (Pomeau’s work)

and many others
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Brief ideas
Brief ideas: Using kinetic equations to describe weakly nonlinear waves
Given a wave equation whose nonlinear is quadratic
∂tφ(x , t) = −∆∂x1φ(x , t) + λ∂x1 (φ2(x , t)), x = (x1, · · · , xd )
The equation is normally served as the first example for which a 3-wave kinetic
equation is derived.1

We obtain a 3-wave kinetic equation in the Fourier space.

In the nonlinear wave dynamics, there several type of wave interactions:
I Any kinds of wave interactions are possible
I The dominance among those interactions are the above 3-wave

interactions −→ 3-wave kinetic equation
1Many physical applications concerning drift waves in fusion plasmas and Rossby

waves in geophysical fluids, ionic-sonic waves in a magnetized plasma (Nazarenko’s
book and Zakharov-Kurtnesov 1974). Rigorous derivation by Saut-Lannes 2013.
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Brief ideas

Brief ideas: Using kinetic equations to describe weakly nonlinear waves

Given a wave equation whose nonlinear is cubic
(Example: i∂tψ(x , t) + ∆ψ(x , t) = λ|ψ(x , t)|2ψ(x , t))

We obtain a 4-wave kinetic equation in the Fourier space.

In the nonlinear wave dynamics, there several type of wave interactions:

I Any kinds of wave interactions are possible
I The dominance among those interactions are the above 4-wave

interactions −→ 4-wave kinetic equation
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Wave Turbulence: The Modern Dispersive PDEs Context
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We consider the KdV (KZ) equation in d-dimension

∂tφ(x , t) = −∆∂x1φ(x , t) + λ∂x1

(
φ2(x , t)

)
, x = (x1, · · · , xd )

φ(x , 0) = φ0(x), x ∈ Td
L : periodic torus [0, L]d .

Terence Tao’s blog about energy cascade

To illustrate how this can happen, let us normalise the torus as T2 = (R/2πZ)2. A
simple example of a frequency cascade would be a scenario in which solution
φ(x , t) = φ(x1, x2, t) starts off at a low frequency at time zero, e.g. φ(x , 0) = Aeix1 for
some constant amplitude A, and ends up at a high frequency at a later time T, e.g.
φ(x ,T ) = AeiNx1 for some large frequency N.

Energy:
∫
|φ(x , 0)|2 =

∫
|Aeix1 |2 = A2 =

∫
|AeiNx1 |2 =

∫
|φ(x ,T )|2

In this example, the energy of φ is conserved but the energy goes from
frequency 1 to frequency N.

Energy Cascade Conjecture (Bourgain’s 2000): Migration of energy from low to
high frequency.
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Energy Cascade Conjecture (Bourgain’s 2000):

Give a solution φ(x , t) to a dispersive PDE on a compact manifold M, does a migration
of energy occurs from low frequencies to high frequencies?
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Two different approaches

Given φ(x , t): solution of a dispersive equation.
Approach 1: We study∑

k

|φ̂(k , t)|2〈k〉2s = ‖φ̂(t)‖2
Hs , lim

t→∞
‖φ̂(t)‖2

Hs

PDE Approach: Bourgain, Staffilani, Colliander-Keel-Staffilani-Takaoka-Tao,
Kuksin, Sohinger, Deng-Germain, Carles-Fau, Staffilani-Wilson,
Plachon-Tzvetkov-Visciglia ...

Computational Approach: Pan,...

Dynamical System Approach: Haise-Procesi, Berti-Maspero,...
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Two different approaches

Given φ(x , t): solution of a dispersive equation.
Approach 2:
Set ak = φ̂(k , t) and n(k , τ) = |ak (t)|2. At the van Hove limit/ kinetic time

t = τλ−2 = O(λ−2)

derive the wave kinetic equation

∂t |ak (t)|2 = λ2Q[|ak (t)|2] +O(λ2+δ) −→ ∂τn(k , τ) = Q[n(k , τ)] +O(λδ)
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From Dispersive Equations to Kinetic Equations
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Two different approaches: Second Approach

Dispersive Equation φ(x , t) −→ Kinetic equation (n(k , τ)→ |φ̂(k , t)|2).

∂tφ(x , t) = −∆∂x1φ(x , t) + λ∂x1

(
φ2(x , t)

)
Set |φ̂(k , t)|2 → n(k , τ), −→ homogeneous kinetic equation

∂τn(k , τ) = Q[n(k , τ)],

Q(n)(k1) =

∫
dk2dk3|W(k1, k2, k3)|2δ(ω(k3) + ω(k2)− ω(k1))

× δ(k2 + k3 − k1)
(

n2n3 − n1n2sign(k1
1 )sign(k1

3 )− n1n3sign(k1
1 )sign(k1

2 )
)
,

where n1(τ) = n(τ, k1), n2(τ) = n(τ, k2), n3(τ) = n(τ, k3).

ω = k1[|k1|2 + · · ·+ |kd |2], k = (k1, · · · , kd ).

∂x1

(
φ2(x , t)

)
quadratic nonlinearity −→ Q(n)(k1) quadratic collision operator.
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Recalling

Given a wave equation whose nonlinear is quadratic, we obtain a 3-wave kinetic
equation in the Fourier space.

Given a wave equation whose nonlinear is cubic, we obtain a 4-wave kinetic equation
in the Fourier space.
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Mathematical Literature: Rigorous Derivations

Erdos-Yau (CPAM 2000), Erdos-Salmhofer-Yau (Acta Math 2008): Random
Linear Schrödinger→ linear Boltzmann (kinetic time)→ heat equation (diffusion
time, t = O(λ−2−ε)

Lukkarinen-Spohn (Invent Math 2010): Random Cubic Nonlinear Schrödinger at
equilibrium → (linearized) wave kinetic equation at (kinetic time).
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Recent results - Out of Equilibrium Case

Random initial data

Buckmaster-Germain-Hani-Shatah (CPAM 2019, Invent Math 2021) −→
homogeneous wave kinetic equation from NLS: strictly below kinetic time (linear
kinetic equation).

∂τn(k , τ) = Q[n(k , 0)]

Collot-Germain (2019, 2020), Deng-Hani (Forum Pi, 2021) −→ homogeneous
wave kinetic equation from NLS: strictly below kinetic time (linear kinetic
equation).

Ampatzoglou-Collot-Germain 2021, Inhomogeneous kinetic equation, strictly
below kinetic time (linear kinetic equation) from NLS :

Stochastic PDEs

Dymov, Kuksin and collaborators (2019-2021), Faou (CMP 2020) - from KdV.

Random matrix model

Dubach, Germain, Harrop-Griffiths, 2022 strictly below kinetic time (linear kinetic
equation)
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Recent results - Out of Equilibrium Case

(2021) Derivation for the homogeneous nonlinear 4-wave kinetic equation
(kinetic time): Deng-Hani - from random NLS (continuum setting)
i∂tψ(x , t) + ∆ψ(x , t) = λ|ψ(x , t)|2ψ(x , t) on the periodic torus [0, L]d , d ≥ 3,
(kinetic time ≈ λ−2 ≈ L2 ), when L→∞, λ→ 0
−→ propagation of chaos

(2021) Derivation for the homogeneous nonlinear 3-wave kinetic equation
(kinetic time): Staffilani-MBT - from stochastic KdV (lattice setting)
∂tφ(x , t) = −∆∂x1φ(x , t) + λ∂x1 (φ2(x , t)), on the periodic torus [0, L]d , d ≥ 2,
L→∞, λ→ 0, λ is independent of L

(2022) Derivation for the inhomogeneous nonlinear 3-wave kinetic equation
(kinetic time) : Hannani-Rosenzweig-Staffilani-MBT - from KdV (lattice setting)

∂τn(r , k , τ) + ∇ω(k) · ∇r n(r , k , τ) = Q[n(r , k , τ)],

All of those works are based on the pioneering works of Spohn, Erdos-Yau,
Erdos-Salmhofer-Yau and Lukkarinen-Spohn.
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Sketch of the proof - How to handle the difficulties

(I) The setting
(II) The density function - Using the Louville equation to replace the l1

clustering estimate
(III) Feynman’s diagrams
(IV) Crossing estimates (unfortunately do not hold true due to a

counter example by Lukkarinen JMPA, 2007) - Establishing new
types of crossing estimates in Fourier spaces

(V) The effect of the noise on the Feynman diagrams
(VI) The divergence of the leading diagrams - The resonance

broadening technique
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(I) The setting
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The setting
The KZ (KdV) equation

dψ(x , t) = −∆∂x1ψ(x , t)dt + λ∂x1

(
ψ2(x , t)

)
dt +

√
2cr∂x1ψ � dW (t),

ψ(x , 0) = ψ0(x),

cr = Crλ
θr , for some universal constants Cr > 0 and 1 ≥ θr > 0 is small but non-zero.

The lattice system can be rewritten in the Fourier space as a system of ODEs

dψ̂(k , t) = iω(k)ψ̂(k , t)dt + iω̄(k)
√

2cr ψ̂(k , t) ◦ dW (t)

+ iλω̄(k)
1
|Λ∗|2

∑
k=k1+k2;k1,k2∈Λ∗

ψ̂(k1, t)ψ̂(k2, t),

ψ̂(k , 0) = ψ̂0(k),

iω̄(k)
√

2cr ψ̂(k , t) ◦ dW (t) is the standard Stratonovich product. The mesh and the
dispersion relation are

Λ∗ = Λ∗(L) =

{
− L

2L + 1
, · · · , 0, · · · , L

2L + 1

}d

,

ωk = ω(k) = sin(2πk1)
[

sin2(2πk1) + · · ·+ sin2(2πkd )
]
, ω̄(k) = sin(2πk1),

with k = (k1, · · · , kd ).
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The setting

ωk = ω(k) = sin(2πk1)
[

sin2(2πk1) + · · ·+ sin2(2πkd )
]
, k = (k1, · · · , kd ).

When k1 = 0, then ω(k) = 0. We call the degenerate surface for which k1 = 0
the ghost manifold. If we take k1, · · · , km in the ghost manifold, it follows that
ω(k1) = · · · = ω(km) = 0. Moreover, the sum vector k1 + · · ·+ km is also in the
ghost manifold, leading to ω(k1 + · · ·+ km) = ω(k1) + · · ·+ ω(km). On the ghost
manifold, not just 3-wave interactions, any m-wave interactions are also allowed,
with m ≥ 3.

The equation has a resonance broadening effect, thus all quasi-resonance
m-wave interactions can also happen in a small neighborhood near the ghost
manifold −→ destroying the structure of 3-wave interactions and there is no
3-wave kinetic equation for the ZK equation without noise (Unlike the NLS case
where a result without noise is expected).

There is no crossing estimates due to a counter example by Lukkarinen (2007).

The noise does not add energy into the system (L2 norm), it has the role of only
fixing the singularties of the dispersion relation. It vanishes on most pairing
diagrams, including all the ladder (leading) and crossing diagrams −→ The weak
noise does not compete with the weak nonlinearity.

Minh-Binh Tran Some Results On Wave Turbulence Herrsching 2022 23 / 48



(II) The density function
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The density function

We now set

ak =
ψ̂(k)√
|ω̄(k)|

,

dak = iω(k)ak dt + i
√

2cr ak ◦ dWk (t)

+ iλ
∫

Λ∗
dk1

∫
Λ∗

dk2sign(k1)
√
|ω̄(k)ω̄(k1)ω̄(k2)|δ(k − k1 − k2)ak1 ak2 dt .

B1,k and B2,k such that ak = B1,k + iB2,k . Since B1,k and B2,k are random variables,
we use the variables b1,k , b2,k to present their roles in the density function.

∂

∂t
% = cr

∑
k∈Λ∗

(
b2,k

∂

∂b1,k
− b1,k

∂

∂b2,k

)2

%+
∑
k∈Λ∗

ωk

(
b2,k

∂

∂b1,k
− b1,k

∂

∂b2,k

)
%

− λ{H2, %}.
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The density function
By the change of variables, b1,k + ib2,k =

√
2c1,k eic2,k , with c1,k ∈ R+ and

c2,k ∈ [−π, π], we obtain the optimal transport equation

∂t% = −
∑
k∈Λ∗

ωk∂c2,k %+ cr

∑
k∈Λ∗

∂2
c2,k % +

∑
k∈Λ∗

λHa(k)∂c1,k %+
∑
k∈Λ∗

λHb(k)∂c2,k %,

in which

Ha(k) =

∫
Λ∗

dk1

∫
Λ∗

dk2M(k , k1, k2)
√

2c1,k1 c1,k2 c1,k

[
δ(k−k1−k2)sin(c2,k1 + c2,k2 − c2,k )

+ 2δ(k + k1 − k2)sin(−c2,k1 + c2,k2 − c2,k )
]
,

and

Hb(k) = −
∫

Λ∗
dk1

∫
Λ∗

dk2M(k , k1, k2)
√

c1,k1 c1,k2

[
δ(k − k1 − k2)sin(c2,k1 + c2,k2 )

+ 2δ(k + k1 − k2)sin(−c2,k1 + c2,k2 )
] sin(c2,k )√

2c1,k

−
∫

Λ∗
dk1

∫
Λ∗
M(k , k1, k2)δ(k − k1 − k2)

√
c1,k1 c1,k2

[
δ(k − k1 − k2)cos(c2,k1 + c2,k2 )

+ 2δ(k + k1 − k2)cos(−c2,k1 + c2,k2 )
]cos(c2,k )√

2c1,k
.
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The density function and the noise
Definition

For any observable F : R2|Λ∗| → C, we define the average

〈F 〉 = 〈F 〉t =

∫
R2|Λ∗|

db1db2F (b1, b2)%(t , b1, b2).

Define

P = exp

(
cP

∫
Λ∗

dkc1,k

)
,

for any cP ∈ R.

Proposition (Moment bounds)

Let m be an arbitrary positive natural number. Let {ki1 , · · · , kim} be a subset of Λ∗, σij
with j ∈ {1, · · · ,m} be either 1 or −1. We then have∫

(Λ∗)m

m∏
j=1

dkij

∣∣∣〈aki1
,σi1
· · · akim ,σim

〉
t

∣∣∣2 . |2/cP|m
∣∣∣∣∣
∫

(R+×[−π,π])|Λ∗|
dc1dc2P%(0)

∣∣∣∣∣
2

,

where the constant in the inequality is universal,a(k , 1, t) = a∗k (t),
a(k ,−1, t) = ak (t). The inequality holds true for both cases cr = 0 and cr > 0.
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The density function

Some comments

In the pioneering work of Lukkarien and Spohn, the control comes from imposing
the assumption on the l1-clustering estimate at equilibrium. Indeed, one of the
main technical obstacles that enforces Lukkarinen and Spohn to put the system
at equilibrium is the difficulty in having the l1-clustering estimate out of
equilibrium.

To obtain the l2 moment estimate, we focus on the analysis of the Liouville
equation of the density function.
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(III) Feynman’s diagrams
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Feynman’s diagrams

We recall

dak = iω(k)ak dt + i
√

2cr ak ◦ dWk (t)

+ iλ
∫

Λ∗
dk1

∫
Λ∗

dk2sign(k1)
√
|ω̄(k)ω̄(k1)ω̄(k2)|δ(k − k1 − k2)ak1 ak2 dt .

In order to absorb the quantity iω(k)ak dt , we set

α(k , 1, t) = a∗(k , t)eiω(k)t , α(k ,−1, t) = a(k , t)e−iω(k)t ,

dαt (k , σ) = − iσλ
∫

Λ∗
dk1

∫
Λ∗

dk2δ(k − k1 − k2)×

×M(k , k1, k2)αt (k1, σ)αt (k2, σ)eitσ(−ω(k1)−ω(k2)+ω(k))dt

− i
√

2crαt (k , σ) ◦ dWk (t),

σ = ±1
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The effect of the noise on the Feynman diagrams

dαt (k , 1) = − iλ
∫

Λ∗
dk1

∫
Λ∗

dk2δ(k − k1 − k2)M(k , k1, k2)×

× αt (k1, 1)αt (k2, 1)eit(−ω(k1)−ω(k2)+ω(k))dt − i
√

2crαt (k , 1) ◦ dWk (t),

dαt (k ,−1) = iσλ
∫

Λ∗
dk1

∫
Λ∗

dk2δ(k − k1 − k2)M(k , k1, k2)×

× αt (k1,−1)αt (k2,−1)e−it(−ω(k1)−ω(k2)+ω(k))dt − i
√

2crαt (k ,−1) ◦ dWk (t),

0

t

k0,4s0

s1

s2

k1,3

k2,2k2,1

k1,1 k1,2

k0,1 k0,2 k0,3

+

+
-

- + +

- - + +
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Feynman’s diagrams
The leading diagrams (ladder diagrams) are obtained by iteratively applied the
following graphs

vi

vi

vi

vi

vi-1 vi-1

vi-1 vi-1

Figure: Each uses two cluster vertices.

vi vi

vi-1 vi-1

Figure: Each uses only one cluster vertex.
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Feynman’s diagrams
The leading diagrams (ladder diagrams)

v1

v2

v3

v4

v5

v6

k1

k2

-k2

k2
-k2

This is 
a recollision

This is 
a recollision
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Feynman’s diagrams

Following Erdos-Yau, we have to eliminate the other graphs (crossing and
nested). We use crossing estimates, that unfortunately do not hold true due to a
counter example by Lukkarinen (JMPA, 2007)

The leading diagrams diverge by the same reason.

−→ The problem is to restore the convergence of the leading diagrams and to
reestablish the crossing estimates.
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(IV) Crossing estimates
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Crossing estimates for linear Schrödinger equation with a random
potential

For the linear Schrödinger equation with a random potential, the estimate takes the
form

sup
(α1,α2,α3)∈R3

∫
(Td )2

dk1dk2

|α1 − ω(k1) + iλ2||α2 − ω(k2) + iλ2||α3 − ω(k1 − k2 + k0) + iλ2|

. 〈lnλ〉γaλγb ,

The validity of the corresponding estimate in the earlier continuum Schrödinger
setting, with

ω(k) = |k |2, k ∈ Rd (1)

is fairly straightforward to prove, but the lattice case turns out to be much more
involved since

ω(k) = sin2(2πk1) + · · ·+ sin2(2πkd ), for k = (k1, · · · , kd ). (2)
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Crossing estimates for linear Schrödinger equation with a random
potential

The bound has been proved

γb = −4/5 and γa = 2 by Chen (JSP 2005)

γb = −3/4 and γa = 6 by Erdos-Salmhofer-Yau (Acta Math 2008)

Lukkarinen’s theorem (JMPA 2007)

An analytic dispersion relation suppresses crossings if and only if it is not a constant
on any affine hyperplane.

Lukkarinen’s counterexample

A counterexample, in which the crossing estimate fails to hold true, has also been
introduced, which unfortunately covers the lattice ZK dispersion relation

ωk = ω(k) = sin(2πk1)
[

sin2(2πk1) + · · ·+ sin2(2πkd )
]
, for k = (k1, · · · , kd ).
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Crossing estimates for the nonlinear Schrödinger equation in the
lattice setting

Crossing estimates in the work of Lukkarinen-Spohn

In the context of the lattice nonlinear Schrödinger equation, the crossing estimate
takes the form

sup
(α1,α2)∈R2

∫
(Td )2

dk1dk2
1∣∣∣α1 ± ω(k1)± ω(k2)± ω(k3) + iλ2

∣∣∣
× 1∣∣∣α2 ± ω(k1)± ω(k2)± ω(k3)± ω(k1 + k4)± ω(k1 + k5) + iλ2

∣∣∣ . 〈lnλ〉γaλγb ,

Those crossing estimates have only two denominators instead of three as in the
linear case.

Even though the strategy is still to show the dominance of the leading (ladder)
diagrams, the classification of other types of graphs (crossing and nested
diagrams) is much more complicated and involved.
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Crossing estimates for the ZK equation in the lattice setting

Crossing estimates in our work

In the context of the lattice nonlinear ZK equation, the crossing estimate takes the form

sup
(α1,α2)∈R2

∫
Td

dk1
1∣∣∣α1 ± ω(k1)± ω(k1 + k2) + iλ2

∣∣∣
× 1∣∣∣α2 ± ω(k1)± ω(k1 + k2)± ω(k1 + k3) + iλ2

∣∣∣ . 〈lnλ〉γaλγb .

The lattice ZK crossing estimate contains two denominators instead of three
denominators and one integration in k1 instead of two integrations in k1, k2. The loss of
one integration is due to the nature of the quadratic nonlinearity.
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Crossing estimates for the ZK equation in the lattice setting

An “easy-to-see” technical difficulty is that, from (36), one could use an L3

estimate ∣∣∣ ∫
(Td )2

dk1dk2eit(±ω(k1)±ω(k2)±ω(k3))+is(ω(k1+k4)±ω(k1+k5))
∣∣∣

.‖pt‖2
3‖K (±t ,±s,±s, k4, k5)‖3,

thanks to the presence of the double integral
∫

(Td )2 dk1dk2, where

K (x , t0, t1, t2, k , k∗) := e−id(t0+t1+t2)

×
d∏

i=1

∫ 2π

0

dp
2π

eipx i +i(t0 cos(2πp)+t1 cos(2πp+k i )+t2 cos(2πp+k i
∗)),

with k = (k1, · · · , kd ) and k∗ = (k1
∗ , · · · , kd

∗ ), and pt = K (x , t , 0, 0, 0, 0).

On the other hand, the ZK crossing estimate only involves one integration, and
as thus, a straightforward bound would be an L2 estimate, which leads to the
divergence of the sum of all the leading, crossing and nested diagrams. As the
noise has no influence on pairing graphs, and therefore we are only left with the
use of delicate arguments to prove very fine estimates needed to restore the
convergence of the (leading and non-leading) diagrams.

Minh-Binh Tran Some Results On Wave Turbulence Herrsching 2022 40 / 48



A main portion of our work is dedicated to establishing several different and new types
of crossing estimates, which are more flexible than those used in the previous works,
for the singular lattice ZK dispersion relation under the low dimensional assumption
d ≥ 2. These novel types of crossing estimates allow us to go around the situation
encountered previously in Lukkarinen’s counterexample and are embedded into new
(and sophisticated) types of graph estimates.
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(V) The effect of the noise on the Feynman diagrams
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The effect of the noise on the Feynman diagrams

∂

∂t
〈αt (k , 1), αt (k ,−1)〉 = iλ

∫
(Λ∗)2

dk1dk2δ(−k + k1 + k2)

×M(k , k1, k2)eit(ω(k1)+ω(k2)−ω(k))−τk,k1k2
cr t〈αt (k ,−1)αt (k1, 1)αt (k2, 1)〉,

The quantity τk,k1k2 denotes the square |1k − 1k1 − 1k2 |
2 of the length of the

vector 1k − 1k1 − 1k2 .

In general, we set

τki1
···kim ,kj1

···kjm′
=

∣∣∣∣∣∣
m∑

l=1

1il −
m′∑

l′=1

1jl′

∣∣∣∣∣∣ , ∀ki1 · · · kim , kj1 · · · kjm′ ∈ (Λ∗)m+m′ ,

The quantity vanishes for pairing graphs −→ it has the role of only fixing the
singularties of the dispersion relation and vanishes on the ladder and crossing
diagrams
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(VI) Resonance broadening
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Resonance broadening

Unlike the Schrödinger dispersion relation, the lattice ZK dispersion relation not
only creates major obstacles in obtaining the crossing estimates but also has
another serious problem: it prevents the convergence of the leading diagrams.

It is common practice to assume that∫
T2d

dk2dk3δ(ω(k3) + ω(k2)− ω(k2 + k3))F (k2 + k3, k2, k3)

=

∫
R

ds
∫
T2d

dk2dk3e−is(ω(k3)+ω(k2)−ω(k2+k3))F (k2 + k3, k2, k3),

for any test function F (k2 + k3, k2, k3) ∈ C∞(T2d ) and for any dispersion relation
ω.

For most dispersion relations, the quantity δ(ω(k3) + ω(k2)− ω(k2 + k3)) cannot
be defined as a positive measure.
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Resonance broadening

Let us define
and

δ̃`(ω(k3) + ω(k2)− ω(k1)) :=
`

`2 + (ω(k3) + ω(k2)− ω(k1))2 , ` > 0.

One writes∫
T2d

dk2dk3δ̃`(ω(k3) + ω(k2)− ω(k2 + k3))F (k2 + k3, k2, k3)

=

∫
R

dse−|s|`
∫
T2d

dk2dk3e−is(ω(k3)+ω(k2)−ω(k2+k3))F (k2 + k3, k2, k3),

When ω is sufficiently good, the oscillatory integral
∫
T2d dk2dk3

e−is(ω(k3)+ω(k2)−ω(k2+k3))F (k2 + k3, k2, k3) produces sufficient decay in s, yielding
the convergence of δ̃`(ω(k3) + ω(k2)− ω(k2 + k3)) and
δ̃`(ω(k3) + ω(k2)− ω(k2 + k3)) to the positive measure
δ(ω(k3) + ω(k2)− ω(k2 + k3)) in the limit `→ 0.

When ω is the lattice ZK dispersion relation, the delta function
δ(ω(k3) + ω(k2)− ω(k2 + k3)) cannot be defined as a positive measure, yielding
the divergence of the leading graphs, that contains oscillatory integrals of the
form (with ` = 0)

∫
T2d dk2dk3 e−is(ω(k3)+ω(k2)−ω(k2+k3)) F (k2 + k3, k2, k3).
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Resonance broadening

There are a few common resonance broadening strategies

δ`(ω(k3) + ω(k2)− ω(k1)) :=
1
2`

∫ `

−`
dξ
∫
R

dse−is(ω(k3)+ω(k2)−ω(k2+k3))−i2πsξ, ` > 0.

We say that a function f∞` solves the “resonance broadening” 3-wave equation if and
only if

∂

∂τ
f∞` (k , τ) = C`

(
f∞`
)
(k , τ),

with the collision operator

C`(f∞)(k1) =

∫
(Td )2

dk2dk3|M(k1, k2, k3)|2 1
π
δ`(ω(k3) + ω(k2)− ω(k1))

× δ(k2 + k3 − k1)
(

f∞2 f∞3 − f∞1 f∞2 sign(k1
1 )sign(k1

3 )− f∞1 f∞3 sign(k1
1 )sign(k1

2 )
)
.

Minh-Binh Tran Some Results On Wave Turbulence Herrsching 2022 47 / 48



THANK YOU SO MUCH FOR YOUR ATTENTION!

Minh-Binh Tran Some Results On Wave Turbulence Herrsching 2022 48 / 48


	Brief introduction to wave turbulence
	Sketch of the proof - How to handle the difficulties

