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The Dirac-Klein-Gordon system
• Relativistic mean field theory of the nuclei

• Nucleon = Dirac particle of mass m, described by spinor Ψ : R3 → C4

• Nucleons generate and interact via meson fields

→ σ-mesons (mass mσ) described by classical scalar field S : R3 → R;

→ ω-mesons (mass mω) described by classical vector field ω = (V ,ω) : R3 → R4;
i∂tΨ = α · (−i∇− ω)Ψ + (m + S)βΨ + VΨ,

(∂2t −∆ + m2
σ)S = −g2

σρσ(Ψ),

(∂2t −∆ + m2
σ)ω = g2

ωJ(Ψ),

where gσ, gω ∈ R, α = (α1, α2, α3), β are the 4× 4 Dirac matrices, and

ρσ(Ψ) = 〈βΨ,Ψ〉C4 , J(Ψ) = (ρv , J), ρv (Ψ) = 〈Ψ,Ψ〉C4 , J(Ψ) = 〈Ψ,αΨ〉C4

• Stationary version studied by Rota Nodari, Esteban-Rota Nodari, Le
Treust-Rota Nodari, Lewin-Rota Nodari
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The strong coupling limit


i∂tΨ = α · (−i∇− ω)Ψ + (m + S)βΨ + VΨ,

(∂2t −∆ + m2
σ)S = −g2

σρσ(Ψ),

(∂2t −∆ + m2
σ)ω = g2

ωJ(Ψ),

• Regime mσ,mω, gσ, gω large and of similar magnitude

→ Expect S ∼ −γσρσ(Ψ) and ω ∼ γωJ(Ψ) with γσ = g2
σ/m

2
σ, γω = g2

ω/m
2
ω

Leads to the nonlinear Dirac equation

i∂tΨ = α · (−i∇− γωJ(Ψ))Ψ + (m − γσρσ(Ψ))βΨ + γωρv (Ψ)Ψ

• Implicitly assumes for instance that ε(∂2t −∆)S � 1 with ε = 1/m2
σ

• Several related works in the case with ε(∂2t −∆)S replaced by (ε∂2t −∆)S

• For simplicity, assume in the following ω = 0 and gσ = mσ = M � 1.
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Main result

Theorem

Let s > 5/2 and Ψin ∈ Hs(R3,C4), (Sin, Ṡin) ∈ Hs(R3,R)× Hs−1(R3,R). Let

ΨNL ∈ C 0((−TNL
min,T

NL
max),Hs(R3,C4))

be the maximal solution to the nonlinear Dirac equation with initial condition
ΨNL|t=0 = Ψin. Let M > 0 and

(Ψ(M),S (M)) ∈ C 0((−T (M)
min ,T

(M)
max),Hs(R3,C4)× Hs(R3,R))

be the maximal solution to the Dirac-Klein-Gordon equation with initial conditions

Ψ
(M)
|t=0 = Ψin, (S (M), ∂tS

(M))|t=0 = (Sin, Ṡin). Then, we have

lim inf
M→+∞

T
(M)
min/max > TNL

min/max

and, for all 0 < T1 < TNL
min, 0 < T2 < TNL

max, and all 0 ≤ s ′ < s,

lim
M→+∞

‖Ψ(M) −ΨNL‖L∞([−T1,T2],Hs′ (R3,C4)) = 0
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Main result: comments

• Existence of local-in-time solutions is standard (and only requires s > 3/2), with
blow-up criterion

T
(M)
min/max < +∞ =⇒ lim sup

t→T
(M)

min/max

‖(Ψ(t),S(t))‖L∞ = +∞.

• T (M)
min/max = +∞ or TNL

min/max = +∞ only known for small initial data

(Bejenaru-Herr 2015, 2017)

• Result does not require that S is close to −ρσ(Ψ) at initial time

• Explicit convergence rate M−min(s−s′,1). Can be understood from∥∥∥∥ 1√
−∆ + M2

u

∥∥∥∥
Hs′

6
1

Ms−s′ ‖u‖Hs−1

with s − 1 6 s ′ 6 s and M > 1.
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Illustration on a simple ODE
Consider the ODE with unknown (u, v) : R→ C× R{

iu′ = vu

v ′′ + M2v = M2|u|2
?−−−−−→

M→+∞
iu′ = |u|2u

Notice that (|u|2)′ = 2 Re uu′ = 2 Re u(−ivu) = 0, so that |u(t)|2 = |u(0)|2

=⇒ v(t) = cos(Mt)(v(0)− |u(0)|2) +
sin(Mt)

M
v ′(0) + |u(0)|2

u(t) = exp

(
−i
∫ t

0

v(s) ds

)
u(0)

= e−it|u(0)|
2

u(0) exp

(
−i sin(Mt)

M
(v(0)− |u(0)|2)

)
exp

(
−i 1− cos(Mt)

M2
v ′(0)

)

Conclusion: do not need that v(0) is close to |u(0)|2 to obtain

u(t)→ e−it|u(0)|
2

u(0) as M → +∞.
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Going to PDEs: problems
Assume for simplicity that Sin = −ρσ(Ψin) and Ṡin = 0.

Duhamel formulation of the equation on S :

S(t) = cos(t
√
−∆ + M2)Sin −M2

∫ t

0

sin((t − s)
√
−∆ + M2)√

−∆ + M2
ρσ(Ψ(s)) ds

Integrating by parts in s, one obtains

S(t) + ρσ(Ψ(t)) =
−∆

−∆ + M2

(
ρσ(Ψ(t))− cos(t

√
−∆ + M2)ρσ(Ψin)

)
+

M2

−∆ + M2

∫ t

0

cos((t − s)
√
−∆ + M2)∂sρσ(Ψ(s)) ds,

Controlling S(t) + ρσ(Ψ(t)) in Hk requires a bound on ∂sρσ(Ψ(s)) in Hk , which
by the equation on Ψ requires a control on Ψ in Hk+1, which itself requires a
bound on S in Hk+1... Loss of derivatives!
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Bounds for the reduced equation
• Introduce the reduced unknown S = S + ρσ(Ψ), satisfying

(∂2t −∆ + M2)S = (∂2t −∆)ρσ(Ψ)

• Ψ satisfies a Dirac equation ⇒ (∂2t −∆)ρσ(Ψ) = P(Ψ,∇Ψ,∇S)

(Gain of one derivative)

Lemma

Let s > 5/2 and s ′ ∈ [s − 1, s]. Then, for any R > 0 there exists C (R) > 0
independent of M such that for all M > 1 we have

• ‖(Ψ,S)‖L∞t ([0,T ],W 1,∞) 6 R

=⇒ ∀t ∈ [0,T ], ‖(Ψ,S)(t)‖Hs 6 ‖(Ψ,S)(0)‖Hs eC(R)t

• ‖(Ψ,S)‖L∞t ([0,T ],Hs ) 6 R

=⇒ ‖S(t)− cos(t
√
−∆ + M2)S(0)‖L∞t ([0,T ],Hs′ ) 6 C (R)Ms′−s

•‖(Ψ,S)‖L∞t ([0,T ],Hs ) 6 R =⇒ ‖Ψ−ΨNL‖L∞([0,T ],Hs′ ) 6 C (R)Ms′−s .
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The many-body problem

• Replace Ψ by γ non-negative operator on L2(R3,C4)
(one-body reduced density matrix)

• “Many-body” Dirac-Klein-Gordon system{
i∂tγ = [α · (−i∇) + (m + S)β, γ]

(∂2t −∆ + M2)S = −M2ρβγ

where ρβγ(x) := TrC4(βγ(x , x)).

• Analogue of Sobolev spaces for density matrices:

‖γ‖Hs := ‖(1−∆)s/2γ(1−∆)s/2‖S2 .

• Similar statement for initial data (γin,Sin, Ṡin) ∈ Hs × Hs × Hs−1 (s > 5/2):

lim
M→+∞

‖γ − γNL‖L∞([−T1,T2],Hs′ ) = 0

Analogue of blow-up criterion in L∞ for density matrices?
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Blow-up criterion for density matrices

For wavefunctions, use the Kato-Ponce inequality

‖uv‖Hs 6 C (‖u‖L∞‖v‖Hs + ‖u‖Hs‖v‖L∞)

to infer ‖〈βΨ,Ψ〉βΨ‖Hs . ‖Ψ‖2L∞‖Ψ‖Hs and deduce a blow-up criterion in L∞.

Replacement for density matrices:

Lemma

Let 3/2 < s ′ < s. Then, there exists C > 0 such that for all γ ∈ Hs with γ > 0
and for all f ∈ Hs we have

‖f γ‖Hs + ‖γf ‖Hs 6 C (‖f ‖Hs‖γ‖1/2
Hs′ ‖γ‖

1/2
Hs + ‖f ‖L∞‖γ‖Hs )

‖ργ‖Hs 6 C‖γ‖1/2
Hs′ ‖γ‖

1/2
Hs
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