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Potential of infinite configurations

Goal

Renormalize the divergent series ∑
j≥1

1

|x − xj |

What is a natural renormalization procedure?

Final result should ideally not depend on renormalization method

Which configurations {xj}j≥1 have a renormalizable potential?

Renormalized potential Φ(x) should appear in equilibrium equation for infinite
Gibbs equilibrium state of classical Jellium (Dobrušin–Lanford–Ruelle equations)

Infinite Gibbs point process should concentrate on configurations with a
renormalizable potential
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History of a conendrum

I 1934–35 (Wigner, Fuchs) computation of Jellium energy and potential of BCC lattice
in a uniform background (Jellium)

I 1959: unpublished notes by Plaskett

I 1979: Hall found “an error in Fuchs’ calculation of the electrostatic energy of a
Wigner solid”

 De Wette (1980), Ihm–Cohen (1980), Hall–Rice (1980), Hall (1981),
Alastuey–Jancovici (1981), Nijboer–Ruijgrok (1988)

I 1980: Choquard–Favre–Gruber found at T > 0 that “several definitions of the
pressure” were “nonequivalent in the presence of a rigid neutralizing background”

I 1988: Borwein–Borwein–Shail–Zucker found “jump discontinuities in Wigner limits”

I 2015: ML–Lieb had problems comparing Jellium with Uniform Electron Gas. Solved
by Cotar–Petrache (2019) and ML–Lieb–Seiringer (2019)

Main message

Renormalization of Coulomb potential is ambiguous for infinite periodic lattice
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Renormalization methods

I Jellium: if points have average density ρ, insert uniform background of same density

Φ(x) := lim
R→∞

( ∑
xj∈BR

1

|x − xj |
− ρ

�
BR

dy

|x − y |

)

I Cut-off long range:

Φ(x) := lim
m→0

(∑
j≥1

e−m|x−xj |

|x − xj |
− ρ

�
R3

e−m|x−y|dy

|x − y |

)

I Meromorphic continuation:

Φ(x) :=

{∑
j≥1

1

|x − xj |s
for {<(s) > 3}

}∣∣∣∣
s=1

I PDE methods:

−∆Φ = 4π

(∑
j≥1

δxj − ρ
)

defines Φ up to a harmonic function (a constant under growth assumptions)

[Caffareli-Silvestre ’07 for |x |−s ]
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Jellium ≡ analytic continuation

Lemma (ML ’22)

Let X = {xj}j≥1 ⊂ Rd with inf j 6=k |xj − xk | > 0. Let x ∈ Rd \ X and assume that∣∣∣∣#X ∩ BR(x)− ρ |S
d−1|Rd

d

∣∣∣∣ ≤ CRd−α, ∀R ≥ C

for some ρ,C > 0 and 0 < α ≤ d. Then the potential Φs(x) :=
∑

j≥1 |x − xj |−s , initially
defined on {<(s) > d}, admits a meromorphic extension to {<(s) > d − α} with a
unique simple pole at s = d, of residue ρ|Sd−1|. This extension satisfies

Φs(x) = lim
R→∞

 ∑
xj∈BR (x)

1

|x − xj |s
− ρ

�
BR (x)

dy

|x − y |s

 ∀d − α < <(s) < d.

Borwein et al ’88, Blanc–Le Bris–Lions ’02, Ge–Sandier ’21

Y = {|k|
α

d−α k, k ∈ Zd} has O(Rd−α) points in BR and yields a pole at s = d − α.
Adding it to nice X shows that range of extension is optimal

For periodic systems, α = 2 in d ≥ 5 (Götze 2004), α < 2 in d = 4,
α < 2− 2/(d + 1) in d ∈ {2, 3} (Landau, 1915–24), α = 1 in d = 1.
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Jellium ≡ analytic continuation II

Lemma (Borwein et al ’88, Lauritsen ’21, ML ’22)

Let X = {xj}j≥1 ⊂ Rd and assume that Rd = ∪jΩj for disjoints sets Ωj satisfying

|Ωj | = ρ−1, ρ

�
Ωj

x dx = xj , Br (xj) ⊂ Ωj ⊂ B1/r (xj)

for some 0 < r < 1 and all j ≥ 1. The potential Φs(x) :=
∑

j≥1 |x − xj |−s , initially
defined for {<(s) > d}, admits a meromorphic extension to {<(s) > d − 2} with a
unique simple pole at s = d, of residue ρ|Sd−1|. We have

Φs(x) = lim
R→∞

∑
xj∈BR

1

|x − xj |s
− ρ

�
∪

xj∈BR
Ωj

dy

|x − y |s

 for max(0, d − 2) < <(s) < d.

Now covers periodic lattices for <(s) > d − 2
in all dimensions, with Ωj = xj + Q and
symmetric unit cell
Q = {x ∈ Rd : |x | < |x − xk |, xk 6= 0}

Q
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Proof

Assume x = 0 for simplicity. Since no dipole, function

f (s) :=
∑
j

(
1

|xj |s
− ρ

�
Ωj\B1

dy

|y |s︸ ︷︷ ︸
=O

(
1

|xj |s+2

)

)

is analytic on {<(s) > d − 2}

For <(s) > d

f (s) = Φs(x)− ρ
�
Rd\B1

dy

|y |s = Φs(x)− ρ|Sd−1|
s − d

For d − 2 < <(s) < d

f (s) = lim(· · · ) + ρ

�
B1

dy

|y |s = lim(· · · ) +
ρ|Sd−1|
d − s

Rmk. Quadrupole depends on s, given in terms of d × d matrix (s + 2)xxT − |x |2
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Conendrum in periodic case

Lemma (Borwein et al ’88)

Let X = v1Z + · · ·+ vdZ be a lattice and Q = {|y | < |y − z |, z ∈ X \ {0}} be its unit
cell. Then Φs(x) :=

∑
z∈X |x − z |−s , initially defined for {<(s) > d}, admits a

meromorphic extension to C \ {d} with a simple pole at s = d of residue ρ|Sd−1|. If
there is no quadrupole, d

�
Q

yjyk dy =
�
Q
|y |2 dy, then at s = d − 2 (d ≥ 3) we have

lim
R→∞

∑
xj∈BR

1

|x − xj |d−2
− ρ

�
∪

xj∈BR
(xj+Q)

dy

|x − y |d−2

 = Φd−2(x) +
|Sd−1|

2d

�
Q

|y |2 dy

Fuchs (1935): energy per particle e of BCC lattice in background. Used e = Φ(0)

2
,

Φ(0) := lim
x→0

(
Φd−2(x)− 1

|x |d−2

)
is the interaction of any point with rest of the system (Madelung cnst). Important
here to use analytic continuation and not the background.

Nijboer–Ruijgrok (1988): different shifts depending on how background grows

Additional log in d = 2 (Lauritsen, 2021)
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Proof[
|Q| = ρ−1 = 1

]
I no-quadrupole ⇒ fs = |x |−s − 1Q ∗ |x |−s also integrable for s = d − 2, hence

lim
R→∞

∑
xj∈BR

1

|x − xj |s
−
�
∪

xj∈BR
Ωj

dy

|x − y |s

 =
∑
j

fs(x − xj) =: Fs(x)

for all d − 2≤ s < d . Already known that Fs = Φs for d − 2< s < d

I Fs is periodic function with Fourier coefficients {f̂s(k)}k∈X∗

f̂s(k) ∝ 1− 1̂Q(k)

|k|d−s
=


1

|k|d−s for k ∈ X ∗ \ {0}
0 for k = 0 and s > d − 2
1
d

�
Q
|x |2 dx for k = 0 and s = d − 2

since

1̂Q(k) =

�
Q

e−ik·x dx = 1 +
|k|2

d

�
Q

|x |2 dx + o(|k|2))

Remark: would work for <(s) > d−4 with |1−1̂Q(k)|2
⇐⇒ big background 21Ω − 1Ω ∗ 1Q instead of 1Ω

Energy involves |x |−s − 21Q ∗ |x |−s + 1Q ∗ 1Q ∗ |x |−s

hence analytic extension
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Jellium ground state

Jellium energy of N points in background ρ1Ω

Es(x1, ..., xN ,Ω, ρ) :=
∑

1≤j<k≤N

1

|xj − xk |s
− ρ

N∑
j=1

�
Ω

dy

|xj − y |s +
ρ2

2

�
Ω×Ω

dx dy

|x − y |s

Es(N,Ω, ρ) := min
x1,...,xN∈Ω

Es(x1, ..., xN ,Ω, ρ)

Theorem (Thermodynamic limit)

Let 0 < s < d and Ω = `ω with ω smooth and convex, with |ω| = 1.

The following limits exist and are independent of ω:

I Grand-canonical: lim
`→∞

`−d min
n

{
Es(n, `ω, ρ)− µ n

}
= e(s)ρ1+ s

d − µρ

I Canonical for d − 2 ≤ s < d: lim
N,`→∞

`
− d+s

2 (N−ρ`d )→0

`−dEs(N, `ω, ρ) = e(s)ρ1+ s
d

Lieb–Narnhofer ’75, Sari–Merlini ’76, Fefferman–Gregg ’80s, Serfaty et al ’10s, ML ’22

Same result at T > 0
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Infinite equilibrium configurations

Theorem (ML ’22)

Let 0 < s < d in d ∈ {1, 2} and d − 2 ≤ s < d in d ≥ 3. Let ρ > 0, µ ∈ R. Consider
any minimizer X` = {x1,`, ..., xN`,`} ⊂ `ω for the grand-canonical problem. Up to a
subsequence and space translation, we have X` → X locally. The potential

Φ`(x) :=

N∑̀
j=1

1

|x − xj,`|s
− ρ

�
`ω

dy

|x − y |s −→`→∞ Φ(x)

in L1
loc(Rd) and locally uniformly away from the xj ’s. For s > d − 2 we have

Φ(x) = Cj0 +
1

|x − xj0 |s
+
∑
j 6=j0

(
1

|x − xj |s
− 1

|xj0 − xj |s
+ s

(x − xj0 ) · (xj0 − xj)

|xj0 − xj |s+2

)
.

If s = d − 2, Φ solves the equation −∆Φ = (d − 2)|Sd−1|(
∑

j δxj − ρ) and is uniquely

determined up to a constant. For any D ⊂ Rd , any Y = {y1, ..., yn} ⊂ D we have the
Dobrušin–Lanford–Ruelle equation

n∑
j=1

ΦDc (yj) + Es(Y ,D, ρ)− µn ≥
∑
xj∈D

ΦDc (xj) + Es(XD ,D, ρ)− µN,

where XD := X ∩ D, N = #XD and ΦDc (x) := Φ(x)−
∑

xj∈D
1

|x−xj |s
+ ρ

�
D

dy
|x−y|s .
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Positive distance between the points in the bulk (Lieb, Petrache–Serfaty ’17)

Φ` locally bounded, up to the obvious singularities at the xj,`

Limiting Φ only known up to a constant. Corresponds to renormalizing the
chemical potential µ (Imbrie ’82, Brydges–Martin ’99)

Existence for only one µren?

How is Φ(x) renormalized?

Crystallization conjecture

The equilibrium infinite configurations X are periodic, of minimal energy per unit volume

e(s) = min
L, |Q|=1

ζL(s)

where ζL(s) = 1
2

∑
z∈L\{0} |z |

−s for {<(s) > d} meromorphically continued to C \ {d}
(Epstein Zeta function).

Formula for e(s) known for all s ≥ max(0, d − 2) in d ∈ {1, 8, 24}
(Cohn–Kumar–Miller–Radchenko–Viazovska ’22, Petrache–Serfaty ’20)

Expect triangular ∀s > 0 in d = 2

Expect BCC for 0 < s ≤ 3/2 and FCC for s ≥ 3/2 in d = 3
(Wigner ’34, Nijboer ’75, Sarnak-Strömbergsson ’04)

no result for X to our knowledge, except for s = −1 in 1D (Kunz ’74)
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Positive temperature case

Dereudre–Vasseur (arXiv): d − 1 < s < d

use of move function Φ̃s(x) :=
∑

j

(
1

|x−xj |s
− 1
|xj |s

)
to define infinite canonical

stationary Gibbs measure

Study cost of adding or removing one point to the infinite system, through Campbell
measures. Show they are absolutely continuous w.r.t. Gibbs point process

Solution to grand-canonical DLR, with unknown potential Φs = Φ̃s + C , for an
unknown constant
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