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Chapter 1

Principles of Quantum Mechanics

1.1 Hilbert spaces

Definition (Hilbert Spaces). A space H is a Hilbert space if

• H is a complex vector space;

• it is equipped with an inner product 〈·, ·〉 which is linear in the second argument

and anti-linear in the first

〈x, λy〉 = λ〈x, y〉, 〈λx, y〉 = λ〈x, y〉;

• (H , ‖ · ‖) is a Banach (complete normed) space with norm ‖x‖ =
√
〈x, x〉.

A Hilbert space H is separable if there exists a finite or countable family of vectors {un}n≥1

which forms an orthonormal basis. In this case, we can write

x =
∑
n≥1

〈un, x〉un, ∀x ∈H .

Consequently, we have Parsevel’s identity

‖x‖2 =
∑
n≥1

|〈un, x〉|2, ∀x ∈H .

We will always work with separable Hilbert spaces.

4
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Review: Riesz (representation)/Banach-Alaoglu/Banach-Steinhaus theorem.

1.2 Operators on Hilbert spaces

Definition (Operators on Hilbert Spaces). By an operator A on H we mean a linear

map A : D(A)→H with a dense, subspace D(A) (domain of A).

The adjoint operator A∗ is defined by

D(A∗) =
{
x ∈H | ∃A∗x ∈H : 〈x,Ay〉 = 〈A∗x, y〉, ∀y ∈ D(A)

}
.

The operator A is self-adjoint if A = A∗.

The concept of self-adjointness is very important in quantum mechanics. Mathematically, it

enables various rigorous computations, thanks to the Spectral theorem.

Theorem (Spectral theorem). Assume that A is a self-adjoint operator on a separable

Hilbert space H . Then there exists a measure space (Ω, µ), a real-valued measurable

function a : Ω→ R and a unitary transformation U : H → L2(Ω) such that

UAU∗ = Ma.

Here Ma is the multiplication operator on L2(Ω), defined by

(Maf)(x) = a(x)f(x), D(Ma) = {f ∈ L2(Ω), af ∈ L2(Ω)}.

We can choose Ω = σ(A)× N ⊂ R2 and a(λ, n) = λ.

In practice, the self-adjointness is not always easy to prove. It is however easier to check

whenever an operator A is symmetric, namely

〈x,Ay〉 = 〈Ax, y〉, ∀x, y ∈ D(A).
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Exercise. Prove that the followings are equivalent:

1. A is a symmetric operator;

2. 〈x,Ax〉 ∈ R for all x ∈ D(A).

3. A∗ is an extension of A, namely D(A) ⊂ D(A∗).

Thus if A is self-adjoint, then A is symmetric. But the reverse is not true. Two useful methods

to find self-adjoint extensions for symmetric operators are Friedrichs’ extension and

Kato-Rellich theorem.

Theorem (Friedrichs’ extension). Assume that A is bounded from below, namely

〈x,Ax〉 ≥ −C‖x‖2, ∀x ∈ D(A)

with a finite constant C independent of x. Then A has a self-adjoint extension AF by

Friedrichs’ method. The Friedrichs extension preserves the ground state energy

inf
x∈D(A),‖x‖=1

〈x,Ax〉 = inf
x∈D(AF ),‖x‖=1

〈x,AFx〉.

The quadratic form domain Q(AF ) is the same with Q(A). Recall that we define Q(A) as

the closure of D(A) under the quadratic form norm ‖x‖Q(A) =
√
〈x, (A+ C + 1)x〉. However,

the domain D(AF ) is often not known explicitly. For the latter issue, the Kato-Rellich

theorem gives a better information on the domain of the extension.

Theorem (Kato-Rellich theorem). Assume that we can write A = A0 +B, where A0 is

self-adjoint and B is a small perturbation of A0, in the meaning that

‖Bx‖ ≤ (1− ε)‖A0x‖+ Cε‖x‖, ∀x ∈ D(A0) ⊂ D(B),

for some constant ε > 0 independent of x (we say that B is A0-relatively bounded with

the relative bound 1 − ε). Then A can be extended to be a self-adjoint operator on the

same domain of A0.

Review: Bounded/compact/Hilbert-Schmidt/trace class operators.
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1.3 Principles of Quantum Mechanics

Definition (Principles of Quantum Mechanics). A quantum system can be described by

a (separable) Hilbert space H .

• A pure state is a rank-one projection |x〉〈x| with a normalized vector x ∈ H

(we use the bra-ket notation). A mixed state is a trace class operator Γ on

H such that Γ = Γ∗ ≥ 0, Tr Γ = 1. By Spectral theorem any mixed state is a

super-position of pure states, namely

Γ =
∑
n≥1

ξn|xn〉〈xn|

where {xn} is an orthonormal family in H and ξn ≥ 0,
∑

n ξn = 1.

• The Hamiltonian H is a self-adjoint operator on H which corresponds to the

energy 〈x,Hx〉 or Tr(HΓ). The ground state energy is

E0 := inf σ(H) = inf
‖x‖=1

〈x,Hx〉 = inf
Γ≥0,Tr Γ=1

Tr(HΓ).

If the infimum exists, then the ground state solves the Schrödinger equation

Hx = E0x. Other elements of the spectrum σ(H) corresponds to excited states.

• At a positive temperature T > 0, the minimizer of the free energy

ET = inf
Γ≥0,Tr Γ=1

{
Tr(HΓ) + T Tr

(
Γ log(Γ)

)}
is given uniquely by the Gibbs state

ΓT = Z−1
T e−H/T , ZT = Tr(e−H/T ) (if the partition function ZT is finite).

• The evolution of the quantum system is determined by the time-dependent

Schrödinger equation x(t) = e−itHx0.
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Exercise. Prove that if the infimum

E0 := inf σ(H) = inf
‖x‖=1

〈x,Hx〉 = inf
Γ≥0,Tr Γ=1

Tr(HΓ).

is attained for a mixed state Γ, then it is also attained for a pure state |x〉〈x|.

Exercise. Prove that any ground state |x〉〈x| satisfies the Schrödinger equation

Hx = E0x.

Hint: For any y ∈H , define xε = (x+εy)/|x+εy‖. Then the functional ε 7→ 〈xε, Hxε〉
has a local minimum at ε = 0.

Exercise. Assume that the partition function is finite for some temperature T0 > 0.

1. Prove that ZT it is finite for all T ∈ (0, T0). This implies that the Gibbs states is

well-defined for all T ∈ (0, T0).

2. Prove that the free energy is finite for all T ∈ (0, T0) and

lim
T→0

ET = E0 (the ground state energy).

Hint: You can use the Gibbs variational principle ET = −T logZT .
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1.4 Many-body quantum mechanics

Definition (Tensor product). Let H1 and H2 are two Hilbert spaces. The tensor

product space H1 ⊗H2 is a Hilbert space

H1 ⊗H2 = Span{u⊗ v |u ∈H1, v ∈H2}.

Here the closure is taken under the norm of H1⊗H2 which is given by the inner product

〈u1 ⊗ u2, v1 ⊗ v2〉H1⊗H2 = 〈u1, v1〉H1〈u2, v2〉H2 .

Let A1 and A2 are operators on H1 and H2, respectively. Then the tensor product

operator A1 ⊗ A2 is an operator on H1 ⊗H2 defined by

A1 ⊗ A2(u1 ⊗ u2) = (A1u1)⊗ (A2u2), D(A1 ⊗ A2) = D(A1)⊗D(A2).

More generally, we can define the tensor product space H1 ⊗H2 ⊗ ... ⊗HN and the

tensor product operator A1⊗A2⊗ ...⊗AN . In particular, if H1 = H2 = ... = HN , then

we write

H1 ⊗H1 ⊗ ...⊗H1 = H ⊗N
1 .

Remarks:

• The tensor product H1 ⊗ H2 is different from the direct product H1 × H2. In

particular, for any λ ∈ C we have

(λu1)⊗ u2 = λ(u1 ⊗ u2) = u1 ⊗ (λu2)

and similarly

(λA1)⊗ A2 = λ(A1 ⊗ A2) = A1 ⊗ (λA2).

• The notation H1 ⊗H2 ⊗ ...⊗HN is consistent thanks to the Associative Property

(H1 ⊗H2)⊗H3 = H1 ⊗ (H2 ⊗H3).

The same applies to the tensor product operator A1 ⊗ A2 ⊗ ...⊗ AN .
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Exercise. Assume that {un}n≥1 is an orthonornal basis for H1 and {vm}m≥1 is an

orthonornal basis for H2. Prove that {un⊗vm}m,n≥1 is an orthonornal basis for H1⊗H2.

Exercise. Let H1 and H2 be two Hilbert spaces. Assume that the sequence {un}n≥1 is

bounded in H1 and the sequence {vn}n≥1 converges weakly to 0 in H2. Prove that

un ⊗ vn ⇀ 0 weakly in H1 ⊗H2.

Exercise. Prove that for any d,N ≥ 1, we have L2(RdN) = L2(Rd)⊗N .

Definition (Many body quantum systems). Consider a quantum system of N particles,

where the i-th particle is described by the Hilbert space Hi and the Hamiltonian hi.

Moreover, assume that the interaction between the i-th and j-th particles is described by

an operator Wij on Hi ⊗Hj. Then the combined system of N particles is described by

the interacting Hamiltionian

HN =
N∑
i=1

hi +
∑

1≤i<j≤N

Wij.

acting on the tensor product space H1 ⊗ ...⊗HN . Here to simplify the notation we

identify hi with 1H1⊗ ...⊗hi⊗ ...⊗1HN
(the identity 1 is put everywhere except the i-th

position). The same applies to Wij, for example W12 is identified to W12⊗1H3⊗...⊗1HN
.

Remarks: The above expression is a bit formal as we did not specify the domain of relevant

operators. In practice, we will consider the case where Wij is relatively bounded with respect

to hi + hj, with an arbitrary small relative bound. In this case, by the Kato-Rellich theorem

the interacting Hamiltonian is self-adjoint on the same domain with the non interacting

Hamiltionian

H0
N = h1 + ...+ hN .
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Exercise (Non-interacting Hamiltonian). Assume that for any i = 1, 2, ..., N , the

Hamiltonian hi is self-adjoint on Hi. Consider the N-particle system with the non-

interacting Hamiltonian H0
N = h1 + ...+ hN on H1 ⊗ ...⊗HN .

1. Prove that H0
N is self-adjoint with the domain

D(H0
N) = D(h1)⊗D(h2)⊗ ...⊗D(hN)

‖.‖
H0
N .

Here the closure is taken with the operator norm ‖ΨN‖H0
N

= ‖ΨN‖+ ‖H0
NΨN‖.

2. Prove that the ground state energy of H0
N is

inf σ(H0
N) =

N∑
i=1

inf σ(hi) (both sides can be −∞).

3. Prove that if ui is a ground state of hi, then u1 ⊗ ...⊗ uN is a ground state of H0
N .

In practice, we will mostly consider identical particles. For instance, every electron in the

universe has the same mass, electric charge and spin. To work with identical particles, we

will always assume that the corresponding one-body operators hi is the same for all i, and

that the interaction operator Wij is the same for all i and j (in particular, Wij = Wji). The

notations hi and Wij are still useful to indicate which particles that the operators act. Then

the N -body Hamiltonian

HN =
N∑
i=1

hi +
∑

1≤i<j≤N

Wij.

leaves invariant two important subspaces of H ⊗N : the symmetric subspace and the anti-

symmetric subspace, which correspond to the Bose-Einstein statistics and the Fermi-

Dirac statistics.

Definition (Particle statistics). Let H be the Hilbert space of one particle. For every

permutation σ ∈ SN , we define the permutation operator Uσ : H ⊗N →H ⊗N by

Uσ(u1 ⊗ u2 ⊗ ...⊗ uN) = uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(N).

• For N identical bosons, the corresponding Hilbert space H ⊗sN is the symmetric
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subspace of H ⊗N , namely

Uσ(ΨN) = ΨN , ∀ΨN ∈H ⊗sN , ∀σ ∈ SN .

• For N identical fermions, the corresponding Hilbert space H ⊗aN is the anti-

symmetric subspace of H ⊗N , namely

Uσ(ΨN) = sign(σ)ΨN , ∀ΨN ∈H ⊗aN , ∀σ ∈ SN .

The latter identity is called Pauli’s exclusion principle.

Exercise. 1. Prove that the operator Uσ defined as above is a unitary transformation.

2. Prove that the operators

P+ = (N !)−1
∑
σ∈SN

Uσ, P− = (N !)−1
∑
σ∈SN

sign(σ)Uσ

are orthogonal projections, namely P± = P ∗± = P 2
±.

3. Prove that H ⊗sN = P+(H ⊗N) and H ⊗aN = P−(H ⊗N).

Exercise. Assume that {un}n≥1 is an orthonormal basis for H . Prove that

{P±(ui1 ⊗ ui2 ⊗ ...⊗ uiN )}i1,...,iN≥1

is an orthogonal basis for H ⊗s/aN .

The simplest example for a bosonic state is the Hartree state (pure tensor product state)

u⊗N(x1, ..., xN) = u(x1)...u(xN)

where u is a normalized vector in H . The simplest example for a fermionic state is the

Slater determinant

(u1 ∧ u2 ∧ ... ∧ uN)(x1, ..., xN) =
1√
N !

det
[
(ui(xj))1≤i,j≤N

]
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where {ui}Ni=1 is an orthonormal family of H . Here we put the factor 1/
√
N ! to ensure that

the Slater determinant is normalized (you should check why?).

The behavior of a many-body quantum system depends crucially on the particle statistics.

This can be seen already in the non-interacting case.

Exercise (Non-interacting Hamiltonian with particle statistics). Let h be a self-adjoint

operator on H . Consider the non-interacting Hamiltonian H0
N = h1 + ... + hN on

H ⊗a/sN .

1. Prove that H0
N is self-adjoint with the domain

D(H0
N) = P±D(h)⊗D(h)⊗ ...⊗D(h)

‖.‖
H0
N .

2. Prove that in the bosonic case, the ground state energy of H0
N is

inf σ(H0
N) = N inf σ(h) (both sides can be −∞).

In particular, if u is a ground state for h, then the Hartree state u⊗N is a ground state

for H0
N .

3. (Hard) Prove that in the fermionic case, the ground state energy of H0
N is

inf σ(H0
N) =

N∑
i=1

λi(h) (both sides can be −∞).

Here λi is the i-th min-max value of h. In particular, if h has the lowest eigenvalues

λ1, ..., λN with eigenfunctions u1, ..., uN , then the Slater determinant u1 ∧ u2 ∧ ... ∧ uN
is a ground state for H0

N .

In general, non-interacting systems are “easy to understand”. The interacting systems are

much more difficult. When the number of particles becomes large, basic physical properties

of interacting systems are impossible to compute, even numerically. In computational

physics (even chemistry) people often use approximate theories: it is desirable to replace the

linear, many-body theory by nonlinear, one-body (or few-body) theories. A major task

of mathematical physics is to develop/justify these approximations.

Since the underlying Hilbert spaces H ⊗s/aN are too large, it is often useful to restrict to

smaller classes of quantum states. For bosons, by restricting the consideration to only Hartree
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states, we obtain the Hartree theory (also called the Gross-Pitaevskii theory in the con-

text of the Bose-Einstein condensate and superfluidity). For fermions, by restricting the

consideration to only Slater determinants, we obtain the Hartree-Fock theory. These the-

ories are consistent with the mean-field approximation and typically predict the leading

order behavior of many-body quantum systems when the number of particles becomes large.

To go beyond the leading order approximation, we need to take the particle correlation

into account. The correction to the leading order approximation can be formulated in terms

of quasi-free particles, leading to Bogoliubov theory for bosons, and the Hartree-Fock-

Bogoliubov theory for fermions (the latter is a generalization of the Bardeen-Cooper-

Schrieffer theory in the context of superconductivity).

In this course we will develop mathematical tools to derive rigorously these approximate

theories. In particular, we will employ the framework from quantum field theory, including

the Fock space formalism and the method of second quantization.



Chapter 2

Schrödinger operators

Definition. A typical many-body Schrödinger operator has the form

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

1≤i<j≤N

W (xi − xj)

acting on L2(RdN) or the bosonic space L2(Rd)⊗sN or the fermionic space L2(Rd)⊗aN ,

where

• −∆, the usual Laplacian on L2(Rd), is the kinetic operator of a particle;

• V : Rd → R an external potential;

• W = W (−.) : Rd → R an interaction potential (it is even, hence Wij = Wji).

Recall that the bosonic space L2(Rd)⊗sN contains all symmetric functions, namely

ΨN(x1, ..., xi, ..., xj, ..., xN) = ΨN(x1, ..., xj, ..., xi, ..., xN), ∀i 6= j

while the fermionic space L2(Rd)⊗aN contains all anti-symmetric functions

ΨN(x1, ..., xi, ..., xj, ..., xN) = −ΨN(x1, ..., xj, ..., xi, ..., xN), ∀i 6= j.

In this chapter the particle statistics does not play an important role, so at first reading you

may think of HN acting on the full space L2(RdN) for simplicity.

We will study some general spectral properties of the Schrödinger operators. We will always

15
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assume that the interaction potential W is relatively bounded with respect to −∆Rd . For the

external potential, we distinguish two different cases:

• The trapping case V (x)→ +∞ as |x| → ∞;

• The vanishing case V (x)→ 0 as |x| → ∞.

The spectral properties of these two cases are very different. In the first case, the Hamiltonian

HN has discrete spectrum with eigenvalues converging to infinity. This follows the same

analysis that we have discussed in MQM1 (we will recall below). In the second case, the

interaction operator is not a compact-perturbation of the kinetic operator, leading to a

big change on the essential spectrum in comparison to the one-body Schrödinger operator.

2.1 Weyl’s theory

Let us quickly remind some important tools to study the Schrödinger operators. First we

recall some general facts from spectral theory.

Definition (Spectrum). Let A be a self-adjoint operator on a Hilbert space H . Then

its spectrum is

σ(A) = {λ ∈ R : (A− λ)−1 is a bounded operator }.

The discrete spectrum σdis(A) is the set of isolated eigenvalues with finite multiplic-

ities. The essential spectrum is the complement

σess(A) = σ(A)\σdis(A).

Exercise. Consider the multiplication operator Ma on L2(Ω, µ) which is self-adjoint

with the domain D(Ma) = {f ∈ L2 : af ∈ L2}. Prove that

• λ ∈ σ(Ma) iff µ(a−1(λ−ε, λ+ε)) > 0 for all ε > 0, namely σ(Ma) = ess-range(a).

• λ is an eigenvalue of Ma iff µ(a−1(λ)) > 0.

• λ ∈ σdis(Ma) iff λ is an isolated point of σ(Ma) and 0 < µ(a−1(λ)) <∞.
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By the spectral theorem, any self-adjoint operator is unitarily equivalent to a multiplication

operator. However, this abstract result is not very helpful in application, as it is hard to

compute the measure µ.

Here is a general characterization of the spectrum.

Theorem (Weyl’s Criterion). For any self-adjoint operator A on a Hilbert space H :

• λ ∈ σ(A) iff there exists a Weyl sequence {un} ⊂ D(A) such that

‖un‖ = 1, ‖(A− λ)un‖ → 0 as n→∞.

• λ ∈ σess(A) iff there exists a Weyl sequence {xn} ⊂ D(A) such that

‖un‖ = 1, un ⇀ 0 weakly, ‖(A− λ)un‖ → 0 as n→∞.

In practice, Weyl’s Criterion is very useful to study the essential spectrum. A famous conse-

quence of Weyl’s Criterion is

Theorem (Compact perturbation does not change essential spectrum). Let A be a self-

adjoint operator on a Hilbert space. Let B be a symmetric operator which is A-relatively

compact, namely D(B) ⊂ D(A) and B(A+ i)−1 is a compact operator. Then A+B is

self-adjoint on D(A) and

σess(A+B) = σess(A).

Exercise. Prove the above corollary using Weyl’s Criterion theorem.

Hint: You can write B = B(A+ i)−1(A+ i).

2.2 Min-max principle

A useful tool to study the discrete spectrum below the essential spectrum is the min-max

principle.

Theorem (Min-Max Principle). Let A be a self-adjoint operator on a Hilbert space H .
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Assume that A is bounded from below and define the min-max values

µn(A) = inf
M⊂D(A)
dimM=n

sup
u∈M
‖u‖=1

〈u,Au〉 .

Then we have

inf σess(A) = µ∞(A) := lim
n→∞

µn(A).

Moreover, if µn(A) < µ∞(A), then µ1, . . . , µn are the lowest eigenvalues of A.

Remarks:

• In the above definition, the condition M ⊂ D(A) can be replaced by M ⊂ D for any

subspace D which is dense in the quadratic form domain Q(A). Thus in practice, we

can compute the min-max values even if we do not know the domain of A. For example,

if A is the Friedrichs’ extension of a (densely defined) operator A0, then the min-max

values can be computed using the domain of A0.

• It is obvious that µn(A) is an increasing sequence when n grows. Thus the limit

µ∞(A) := limn→∞ µn(A) always exists, even it can be +∞.

• If µ∞(A) = +∞, then the strict inequality µn(A) < µ∞(A) trivially holds for all

n = 1, 2, .... Consequently, all min-max values become eigenvalues and they converge

to +∞. In this case we say that A has compact resolvent because (A + C)−1 is a

compact operator for any C > −µ1(A)).

• The min-max values is monotone increasing in operator, namely if A ≤ B, then

µn(A) ≤ µn(B), ∀n = 1, 2, ...

In particular, if A ≤ B and A has compact resolvent, then B has compact resolvent.

2.3 Sobolev inequalities

Next, we turn to the fact that the Schrödinger operators are defined on the real space RdN .

Therefore, we recall some standard results from real analysis.
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Definition (Sobolev Spaces). For any dimension d ≥ 1 and s > 0, define

Hs(Rd) :=
{
f ∈ L2(Rd)

∣∣ |k|sf̂(k) ∈ L2(Rd)
}

with f̂ the Fourier transform of f . This is a Hilbert space with the inner product

〈f, g〉Hs =

∫
Rd

f̂(k)ĝ(k)(1 + |2πk|2)sdk

Remarks:

• We use the following convention of the Fourier transform

f̂(k) =

∫
Rd
e−2πik·xf(x)dx.

• On the Sobolev space Hs(Rd), we can define the weak derivative via the Fourier trans-

form

D̂αf(k) = (−2πik)αf̂(k)

which belongs to L2(Rd) for any multiple index α = (α1, ..., αd) with |α| = α1+...+αd ≤
s.

• In the above definition and the Sobolev inequalities below, the power s is not necessarily

an integer. In the course we will mostly think of s as an integer for simplicity. The

non-integer case (the so-called fractional Sobolev spaces) is useful for studying

relativistic quantum mechanics.

Theorem (Sobolev Inequalities/Continuous embedding). Let d ≥ 1 and s > 0. Then

‖f‖Lp(Rd) ≤ C‖f‖Hs(Rd), ∀f ∈ Hs(Rd)

where 
2 6 p 6 2d

d−2s
, if s < d/2,

2 6 p <∞, if s = d/2

2 6 p 6∞, if s > d/2.
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We say that Hs(Rd) ⊂ Lp(Rd) with continuous embedding. When s > d/2 we also have

the continuous embedding Hs(Rd) ⊂ C (Rd) (the space of continuous functions with

sup-norm).

Remarks:

• In the case s < d/2, the power p∗ := 2d/(d − 2s) is called the Sobolev critical

exponent. In fact, this is the only power works for the following standard Sobolev

inequality

‖f‖Lp∗ (Rd) ≤ C‖(−∆)s/2f‖L2(Rd)

(on the right side we do not put the full norm of Hs, but only the seminorm of Ḣs).

• In principle, for any given power s > 0, the Sobolev inequality becomes weaker when

the dimension d grows. For example,

H1(R) ⊂ L2(R) ∩ C (R), H1(R2) ⊂
⋂

2≤p<∞

Lp(R2), H1(R3) ⊂
⋂

2≤p≤6

Lp(R2).

Similarly,

H2(R3) ⊂ L2(R3) ∩ C (R3) but H2(R4) 6⊂ C (R4).

• A common difficulty of many-body quantum mechanics is that we will often work on

spaces with very high dimensions, making the use of Sobolev inequality less efficient.

Theorem (Sobolev compact embedding). Let d ≥ 1 and s > 0. Then for any bounded

set Ω ⊂ Rd, the operator 1Ω : Hs(Rd)→ Lp(Rd) is a compact operator, where2 6 p < 2d
d−2s

, if s ≤ d/2,

2 6 p 6∞, if s > d/2.

When s > d/2, we also have the compact embedding 1Ω : Hs(Rd)→ C (Rd).

Remark: An easy way to remember the Sobolev compact embedding is that if un ⇀ 0 weakly

in any Sobolev space Hs(Rd) with s > 0, then for any R > 0 we have

‖un1(|x| ≤ R)‖L2(Rd) → 0.
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Then the strong convergence in Lp follows by a standard interpolation (Hölder inequality);

this is the reason we have to avoid the critical power (end-point).

Exercise. Assume that un ⇀ 0 weakly in a Sobolev space Hs(Rd) with s > 0. Prove

that up to a subsequence n→∞, we can choose Rn →∞ such that

‖un1(|x| ≤ Rn)‖L2(Rd) → 0.

Is it really necessary to take a subsequence?

2.4 IMS formula

Another helpful result from real analysis is the IMS formula, named after Ismagilov,

Morgan, Simon and Israel Michael Sigal. This provides with a localization technique

in the position/configuration space.

Theorem (IMS formula). For any smooth function ϕ : Rd → R (e.g. C 1 or Lipschitz),

we have
ϕ2(−∆Rd) + (−∆Rd)ϕ

2

2
= ϕ(−∆Rd)ϕ− |∇ϕ|2.

Consequently, if smooth functions {ϕj}kj=1 form a partition of unity,

k∑
j=1

|ϕj|2 = 1Rd ,

then

−∆Rd =
k∑
j=1

ϕj(−∆Rd)ϕj −
k∑
j=1

|∇ϕj|2.

Exercise. Prove the IMS formula using the integration by part.
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2.5 Schrödinger operators with trapping potentials

Theorem. Consider the Schrödinger operator

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

1≤i<j≤N

W (xi − xj)

acting on L2(RdN) or L2(Rd)⊗sN or L2(Rd)⊗aN . Assume that

• W ∈ Lp(Rd) + L∞(Rd) with p > max(d/2, 1)

• V ∈ Lploc(Rd) and V (x)→ +∞ as |x| → ∞.

Then HN , originally defined on the core domain of smooth functions with compact sup-

port, is bounded from below and can be extended to be a self-adjoint operator by Friedrichs

method. Moreover, HN has compact resolvent, namely it has discrete spectrum with

eigenvalues converging to +∞.

Proof. Step 1. We prove that HN is bounded from below.

Consider the external potential V : Rd → R. For any ε > 0 we can write

V = V1 + V2, ‖V1‖Lp(Rd) ≤ ε, V2 ≥ −Cε, lim
|x|→∞

V2(x) = +∞.

Consider a wave function ΨN ∈ C∞c (RdN) (or a symmetric/anti-symmetric one) by Holder’s

inequality we have

〈ΨN , V1(x1)ΨN〉 =

∫
RdN

V1(x1)|ΨN(x1, ..., xN)|2dx1...dxN

≥ −
∫
Rd(N−1)

(∫
Rd
|V1(x1)|pdx1

)1/p(∫
Rd
|ΨN(x1, ..., xN)|2qdx1

)1/q

dx2...dxN

with
1

p
+

1

q
= 1.

Here we have (∫
Rd
|V1(x1)|pdx1

)1/p

= ‖V1‖Lp(Rd) ≤ ε.

The condition p > max(1, d/2) implies that q <∞ for all d ≥ 1, and moreover q < 2d/(d−2)
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in case d ≥ 3. Thus by Sobolev’s inequality for H1(Rd),

(∫
Rd
|ΨN(x1, ..., xN)|2qdx1

)1/q

≤
∫
Rd
|(1−∆x1)

1/2ΨN |2dx1.

In summary,

〈ΨN , V1(x1)ΨN〉 ≥ −Cε
∫
Rd(N−1)

(∫
Rd
|(1−∆x1)

1/2ΨN |2dx1

)
dx2...dxN = −Cε〈ΨN , (1−∆x1)ΨN〉.

This bound can be written in the compact form

V1(x1) ≥ −Cε(1−∆x1).

Similar estimates holds for V1(x2), ..., V1(xN). Thus

N∑
i=1

V (xi) =
N∑
i=1

V1(xi) +
N∑
i=1

V2(xi) ≥
N∑
i=1

V2(xi)− Cε
N∑
i=1

(∆xi)− Cε,N .

Consider the interaction potential W : Rd → R. For any ε > 0 we can write

W = W1 +W2, ‖W1‖Lp(Rd) ≤ ε, ‖W2‖L∞ ≤ Cε

Similarly as above, for any wave function ΨN ∈ C∞c (RdN) (or a symmetric/anti-symmetric

one) by Holder’s inequality and Sobolev inequality we can bound

〈ΨN ,W1(x1 − x2)ΨN〉 =

∫
RdN

W1(x1 − x2)|ΨN(x1, ..., xN)|2dx1...dxN

≥ −
∫
Rd(N−1)

(∫
Rd
|W1(x1 − x2)|pdx1

)1/p(∫
Rd
|ΨN(x1, ..., xN)|2qdx1

)1/q

dx2...dxN

≥ −
∫
Rd(N−1)

‖W1‖Lp(Rd)

(
C

∫
Rd
|(1−∆x1)

1/2ΨN |2dx1

)
dx2...dxN

≥ −Cε〈ΨN , (1−∆x1)ΨN〉.

Here again we use the notation 1
p

+ 1
q

= 1 and the condition q < ∞, q < 2d/(d − 2) for

d ≥ 3. The only difference to the previous treatment of the external potential is that we use

the translation-invariance of the interaction potential and the Lebesgue measure which

ensure that (∫
Rd
|W1(x1 − x2)|pdx1

)1/p

= ‖W1‖Lp(Rd) ≤ ε.
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The above estimate also holds for W1(xi − xj) for any i 6= j. Thus

∑
1≤i<j≤N

〈ΨN ,W1(xi − xj)ΨN〉 ≥ −Cε
∑

1≤i<j≤N

〈ΨN , (1−∆xi)ΨN〉

≥ −CNε
N∑
i=1

〈ΨN , (−∆xi)ΨN〉 − Cε,N .

The potential W2 is bounded, and hence for the total interaction part, we have

∑
1≤i<j≤N

〈ΨN ,W (xi − xj)ΨN〉 ≥ −CNε
N∑
i=1

〈ΨN , (−∆xi)ΨN〉 − Cε,N .

Conclusion of the lower bound. Combining the above estimates for the external and

interaction potentials we conclude that

N∑
i=1

V (xi)) +
∑

1≤i<j≤N

W (xi − xj) ≥
N∑
i=1

V2(xi)− C(N + 1)ε
N∑
i=1

(−∆xi)− Cε,N .

This holds for any ε ∈ (0, 1). We can choose ε = εN > 0 small enough such that C(N+1)ε <

1/2. Thus

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

1≤i<j≤N

W (xi − xj) ≥
N∑
i=1

(
− 1

2
∆xi + V2(xi)

)
− CN .

Since V2 is bounded from below, we conclude that HN is bounded from below.

Consequently, HN can be extended to be a self-adjoint operator using Friedrichs’ method.

Step 2. We need to prove that HN has compact resolvent. From the above lower bound

HN ≥
N∑
i=1

(
− 1

2
∆xi + V2(xi)

)
− CN .

and the Min-max principle, it suffices to prove that the operator

H̃N =
N∑
i=1

(
− 1

2
∆xi + V2(xi)

)
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has compact resolvent. This operator can be written as

H̃N = −1

2
∆RdN + U(X), U(X) =

N∑
i=1

V2(xi), X = (x1, ..., xN) ∈ RdN .

If HN is an operator on the full space L2(RdN), then we can interpret H̃N as a one-body

Schrödinger operator on L2(RdN). The condition lim|x|→∞ V2(x)→ +∞ implies that

lim
|X|→∞

U(X) = +∞.

Therefore, −1
2
∆RdN + U(X) has compact resolvent (we have proved this in MQM1). Conse-

quently, the original operator HN has compact resolvent.

Now consider the case when HN is an operator on the bosonic space. Then by the definition,

the min-max value of HN is

µn(HN) = inf
dimM=n

sup
u∈M
‖u‖=1

〈ΨN , HNΨN〉 .

Here the infimum is taken over all symmetric subspaces M of C∞c (RdN). The infimum does

not increase if we ignore the symmetry condition on M , namely the min-max values of

the bosonic Hamiltonian HN are bigger than or equal to those of the Hamiltonian on the

full space L2(RdN). Thus the bosonic operator HN has compact resolvent. Similarly, the

fermionic operator HN also has compact resolvent. q.e.d.

2.6 Schrödinger operators with vanishing potentials

Now we turn to the case when the external potential vanishes at infinity. A motivating

example is the Atomic Hamiltonian with the Coulomb potentials W (x) = |x|−1 and

V (x) = −Z|x|−1, x ∈ R3.

We start with the self-adjointness of the many-body Hamiltonian for general potentials.

Theorem (Kato theorem). Consider the Schrödinger operator

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

1≤i<j≤N

W (xi − xj)
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acting on L2(RdN) or L2(Rd)⊗sN or L2(Rd)⊗aN . Assume that

W,V ∈ Lp(Rd) + L∞(Rd), p > max(d/2, 1)

Then HN is self-adjoint operator with the quadratic form domain

Q(HN) = H1(RdN) or H1
s (RdN) = P+H

1(RdN) or H1
a(RdN) = P−H

1(RdN).

Moreover, if we assume that

W,V ∈ Lp(Rd) + L∞(Rd), p > max(d/2, 2)

then the domain of HN is

D(HN) = H2(RdN) or H2
s (RdN) = P+H

2(RdN) or H2
a(R3N) = P−H

2(RdN).

Proof. Part 1. Consider the case W,V ∈ Lp(Rd) + L∞(Rd), p > max(d/2, 1). Proceeding

exactly as in the case of trapping external potentials (now we just do not have V2(x) → ∞
as |x| → ∞), then we obtain the lower bound

HN ≥
1

2

N∑
i=1

−∆xi − CN .

Thus HN is bounded from below. Consequently, it can be extended to be a self-adjoint

operator by Friedichs’ method.

Moreover, by the same argument we also get the upper bound

HN ≤ 2
N∑
i=1

−∆xi + CN .

Thus the quadratic form domain of HN is the same with the non-interacting Hamiltonian

N∑
i=1

−∆xi = −∆RdN ,

namely

Q(HN) = H1(RdN) or H1
s (RdN) = P+H

1(RdN) or H1
a(RdN) = P−H

1(RdN).
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Part 2. Consider the case W,V ∈ Lp(Rd) + L∞(Rd), p > max(d/2, 2). We can prove that

the external and interaction potentials are relatively bounded with respect to the kinetic

operator.

Let us consider the interaction potential W : Rd → R. For any ε > 0 we can write

W = W1 +W2, ‖W1‖Lp(Rd) ≤ ε, ‖W2‖L∞ ≤ Cε.

For any wave function ΨN by Hölder and Sobolev inequalities (for H2(Rd)) we can bound

‖W1(x1 − x2)ΨN‖2 =

∫
RdN
|W1(x1 − x2)|2|ΨN(x1, ..., xN)|2dx1...dxN

≤
∫
Rd(N−1)

(∫
Rd
|W1(x1 − x2)|pdx1

)2/p(∫
Rd
|ΨN(x1, ..., xN)|qdx1

)2/q

dx2...dxN

≤
∫
Rd(N−1)

‖W1‖2
Lp(Rd)

(
C

∫
Rd
|(1−∆x1)ΨN |2dx1

)
dx2...dxN

≤ Cε2‖(1−∆x1)ΨN‖2.

Here we use the the notation
2

p
+

2

q
= 1.

The condition p > max(d/2, 2) implies that q <∞ for all d ≥ 1, and moreover q < 2d/(d−4)

if d > 4, allowing to use the Sobolev inequality. The above estimate also holds for W1(xi−xj)
for any i 6= j. Thus

∑
1≤i<j≤N

‖W1(xi − xj)ΨN‖ ≤ Cε
∑

1≤i<j≤N

‖(1−∆xi)ΨN‖ ≤ CεN2‖
N∑
i=1

(−∆xi)ΨN‖+ Cε,N .

In the latter estimate we also used that the non-negative operators (−∆x1), ..., (−∆xN )

commute. Since W2 is bounded, by the triangle inequality we conclude that

∥∥∥ ∑
1≤i<j≤N

W (xi − xj)ΨN

∥∥∥ ≤ CεN2‖
N∑
i=1

(−∆xi)ΨN‖+ Cε,N .

The external potential can be treated similarly. Thus can choose ε = εN > 0 small enough

such that

∥∥∥( N∑
i=1

V (xi) +
∑

1≤i<j≤N

W (xi − xj)
)

ΨN‖ ≤
1

2
‖

N∑
i=1

(−∆xi)ΨN‖+ CN .
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By the Kato-Rellich theorem, we conclude that HN is a self-adjoint operator on the same

domain of
N∑
i=1

(−∆xi) = −∆RdN ,

namely

D(HN) = H2(RdN) or H2
s (RdN) = P+H

2(RdN) or H2
a(R3N) = P−H

2(RdN).

q.e.d.

Remarks:

• For the atomic Hamiltonian, the Coulomb potential can be written as

|x|−1 = |x|−11(|x| ≤ 1) + |x|−11(|x| ≥ 1) ∈ L3−ε(R3) + L3+ε(R3), ∀ε > 0.

Thus the condition Lp + L∞ in the above Theorem is clearly satisfied.

• For Coulomb potential, instead of using Sobolev inequality you may also use Hardy’s

inequality

−∆ ≥ 1

4|x|2
on L2(R3).

• The self-adjointness of the Atomic Hamiltonian was first proved by Kato in 1951. There

is a nice story behind his proof; see “Tosio Kato’s Work on Non-Relativistic Quantum

Mechanics” by Barry Simon https://arxiv.org/pdf/1711.00528.pdf.

2.7 HVZ theorem

Unlike the case of trapping external potentials, the Hamiltonian with a vanishing external

potential has continuous spectrum. If the interaction potential is positive, the essential

spectrum was determined by Huntiker, Van Winter and Zhislin in 1960s.

Theorem (HVZ theorem). Consider the Schrödinger operator

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

1≤i<j≤N

W (xi − xj)

https://arxiv.org/pdf/1711.00528.pdf
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acting on L2(RdN) or L2(Rd)⊗sN or L2(Rd)⊗aN . Assume that W ≥ 0 and

W,V ∈ Lp(Rd) + Lq(Rd), ∞ > p, q > max(d/2, 2).

Then

σess(HN) = [EN−1,∞), EN−1 = inf σ(HN−1).

Remarks:

• The condition W ≥ 0 is needed for the inclusion σess(HN) ⊂ [EN−1,∞). The inclusion

[EN−1,∞) ⊂ σess(HN) always holds true without the condition W ≥ 0.

• For the one-body operator −∆ + U(x) on Rd, if U vanishes at infinity, then it is

a compact perturbation of the free Schrodinger operator −∆. Therefore, by Weyl’s

theorem, we know that

σess(−∆ + U) = σ(−∆) = [0,∞).

The picture changes completely for the many-body Hamiltonian HN . The reason is

that the interaction W (xi − xj) does not vanish at infinity even if the function

W : Rd → R vanishes at infinity (because xi and xj may converge to infinity while

their distance remains bounded).

• The difference EN −EN−1 (so called binding energy) is the energy needed to remove

one particle from the bound state of a system of N particles. The HVZ theorem tells

us that EN ≤ EN−1, and if EN < EN−1 then HN has a ground state (by the Min-max

principle).

Proof of HVZ theorem. We will use Weyl’s criterion theorem. For simplicity we consider the

case when HN acts on the full space L2(RdN); the bosonic and fermionic cases follow small

modifications.

Step 1. We prove that [EN−1,∞) ⊂ σess(HN). In this step we do not need W ≥ 0.

We take λ > 0 and prove that

EN−1 + λ ∈ σess(HN).

By Weyl’s theorem, we need to find a Weyl sequence {Ψ(n)
N }n≥1 ⊂ L2(RdN) such that

‖Ψ(n)
N ‖ = 1, Ψ

(n)
N ⇀ 0, ‖(HN − EN−1 − λ)Ψ

(n)
N ‖ → 0 as n→∞.
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The choice of the Weyl sequence:

• Since EN−1 = inf σ(HN−1), we have EN−1 ∈ σ(HN−1) (the spectrum is closed).

Therefore, by Weyl’s theorem, there exists a Weyl sequence {Ψ(n)
N−1}n≥1 ⊂ L2(Rd(N−1))

such that

‖Ψ(n)
N−1‖ = 1, ‖(HN−1 − EN−1)Ψ

(n)
N−1‖ → 0 as n→∞.

• Since λ ≥ 0, we have λ ∈ σess(−∆Rd). Therefore, by Weyl’s theorem, there exists a

sequence {u(n)} ⊂ L2(Rd) such that

‖u(n)‖ = 1, u(n) ⇀ 0, ‖(−∆Rd − λ)u(n)‖ → 0 as n→∞.

• Then we can choose

Ψ
(n)
N = Ψ

(n)
N−1 ⊗ u

(n),

namely

Ψ
(n)
N (x1, ..., xN) = Ψ

(n)
N−1(x1, ..., xN−1)u(n)(xN).

It remains to check that {Ψ(n)
N }n≥1 is a desired Weyl’s sequence for HN . It is actually

correct. However, to make the proof easier, let us refine the choice of Ψ
(n)
N−1 and u(n) a

bit: by a standard density argument we can choose such that

supp Ψ
(n)
N−1 ⊂ BRdN (0, Rn), suppu(n) ⊂ {x ∈ Rd : 2Rn ≤ |x| ≤ 3Rn}

for some sequence Rn ≥ 4Rn−1 (you should check why?).

Now let us prove that Ψ
(n)
N = Ψ

(n)
N−1 ⊗ u(n) is a good choice. First,

‖Ψ(n)
N ‖ = ‖Ψ(n)

N−1‖‖u
n‖ = 1.

Moreover, since the functions {u(n)} have disjoint supports, the functions {Ψ(n)
N }n≥1 also have

disjoint supports. In particular, {Ψ(n)
N }n≥1 is an orthonormal family, and hence

Ψ
(n)
N ⇀ 0 weakly in L2(RdN).
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Next, we decompose

HN = HN−1 + (−∆xN ) + V (xN) +
N−1∑
i=1

W (xi − xN).

Therefore, by the triangle inequality

‖(HN − EN−1 − λ)Ψ
(n)
N ‖ ≤ ‖(HN−1 − EN−1)Ψ

(n)
N ‖+ ‖(−∆xN − λ)Ψ

(n)
N ‖

+ ‖V (xN)Ψ
(n)
N ‖+

N−1∑
i=1

‖W (xi − xN)Ψ
(n)
N ‖.

We have

‖(HN−1 − EN−1)Ψ
(n)
N ‖ = ‖(HN−1 − EN−1)Ψ

(n)
N−1‖‖u

(n)‖ → 0,

‖(−∆xN − λ)Ψ
(n)
N ‖ = ‖Ψ(n)

N−1‖‖(−∆− λ)u(n)‖ → 0,

‖V (xN)Ψ
(n)
N ‖ = ‖Ψ(n)

N−1‖‖V u
(n)‖ = ‖V (x)1(|x| ≥ 2Rn)u(n)‖ → 0,

‖W (xi − xN)Ψ
(n)
N ‖ = ‖W (xi − xN)1(|xi − xN | ≥ Rn)Ψ

(n)
N−1u

(n)‖ → 0.

For the last two convergences are obvious if we know that V (x)→ 0,W (x)→ 0 as |x| → ∞.

More generally, if V,W ∈ Lp +Lq, then we can use Hölder and Sobolev inequalities as in the

proof of the self-adjointness, plus the fact that

‖V (x)1(|x| ≥ 2Rn)‖Lp+Lq → 0, ‖W (x)1(|x| ≥ Rn)‖Lp+Lq → 0.

Here u(n) is bounded in H2(Rd).

This concludes the proof of [EN−1,∞) ⊂ σess(HN).

Step 2. Now we prove that σess(HN) ⊂ [EN−1,∞). In this step we need W ≥ 0.

Take λ + EN−1 ∈ σess(HN). We prove that λ ≥ 0. By Weyl’s theorem, there exists a Weyl

sequence {Ψ(n)
N }n≥1 ⊂ L2(RdN) such that

‖Ψ(n)
N ‖ = 1, Ψ

(n)
N ⇀ 0, ‖(HN − EN−1 − λ)Ψ

(n)
N ‖ → 0 as n→∞.

From the above properties, we find that {Ψ(n)
N } is bounded in H2(RdN), and hence the weak

convergence in L2 can be upgraded to Ψ
(n)
N ⇀ 0 in H2(RdN) (see the exercise below). By

Sobolev compact embedding theorem, we find that up to a subsequence as n → ∞, we can
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find Rn →∞ such that

‖Ψ(n)
N 1B(0,NRn)‖ → 0.

Physically, the latter convergence shows that Ψ
(n)
N is not localized, namely at least one of

N particles must escape to infinity. To trace the behavior at infinity, we use the IMS

localization technique.

• We choose two smooth functions χ, η : Rd → R such that

χ2 + η2 = 1Rd , suppχ ⊂ {|x| ≤ Rn}, supp η ⊂ {|x| ≥ Rn/2}, |∇χ|+ |∇η| ≤ C

Rn

.

• On RdN we have the partition of unity

1RdN = η2(x1) + χ2(x1) = η2(x1) + η2(x2)χ2(x1) + χ2(x2)χ2(x1)

= η2(x1) + η2(x2)χ2(x1) + η2(x3)χ2(x2)χ2(x1) + ...+ χ2(xN)...χ2(x1)

=:
N∑
j=1

ϕ2
j + ϕ2

0.

Then we have |∇ϕj| ≤ CN/Rn for all j ≥ 0 and

suppϕ0 ⊂ BRdN (0, NRn), suppϕj ⊂ {|xj| ≥ Rn/2} for all j ≥ 1.

Next we apply the IMS formula for ϕ0, ..., ϕN :

HN =
N∑
j=0

ϕjHNϕj −
N∑
j=0

|∇ϕj|2 ≥
N∑
j=0

ϕjHNϕj −
CN
R2
n

.

Therefore, by the choice of Ψ
(n)
N :

EN−1 + λ = lim
n→∞
〈Ψ(n)

N , HNΨ
(n)
N 〉 ≥ lim inf

n→∞

N∑
j=0

〈Ψ(n)
N , ϕjHNϕjΨ

(n)
N 〉.

To conclude, let us show that for any j = 0, 1, 2, ..., N , we have

〈Ψ(n)
N , ϕjHNϕjΨ

(n)
N 〉 ≥ EN−1‖ϕjΨ(n)

N ‖
2 + o(1)n→∞.



2.7. HVZ THEOREM 33

For j = 0, using ϕ0HNϕ0 ≥ ENϕ
2
0 and the fact ‖Ψ(n)

N 1B(0,Rn)‖ → 0 we get

〈Ψ(n)
N , ϕ0HNϕ0Ψ

(n)
N 〉 ≥ EN‖ϕ0Ψ

(n)
N ‖

2 → 0 as n→∞.

Therefore, we can also write

〈Ψ(n)
N , ϕ0HNϕ0Ψ

(n)
N 〉 ≥ EN−1‖ϕ0Ψ

(n)
N ‖

2 + o(1)n→∞.

For j = N we decompose

HN = HN−1 + (−∆xN ) + V (xN) +
N∑
i=1

W (xi − xN) ≥ EN−1 + V (xN)

(here we use W ≥ 0). Therefore,

ϕNHNϕN ≥ EN−1ϕ
2
N − |V (xN)1(|xN | ≥ Rn/2)|.

Thus

〈Ψ(n)
N , ϕjHNϕjΨ

(n)
N ≥ EN−1‖ϕNΨ

(n)
N ‖

2 + 〈Ψ(n)
N , |V (xN)1(|xN | ≥ Rn/2)|Ψ(n)

N 〉

≥ EN−1‖ϕNΨ
(n)
N ‖

2 + o(1)n→∞.

Of course the same bound holds for j = 1, 2, ..., N − 1 as well. In summary, we have proved

that

EN−1 + λ ≥ lim inf
n→∞

N∑
j=0

〈Ψ(n)
N , ϕjHNϕjΨ

(n)
N 〉 ≥ lim inf

n→∞

N∑
j=0

EN−1‖ϕjΨ(n)
N ‖

2 = EN−1.

Thus λ ≥ 0. This ends the proof of σess(HN) ⊂ [EN−1,∞).

So far we have proved σess(HN) = [EN−1,∞) when HN acts on the full space L2(RdN). When

HN acts on the bosonic/fermionic space L2(Rd)⊗s/aN we can proceed exactly the same, except

that in the direction [EN−1,∞) ⊂ σess(HN) we should choose the Weyl sequence as

Ψ
(n)
N = P±Ψ

(n)
N−1 ⊗ u

(n) ∈ L2(Rd)⊗s/aN .

q.e.d.
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Exercise. Let H1 and H2 be two Hilbert spaces such that H2 ⊂H1 and

‖u‖H2 ≥ ‖u‖H1 , u ∈H2.

Assume that the sequence {un}n≥1 is bounded in H2 and un ⇀ 0 in H1. Prove that

un ⇀ 0 in H2.

2.8 How many electrons that a nucleus can bind?

Now we take a closer look at the Atomic Hamiltonian

Hatom
N =

N∑
i=1

(
−∆xi −

Z

|xi|

)
+

∑
1≤i<j≤N

1

|xi − xj|

which describes a system of N quantum electrons of charge −1 moving around a clas-

sical nucleus of charge Z > 0 fixed at the origin in R3. The particles interact via the

Coulomb potential. Physically, the Hamiltonian Hatom
N is an operator on the fermionic

space L2(R3)⊗aN (electrons are fermions). Mathematically, we may also consider Hatom
N

as an operator on L2(R3N) or L2(R3)⊗sN . We will consider the nuclear charge Z > 0 as an

arbitrary positive number, although it is an integer in practice.

In this section, we address the following question: for a given nuclear charge Z, is there

a ground state for HN? i.e. “how many electron that a nucleus can bind?”. From

experimental chemistry, it is observed that a nucleus of charge Z can bind up to Z + 1 or

Z+ 2, but higher negative ions do not exist. Proving this fact rigorously for the Hamiltonian

Hatom
N is a long-standing problem in mathematical physics, call the ionization conjecture.

In the following, we will represent two fundamental results, one for the existence (Zhilin’s

theorem) and one for the non-existence (Lieb’s theorem).

Recall that from Kato’s theorem, we know that Hatom
N is self-adjoint with domain H2(R3N)

or H2
a/s(R3N), and that its ground state energy

EN := inf σ(Hatom
N )
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is finite. Moreover, from the HVZ theorem we know that

σess(H
atom
N ) = [EN−1,∞)

where EN−1 is the ground state energy of Hatom
N−1 (with the same nuclear charge Z). Conse-

quently, Hatom
N has a ground state if we have the strict binding inequality EN < EN−1.

In principle, when EN = EN−1, Hatom
N may still have a ground state (although the ground

state is very unstable as one particle can escape to infinity without losing any energy).

Theorem (Zhilin’s Existence Theorem). Consider Hatom
N as an operator on L2(R3N)

or L2(R3)⊗a/sN . For any 1 ≤ N < Z + 1, we have the strict binding inequality

EN < EN−1. Consequently, the Hamiltonian Hatom
N has a ground state.

Proof. We will prove EN < EN−1 by induction. This holds for N = 1 as E1 = −1
4
< 0 (the

hydrogen atom). Assume that we have proved EN−1 < EN−2 for some N < Z. Now we show

that EN < EN−1. By the variational principle, we need to find a wave function ΨN such that

〈ΨN , H
atom
N ΨN〉 < EN−1.

Let us consider the case when Hatom
N acts on L2(R3N); the bosonic and fermionic cases follow

simple modifications.

• From the induction hypothesis EN−1 < EN−2 and the HVZ theorem, we know that

Hatom
N−1 has a ground state ΨN−1 ∈ L2(R3(N−1)).

• Take a smooth function ϕ : R3 → R with suppϕ ⊂ {x ∈ R3 : 1 < |x| < 2} and

‖ϕ‖L2(R3) = 1. For any R > 0 we choose

ϕR(x) =
1

R3/2
ϕ
( x
R

)
.

Then

suppϕR ⊂ {x ∈ R3 : R ≤ |x| ≤ 2R}, ‖ϕR‖L2 = 1.

• We choose the trial state

ΨN = ΨN−1 ⊗ ϕR ∈ L2(R3N).
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Then

‖ΨN‖L2(R3N ) = ‖ΨN−1‖L2(R3(N−1))‖ϕR‖L2(R3) = 1.

It remains to show that 〈ΨN , H
atom
N ΨN〉 < EN−1.

Similarly to the proof of the HVZ theorem, we decompose

Hatom
N = Hatom

N−1 +
(
−∆xN −

Z

|xN |
+

N−1∑
i=1

1

|xi − xN |

)
.

Therefore,

〈ΨN , H
atom
N ΨN〉 = EN−1 + ‖∇ϕR‖2

L2(R3) −
∫
R3

Z|ϕR(x)|2

|x|
dx

+
N−1∑
i=1

∫
R3N

1

|xi − xN |
|ΨN−1(x1, ..., xN−1)|2|ϕR(xN)|2dx1...dxN .

By the choice of ϕR, we have

‖∇ϕR‖2
L2(R3) =

1

R2
‖∇ϕ‖2

L2(R3)

and

−
∫
R3

Z|ϕR(x)|2

|x|
dx = −Z

R

∫
R3

Z|ϕ(x)|2

|x|
dx.

Moreover, by Newton’s theorem∫
R3

|ϕR(x)|2

|y − x|
dx =

∫
R3

|ϕR(x)|2

max(|y|, |x|)
dx ≤

∫
R3

|ϕR(x)|2

|x|
dx =

∫
R3

|ϕ(x)|2

R|x|
dx.

Consequently,

N−1∑
i=1

∫
R3N

1

|xi − xN |
|ΨN−1(x1, ..., xN−1)|2|ϕR(xN)|2dx1...dxN

=
N−1∑
i=1

∫
R3N−1

|ΨN−1(x1, ..., xN−1)|2
(∫

R3

|ϕR(xN)|2

|xi − xN |
dxN

)
dx1...dxN−1

≤
N−1∑
i=1

∫
R3N−1

|ΨN−1(x1, ..., xN−1)|2
(∫

R3

|ϕ(x)|2

R|x|
dx
)

dx1...dxN−1

=
N − 1

R

∫
R3

|ϕ(x)|2

|x|
dx.
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In summary, we obtain

〈ΨN , H
atom
N ΨN〉 ≤ EN−1 +

1

R2
‖∇ϕ‖2

L2(R3) +
N − 1− Z

R

∫
R3

|ϕ(x)|2

|x|
dx.

Under the condition N < Z + 1, i.e. N − 1− Z < 0, for R > 0 sufficiently large we have

1

R2
‖ϕ‖2

L2(R3) +
N − 1− Z

R

∫
R3

|ϕ(x)|2

|x|
dx < 0,

which implies that

EN ≤ 〈ΨN , H
atom
N ΨN〉 < EN−1.

This concludes the proof when Hatom
N acts on L2(R3N). When Hatom

N acts on L2(R3)⊗a/sN we

choose

ΨN = P±ΨN−1 ⊗ ϕR ∈ L2(R3)⊗a/sN

and proceed similarly. q.e.d.

In the above proof we have used

Theorem (Newton’s theorem). Let µ be a positive measure on R3 such that it is ra-

dially symmetric, namely dµ(Rx) = dµ(x) for any rotation R ∈ SO(3). Then we

have ∫
R3

dµ(x)

|y − x|
=

∫
R3

dµ(x)

max(|y|, |x|)
, ∀y ∈ R3.

Newton’s theorem follows from the fact that the Coulomb potential is the Green function of

Laplacian, namely

−∆(4π|x|)−1 = δ0 (the Dirac-delta distribution).

In fact, here we only need ∆(|x|−1) = 0 for all x 6= 0 (which can be checked easily), namely

|x|−1 is a harmonic function on R3\{0}. The Mean-value theorem states that the

average value of a harmonic function over a ball or sphere is equal to its value at the center.

Exercise. Consider Hatom
N as an operator on L2(R3N) or L2(R3)⊗a/sN . Prove that if

1 ≤ N < Z + 1, then Hatom
N has infinitely many eigenvalues below the essential

spectrum.
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Theorem (Lieb’s Nonexistence Theorem). If N ≥ 2Z+ 1, then the Hamiltonian Hatom
N

does not have a ground state on L2(R3N) or L2(R3)⊗a/sN .

Proof. Assume that HN has a ground state ΨN . Then it satisfies the Schrödinger equation

HNΨN = ENΨN .

Multiplying the Schrödinger equaiton with |xN |ΨN and integrating we get

0 = 〈|xN |ΨN , (HN − EN)ΨN〉 =

=

〈
|xN |ΨN ,

(
Hatom
N−1 − EN −∆xN −

Z

|xN |
+

N−1∑
i=1

1

|xi − xN |

)
ΨN

〉
.

We have

•
〈
|xN |ΨN , (H

atom
N−1 − EN)ΨN

〉
≥ 0. This follows from Hatom

N−1 ≥ EN−1 ≥ EN on the

(N − 1)-particle space, by the HVZ theorem.

• 〈|xN |ΨN ,−∆xNΨN〉 = 1
2

〈
ΨN ,

(
|xN |(−∆xN ) + (−∆xN )|xN |

)
ΨN

〉
> 0 (the left side is

real, why?). This follows from the IMS formula and Hardy’s inequality

(−∆)|x|+ |x|(−∆)

2
= |x|1/2(−∆)|x|1/2 − |∇(|x|1/2)|2

= |x|1/2(−∆)|x|1/2 −
∣∣∣ 1

2|x|1/2
∣∣∣2

= |x|1/2
(
−∆− 1

4|x|2
)
|x|1/2 ≥ 0 on L2(R3).

Thus

0 > −Z +
N−1∑
i=1

∫
R3N

|xN |
|xi − xN |

|ΨN |2 ⇐⇒ Z >
N−1∑
i=1

∫
R3N

|xN |
|xi − xN |

|ΨN |2.

Similarly we get for all j ∈ {1, . . . , N}

Z >
∑
i:i 6=j

∫
|xj|

|xi − xj|
|ΨN |2
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Averaging over j ∈ {1, . . . , N} we get

Z >
1

N

N∑
1≤i,j≤N
i 6=j

∫
|xj|

|xi − xj|
|ΨN |2 =

1

2N

N∑
1≤i,j≤N
i 6=j

∫
|xi|+ |xj|
|xi − xj|︸ ︷︷ ︸

>1

|ΨN |2 >
1

2N

N∑
1≤i,j≤N
i 6=j

1 =
N − 1

2
.

Thus Z > N−1
2

, i.e. N < 2Z + 1. Here we have the strict inequality at the end because

∑
1≤i,j≤Ni 6=j

|xi|+ |xj|
|xi − xj|

> 1

for a.e. (x1, ..., xN) ∈ R3N . q.e.d.

Remarks:

• For Z = 1 (hydrogen atom), Lieb’s theorem implies that the negative ion H−− does

not exist. This is sharp because it is known (mathematically) that H− exists.

• For larger Z, the factor 2 in Lieb’s bound is not sharp. For fermionic ground states,

the above proof can be modified by multiplying the Schrödinger equation with |xN |2ΨN

instead of |xN |ΨN , leading to the non-existence when (my paper)

N ≥ 1.22Z + 3Z1/3.

When Z →∞, the non-existence of fermionic ground states is known when

N ≥ (1 + ε)Z

for any ε > 0. This so-called asymptotic neutrality was first proved by Lieb, Sigal,

Simon, and Thirring (PRL 1984) and improved later in (CMP 1990a, CMP 1990b).

The non-existence of fermionic ground states when

N ≥ Z + C

for a universal constant C (possibly C = 2) remains an open problem.

• When Hatom
N acts on the full space L2(R3N) or the bosonic space L2(R3)⊗sN , a ground

state exists up to N ∼ 1.21Z. This was proved by Benguria and Lieb (PRL 1983). This

is an evidence that the particle statistics changes dramatically the spectral properties

of the quantum system.

https://arxiv.org/abs/1009.2367
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.52.994
https://projecteuclid.org/download/pdf_1/euclid.cmp/1104180306
https://projecteuclid.org/euclid.cmp/1104200838
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.50.1771


Chapter 3

Hartree theory

Definition. Let V : Rd → R and w : Rd → R even. We define the Hartree functional

EH(u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy

and the Hartree energy

eH := inf{EH(u) : u ∈ H1(Rd), ‖u‖L2(Rd) = 1}.

If a Hartree minimizer u0 exists, then it satisfies the Hartree equation(
−∆ + V (x) + (w ∗ |u0|2)(x)− µ

)
u0(x) = 0, x ∈ Rd

for a constant µ ∈ R (called the Lagrange multiplier or chemical potential).

The Hartree equation is also often called the Gross-Pitaaevskii equation or nonlinear

Schrödinger equation, in particular when w = aδ0 (Dirac-delta distribution). In this case,

the functional becomes

EH(u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
+
a

2

∫∫
Rd
|u(x)|4dx

and its minimizer satisfies(
−∆ + V (x) + a|u0(x)|2 − µ

)
u0(x) = 0, x ∈ Rd.

40
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The Hartree/GP/NLS equation is an important topic in many areas of mathematics, e.g.

nonlinear analysis, calculus of variations, and partial differential equations. In this chapter

we study basic properties of Hartree theory and in the next chapter we discuss its connection

to quantum Bose gases.

Connection to many-body quantum mechanics. Consider a system of N identical

bosons in Rd, described by the Hamilttonian

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

1≤i<j≤N

W (xi − xj)

acting on L2(Rd)⊗sN . As usual, V,W : Rd → R and W is even.

Since the underlying Hilbert space is too large, it is often useful to restrict the consideration

to the Hartree states

Ψ = u⊗N , ‖u‖L2(Rd) = 1.

The corresponding energy expectation (per particle) is exactly given by the Hartree functional

1

N
〈u⊗N , HNu

⊗N〉 =

∫
Rd

(
|∇u(x)|2+V (x)|u(x)|2

)
+

1

2

∫∫
|u(x)|2|u(y)|2w(x−y)dxdy =: EH(u)

with w = (N − 1)W . By the variational principle, the Hartree energy is always an upper

bound to the ground state energy (per particle) of the full N -body problem, namely

EN := inf
‖Ψ‖

L2(Rd)⊗sN=1
〈Ψ, HNΨ〉 ≤ NeH.

The matching lower bound is nontrivial. We will prove that, under appropriate conditions

on the potentials,

EN = NeH + o(N).

Moreover, we will prove that Hartree minimizers will give the leading order information to

the ground states of the N -body problem, leading to a rigorous justification of the Bose-

Einstein condensation for some weakly interacting bosonic systems.

3.1 Existence of minimizers: trapping potentials
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Theorem (Existence of Hartree minimizers: trapping case). Consider the Hartree func-

tional

EH(u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy

with

• w ∈ Lp(Rd) + L∞(Rd) with p > max(d/2, 1),

• V ∈ Lploc(Rd) and V (x)→ +∞ as |x| → ∞.

Then the minimization problem

eH := inf
{
EH(u) : u ∈ H1(Rd), ‖u‖L2(Rd) = 1

}
has a minimizer (in particular eH is finite).

Proof. We use the direct method of Calculus of variations.

Step 1 (Boundedness from below). Let u ∈ H1(Rd) with ‖u‖L2(Rd) = 1. For any ε > 0

we can write

w = w1 + w2, ‖w1‖Lp(Rd) ≤ ε, ‖w2‖L∞(Rd) ≤ Cε.

Then ∫∫
Rd×Rd

|u(x)|2|u(y)|2|w2(x− y)|dxdy ≤ ‖w2‖L∞
∫∫
|u(x)|2|u(y)|2dxdy ≤ Cε.

Moreover, by Hölder and Young inequalities∫∫
Rd×Rd

|u(x)|2|u(y)|2|w1(x− y)|dxdy =

∫
|u(x)|2(|w1| ∗ |u|2)(x)dx

≤ ‖|u|2‖Lq‖|w1| ∗ |u|2‖Lp

≤ ‖u‖2
L2q‖w1‖Lp‖u‖2

L2

with
1

p
+

1

q
= 1.
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The condition p > max(d/2, 1) implies that 2q < 2∗ where

2∗ =∞ for d ≤ 2, 2∗ =
2d

d− 2
for d ≥ 3.

By Sobolev inequality

‖u‖2
L2q ≤ C‖u‖2

H1 = C(‖∇u‖2
L2 + 1).

Thus ∫∫
Rd×Rd

|u(x)|2|u(y)|2|w1(x− y)|dxdy ≤ εC(‖∇u‖2
L2 + 1).

The total interaction energy is bounded by∫∫
Rd×Rd

|u(x)|2|u(y)|2|w(x− y)|dxdy ≤ εC‖∇u‖2
L2 + Cε.

Similarly, for the external potential we write

V = V1 + V2, ‖V1‖Lp(Rd) ≤ ε, V2 ≥ −Cε, lim
|x|→∞

V2(x) = +∞.

Using Hölder and Sobolev inequalities we get∫
Rd
|V1(x)||u(x)|2dx ≤ εC(‖∇u‖2

L2 + 1).

By choosing ε small enough, we find that∫∫
Rd×Rd

|u(x)|2|u(y)|2|w(x− y)|dxdy +

∫
Rd
|V1(x)||u(x)|2dx ≤ 1

2
‖∇u‖2

L2 + C

for a constant C independent of u. Consequently, we get the lower bound

EH(u) ≥
∫
Rd

[1

2
|∇u|2 + V2|u|2

]
− C.

Since V2 is bounded from below, we know that EH(u) is bounded from below uniformly in u.

Thus eH is finite.

Step 2 (Minimizing sequence). Since eH is finite, there exists a minimizing sequence

{un}n≥1 ⊂ H1(Rd) for eH, namely

‖un‖L2(Rd) = 1, EH(un)→ eH as n→∞.
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From the above lower bound, we find that∫
Rd

[
|∇un|2 + 2V2|un|2

]
is bounded. Thus {un} is bounded in the quadratic form domain of Q(−∆+2V2) = Q(−∆+

V2). By the Banach-Alaoglu theorem, up to a subsequence, we can assume that un ⇀ u0

weakly in Q(−∆ + V2). We will show that u0 is a minimizer for eH.

Step 3 (Conservation of mass). The condition V2(x)→ +∞ as |x| → ∞ implies that the

operator −∆ + V2 has compact resolvent. Consequently, we have the compact embedding

Q(−∆+V2) ⊂ L2(Rd) (exercise). Thus the weak convergence un ⇀ u0 in Q(−∆+V2) implies

the strong convergence un → u0 in L2(Rd). Therefore,

‖u0‖L2(Rd) = lim
n→∞

‖un‖L2(Rd) = 1.

Step 4 (Semi-continuity). It remains to show that

lim inf
n→∞

EH(un) ≥ EH(u0).

Since un is bounded in Q(−∆ + V2) ⊂ H1(Rd) and un → u0 strongly in L2(Rd), by inter-

polation (Sobolev’s and Hölder inequalities) we find that un → u0 strongly in Lq(Rd) for all

2 ≤ q < 2∗ (2∗ =∞ if d ≤ 2 and 2∗ = 2d/(d− 2) if d ≥ 3). Consequently,

lim
n→∞

∫∫
|un(x)|2|un(y)|2w(x− y)dxdy =

∫∫
|u0(x)|2|u0(y)|2w(x− y)dxdy.

(see an exercise below). Similarly, for the external potential V = V1 + V2, using V1 ∈ Lp(Rd)

we have

lim
n→∞

∫
V1(x)|un(x)|2dx =

∫
V1(x)|u0(x)|2dx

(see an exercise below). Finally, since un ⇀ u0 weakly in the quadratic form domain Q(−∆+

V2), by Fatou’s lemma for norms (see an exercise below) we have

lim inf
n→∞

∫
(|∇un|2 + V2|un|2) ≥

∫
(|∇u0|2 + V2|u0|2).

In summary,

eH = lim inf
n→∞

EH(un) ≥ EH(u0).
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This implies that u0 is a minimizer for eH. q.e.d.

Exercise. Let A be a positive self-adjoint operator on a Hilbert space H with compact

resolvent. Prove that we have the compact embedding Q(A) ⊂H .

Hint: By Spectral Theorem you can write A =
∑

n≥1 λn|un〉〈un| with λn → ∞. The

identity 1 : Q(A) → H is a compact operator because it is the strong limit of finite-

rank operators Bn =
∑n

m=1 |um〉〈um|.

Exercise. Let V ∈ Lp(Rd) with p > max(d/2, 1). Prove that if un ⇀ u0 weakly in

H1(Rd), then

lim
n→∞

∫
V (x)|un(x)|2dx =

∫
V (x)|u0(x)|2dx.

Exercise. Let w ∈ Lp(Rd) with p > max(d/2, 1). Let {un}n≥1, {vn}≥1 be bounded

sequences in H1(Rd) such that un → u0 strongly in L2(Rd) and vn ⇀ v0 weakly in

L2(Rd). Prove that

lim
n→∞

∫∫
Rd×Rd

|un(x)|2|vn(y)|2w(x− y)dxdy =

∫∫
Rd×Rd

|u0(x)|2|v0(y)|2w(x− y)dxdy.

Exercise. (Fatou’s lemma for norms) Assume that vn ⇀ v weakly in a Hilbert space.

1. Prove that

lim inf
n→∞

‖vn‖ ≥ ‖v‖.

2. Prove that ‖vn‖ → ‖v‖ if and only if vn → v strongly.

3.2 Existence of minimizers: vanishing potentials

Now we turn to the case when the external potential V vanishes at infinity. This case is

significantly more difficult since some mass may escape to infinity, leading to a possible

lack of compactness. In fact, the existence of Hartree minimizers is not always guaranteed!

We have to investigate all possibilities of losing mass at infinity. This is nicely done by the

concentration-compactness method which has been developed since the 1980s by several

people, including Lieb (Invent 1983) and Lions (AIHPC 1984a, AIHPC 1984b).

https://eudml.org/doc/143081
http://www.numdam.org/article/AIHPC_1984__1_2_109_0.pdf
http://www.numdam.org/article/AIHPC_1984__1_4_223_0.pdf
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Theorem (Existence of Hartree minimizers: vanishing case). Consider the Hartree

functional

EVH (u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy

with w, V ∈ Lp(Rd) + Lp(Rd), max(d/2, 1) < p, q <∞. For any λ ∈ [0, 1] define

eVH(λ) := inf
{
EVH (u) : u ∈ H1(Rd), ‖u‖2

L2(Rd) = λ
}
.

We denote by e0
H(λ) the corresponding energy with V = 0 (“energy at infinity”). Then

we always have the binding inequality

eVH(1) ≤ eVH(λ) + e0
H(1− λ), ∀λ ∈ [0, 1]

Moreover, if we have the strict binding inequality

eVH(1) < eVH(λ) + e0
H(1− λ), ∀λ ∈ [0, 1),

then the variational problem eVH(1) has a minimizer. In fact, for the existence of mini-

mizers for eVH(1), we only need the strict binding inequality when eVH(λ) has a minimizer.

Remarks:

• From the physical point of view, the binding inequality

eVH(1) ≤ eVH(λ) + e0
H(1− λ), ∀λ ∈ [0, 1]

is rather obvious since the ground energy cannot be increased when we split the system

into two parts: one with mass λ staying bounded, and one with mass (1−λ) at infinity.

• The strict binding inequality

eVH(1) < eVH(λ) + e0
H(1− λ), ∀λ ∈ [0, 1)

tells us that there is no possibility to put any positive mass at infinity (note that in

the strict binding inequality we only requires λ < 1). It is a nontrivial condition and

depends heavily on the potentials V,w.
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• For repulsive interactions (w ≥ 0), the energy at infinity is simply zero (see an exercise

below). In this case, the binding inequality becomes

eVH(1) ≤ eVH(λ), ∀λ ∈ [0, 1]

which is similar to the monotonicity EN ≤ EN−1 in the HVZ theorem (both always

hold true). The strict binding inequality

eVH(1) < eVH(λ), ∀λ ∈ [0, 1)

is thus similar to the binding condition EN < EN−1 in the N -body quantum problem.

Proof. Step 1 (Boundedness from below). By the same analysis of the trapping case,

we have∫
Rd
|V (x)||u(x)|2dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2|w(x− y)|dxdy ≤ 1

2
‖∇u‖2

L2 + C

for all u ∈ H1(Rd) with ‖u‖L2 ≤ 1. Therefore,

EVH (u) ≥ 1

2
‖∇u‖2

L2 − C.

This implies that eVH(λ) is finite for every λ ∈ [0, 1].

Step 2 (Binding inequality). Let λ ∈ [0, 1). By a standard density argument, we can find

a sequence {an}n≥1 ⊂ H1(Rd) such that

supp(an) ⊂ {|x| < n},
∫
Rd
|an|2 = λ, EVH (an) ≤ eVH(λ) + o(1)n→∞.

(Explanation for the density argument: By the definition of eVH(λ), for any η > 0 small we

can find a function fη ∈ H1(Rd) such that ‖fη‖2
L2 = λ and EVH (fn) ≤ eVH(λ) + η. Then since

C1
c (R3) is dense in H1(Rd) and the mapping f 7→ EH(f) is continuous from H1(Rd) to R, we

can replace fη by f̃η ∈ C1
c (R3) with ‖f̃η‖2

L2 = λ and EVH (f̃η) ≤ eVH(λ) + 2η. By re-labeling

η → 0 by n→∞, we get the sequence {an}.)

Similarly, we can find a sequence {bn}n≥1 ⊂ H1(Rd) such that

supp(bn) ⊂ {|x| > 2n},
∫
Rd
|bn|2 = 1− λ, E0

H(bn) ≤ e0
H(1− λ) + o(1)n→∞.
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(Explanation for the choice of bn: by the density argument, we can take bn with compact

support. Then since the functional E0
H(f) is translation-invariant (i.e. E0

H(f) = E0
H(f(.− y))

for any y ∈ Rd) we can put the support of bn inside {|x| > 2n}.)

Now we define the trial state

ϕn = an + bn, ∀n ≥ 1.

Since an and bn have disjoint support, we find that∫
Rd
|ϕn|2 =

∫
Rd
|an|2 +

∫
Rd
|bn|2 = 1.

On the other hand, we can show that

EVH (ϕn) = EVH (an) + E0
H(bn) + o(1)n→∞.

This part is similar to the Step “Splitting of energy” below. Thus by the variational principle

we have the binding inequality Therefore,

eVH(1) ≤ lim
n→∞

EVH (ϕn) ≤ lim
n→∞

(
EVH (an) + E0

H(bn)
)

= eVH(λ) + e0
H(1− λ).

Step 3 (Minimizing sequence). Let {un}n≥1 ⊂ H1(Rd) be a minimizing sequence for

eVH(1), namely

‖un‖L2(Rd) = 1, EVH (un)→ eVH(1).

From the lower bound

EVH (un) ≥ 1

2
‖∇un‖2

L2 − C

we find that {un} is bounded in H1(Rd). By the Banach-Alaoglu theorem, up to a subse-

quence, we can assume that un ⇀ u0 weakly in H1(Rd).

Step 4 (Splitting of mass). Since un ⇀ u0 weakly in L2(Rd), Fatou’s lemma tells us

λ :=

∫
Rd
|u0|2 ≤ lim inf

n→∞

∫
Rd
|un|2 = 1.

Moreover, if we denote

vn := un − u0,
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then ∫
Rd
|vn|2 = ‖un − u0‖2

L2 = ‖un‖2 + ‖u0‖2 − 2<〈un, u0〉 → 1 + λ− 2λ = 1− λ.

Step 5 (Splitting of energy). We prove that

lim
n→∞

(
EVH (un)− EVH (u0)− E0

H(vn)
)

= 0.

For the kinetic energy, since vn = un − u0 ⇀ 0 weakly in H1(Rd), we have

‖∇un‖2
L2 − ‖∇u0‖2

L2 + ‖∇vn‖2
L2 = 2<〈∇u0,∇vn〉 → 0.

For the external potential energy,∣∣∣ ∫
Rd
V |un|2 −

∫
Rd
V |u0|2

∣∣∣ ≤ ∫
Rd
|V |
∣∣∣|u0 + vn|2 − |u0|2

∣∣∣
=

∫
Rd
|V |
(
|vn|2 + 2|vn||u0|

)
≤
∫
Rd
|V ||vn|2 + 2

√∫
Rd
|V ||vn|2

√∫
Rd
|V ||u0|2 → 0.

Here we used that
∫
|V ||u0|2 is finite because u0 ∈ H1(Rd), and

∫
|V ||vn|2 → 0 because

vn ⇀ 0 in H1(Rd) (see a previous exercise).

For the interaction energy, we have∣∣∣ ∫
Rd×Rd

[
|un(x)|2|un(y)|2 − |u0(x)|2|u0(y)|2 − |vn(x)|2|vn(y)|2

]
w(x− y)dxdy

∣∣∣
≤
∣∣∣ ∫

Rd×Rd

∣∣∣|un(x)|2|un(y)|2 − |u0(x)|2|u0(y)|2 − |vn(x)|2|vn(y)|2
∣∣∣|w(x− y)|dxdy.

Writing un = u0 + vn and expanding the difference

|un(x)|2|un(y)|2 − |u0(x)|2|u0(y)|2 − |vn(x)|2|vn(y)|2

we find several terms (whose absolute values) like

|vn(x)||fn(x)||u0(y)||gn(y)|, |vn(x)||u0(x)||fn(y)||gn(y)|

where the functions fn, gn are bounded in H1(Rd). By the Cauchy-Schwarz inequality, we
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can bound∫
Rd×Rd

|vn(x)||fn(x)||u0(y)||gn(y)||w(x− y)|dxdy

≤
(∫

Rd×Rd
|vn(x)|2|u0(y)|2|w(x− y)|dxdy

)1/2(∫
Rd×Rd

|fn(x)|2|gn(y)|2|w(x− y)|dxdy
)1/2

→ 0.

Here we used ∫
Rd×Rd

|fn(x)|2|gn(y)|2|w(x− y)|dxdy ≤ C

because fn, gn are bounded in H1(Rd) (the interaction energy is bounded by the kinetic

energy by Step 1) and ∫
Rd×Rd

|vn(x)|2|u0(y)|2|w(x− y)|dxdy → 0

because vn ⇀ 0 weakly in H1(Rd) and u0 ∈ H1(Rd) (see a previous exercise). Moreover, by

the Cauchy-Schwarz inequality again∫
Rd×Rd

|vn(x)||u0(x)||fn(y)||gn(y)||w(x− y)|dxdy

≤
(∫

Rd×Rd
|vn(x)||u0(x)||fn(y)|2|w(x− y)|dxdy

)1/2

×
(∫

Rd×Rd
|vn(x)||u0(x)||gn(y)|2|w(x− y)|dxdy

)1/2

→ 0.

Here we used that fn, gn are bounded in H1(Rd) and |vnu0|1/2 → 0 strongly in L2(Rd) (see

an exercise below). Thus in summary, for the interaction energy we obtain∣∣∣ ∫
Rd×Rd

[
|un(x)|2|un(y)|2 − |u0(x)|2|u0(y)|2 − |vn(x)|2|vn(y)|2

]
w(x− y)dxdy

∣∣∣→ 0.

We conclude that

lim
n→∞

(
EVH (un)− EVH (u0)− E0

H(vn)
)

= 0.

Step 6 (Conclusion from binding inequality). From the above estimates we find that

eVH(1) = lim
n→∞

EVH (un) = EVH (u0) + lim
n→∞

E0
H(vn) ≥ eVH(λ) + e0

H(1− λ).

On the other hand, we have the binding inequality eVH(1) ≤ eVH(λ) + e0
H(1− λ). Thus here we
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must have that

lim
n→∞

E0
H(vn) = e0

H(1− λ),

namely vn is a minimizing sequence for e0
H(1− λ), and

EVH (u0) = eVH(λ),

namely u0 is a minimizer for eVH(λ). In principle we only know that λ ≤ 1.

Step 7 (Conclusion from strict binding inequality). If λ < 1, we have

eVH(1) = eVH(λ) + e0
H(1− λ)

(and eVH(λ) has a minimizer). This violates the strict binding inequality. Putting differently,

if the strict binding inequality holds, then λ = 1, and eVH(1) has a miminizer. q.e.d.

Exercise. Assume that fn ⇀ 0 in H1(Rd) and let g ∈ H1(Rd). Prove that |fng|1/2 → 0

strongly in Lp(Rd) for any 2 ≤ p < 2∗ (with 2∗ =∞ if d ≥ 2 and 2∗ = 2d
d−2

if d ≥ 3).

Exercise. Consider the Hartree functional

EVH (u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy

with V,w ∈ Lp(Rd)+Lq(Rd) for some max(d/2, 1) < p, q <∞. Let λ ∈ [0, 1] and define

the Hartree energy

eVH(λ) := inf
{
EH(u) |u ∈ H1(Rd), ‖u‖2

L2(Rd) = λ
}
.

1. Prove that

eVH(λ) ≤ e0
H(λ) ≤ 0.

2. Deduce that if V,w ≥ 0, then

eVH(λ) = e0
H(λ) = 0.

Here is an example of the application of the previous theorem.
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Theorem (Existence of minimizers for bosonic atoms). Consider the Hartree functional

for atoms

EH(u) :=

∫
R3

(
|∇u(x)|2 − Z

|x|
|u(x)|2

)
dx+

1

2

∫∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy

with Z > 0. Then for any 0 ≤ λ ≤ Z, the variational problem

E(Z, λ) = inf
{
EH(u) |u ∈ H1(R3),

∫
R3

|u|2 = λ
}

has a minimizer.

Proof. Since the Coulomb potential |x|−1 belongs to L3−ε(R3) + L3+ε(R3), we can apply the

previous theorem. Here we are considering a positive interaction potential. Therefore, the

binding inequality becomes

E(Z, λ) ≤ E(Z, λ′), ∀0 ≤ λ′ ≤ λ

and it suffices to show that when λ ≤ Z we have the strict binding inequality

E(Z, λ) < E(Z, λ′), ∀0 ≤ λ′ < λ

when E(Z, λ′) has a minimizer. It suffices to construct a trial state u such that∫
R3

|u|2 ≤ λ, EH(u) < E(Z, λ′).

In fact, from this trial state, by the the monotonicity of the ground state energy in the mass

and the variational principle we get

E(Z, λ) ≤ E(Z, ‖u‖2
L2) ≤ EH(u) < E(Z, λ′).

We construct the trial state by following the idea of Zhilin’s theorem.

Step 1 (A localized function). We prove that for R > 0 large there exists a function

uR ∈ H1(R3) such that

supp(uR) ⊂ {|x| ≤ R},
∫
|uR|2 ≤ λ′, EH(uR) ≤ E(Z, λ′) + o(R−1)R→∞.
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Let u0 be a minimizer for E(Z, λ′). Let χ, η : R3 → [0, 1] be smooth functions such that

χ2 + η2 = 1, χ(x) = 1 if |x| < 1/2 and χ(x) = 0 if |x| ≥ 1. Define

χR(x) = χ(x/R), uR = χRu0.

Clearly we have

supp(uR) ⊂ {|x| ≤ R},
∫
|uR|2 ≤

∫
|u0|2 = λ′.

It remains to estimate the energy difference EH(uR)−EH(u0). For the kinetic energy, by using

the partition of unity

χ2
R + η2

R = 1, χR(x) = χ(x/R),

and the IMS formula we can estimate∫
|∇uR|2 −

∫
|∇u0|2 ≤

∫
|∇(χRu0)|2 +

∫
|∇(ηRu0)|2 −

∫
|∇u0|2

=

∫
R3

(|∇χR|2 + |∇ηR|2)|u0|2 ≤ O(R−2).

For the potential energy, we have

−
∫

Z

|x|

[
|uR|2 − |u0|2

]
=

∫
Z

|x|
|ηRu0|2 ≤

2Z

R

∫
|x|≥R/2

|u0|2 = o(R−1).

For the interaction energy, since the interaction potential is positive, we simply use to point-

wise estimate |uR(x)| ≤ |u0(x)| to get

1

2

∫∫
R3×R3

|uR(x)|2|uR(y)|2

|x− y|
dxdy − 1

2

∫∫
R3×R3

|u0(x)|2|u0(y)|2

|x− y|
dxdy ≤ 0.

Thus we have

EH(uR) ≤ EH(u0) + o(R−1) = E(Z, λ′) + o(R−1).

Step 2 (A function “ at infinity”). Take a smooth function v : R3 → R with

supp v ⊂ {x ∈ R3 : 1 < |x| < 2},
∫
Rd
|v|2 = ε.

For any R > 0 we choose

vR(x) =
1

R3/2
v
( x
R

)
.
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Then

supp vR ⊂ {x ∈ R3 : R ≤ |x| ≤ 2R},
∫
R3

|vR|2 = ε.

Step 3 (The trial state). We choose the trial state

ϕR = uR + vR ∈ H1(Rd).

Since uR and vR have disjoint supports, we have

‖ϕR‖2
L2 = ‖uR + vR‖2

L2 = ‖uR‖2
L2 + ‖vR‖2

L2 ≤ λ′ + ε.

We can choose ε > 0 small such that λ′ + ε < λ.

Step 4 (Strict binding inequality). Now we estimate EH(ϕR)− EH(uR). For the kinetic

energy, since uR and vR have disjoint supports

‖∇ϕR‖2
L2 − ‖∇uR‖2

L2 = ‖∇vR‖2
L2 = O(R−2).

For the potential energy,

−
∫
R3

Z

|x|

[
|ϕR|2 − |uR|2

]
= −

∫
R3

Z

|x|
|vR|2 = −Z

R

∫
R3

1

|x|
|v|2.

For the interaction energy, using Newton’s theorem (vR is radial) we can bound

1

2

∫∫
R3×R3

|ϕR(x)|2|ϕR(y)|2 − |uR(x)|2|uR(y)|2

|x− y|

=
1

2

∫∫
(|uR(x)|2 + |vR(x)|2)(|uR(y)|2 + |vR(y)|2)− |uR(x)|2|uR(y)|2

|x− y|

=
1

2

∫∫
2|uR(x)|2|vR(y)|2 + |vR(x)|2|vR(y)|2

|x− y|

=
1

2

∫∫
2|uR(x)|2|vR(y)|2 + |vR(x)|2|vR(y)|2

max(|x|, |y|)

≤ 1

2

∫∫
2|uR(x)|2|vR(y)|2 + |vR(x)|2|vR(y)|2

|y|

= (λ′ + ε/2)

∫
|vR(y)|2

|y|
=
λ′ + ε/2

R

∫
|v(y)|2

|y|
.
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Thus in summary

EH(ϕR)− EH(uR) ≤ λ′ + ε/2− Z
R

∫
|v(y)|2

|y|
+O(R−2).

Moreover, from the choice of uR we have

EH(uR) ≤ eH(λ′) + o(R−1).

Thus

EH(ϕR) ≤ eH(λ′)+ ≤ λ′ + ε/2− Z
R

∫
|v(y)|2

|y|
+ o(R−1).

Here we are choosing λ′ + ε ≤ λ ≤ Z, therefore

λ′ + ε/2− Z < 0.

Thus if we take R large enough, then

EH(ϕR) < eH(λ′)

which completes the proof. q.e.d.

Exercise. Consider the Hartree functional

EH(u) :=

∫
R3

(
|∇u(x)|2 − Z |u(x)|2

|x|

)
dx+

1

2

∫∫
R3×R3

|u(x)|2|u(y)|2

|x− y|s
dxdy

with parameters Z > 0 and 1 < s < 2. Prove that the minimization problem

eH := inf
{
EH(u) |u ∈ H1(Rd), ‖u‖L2(Rd) = 1

}
has a minimizer.
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3.3 Existence of minimizers: translation-invariant case

Now we consider the special case when the external potential is zero. This corresponds to

the “problem at infinity”. In this case, the Hartree functional

E0
H(u) :=

∫
Rd
|∇u(x)|2dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy

is translation-invariant, namely

E0
H(u) = E0

H(u(· − y)), ∀u ∈ H1(Rd), ∀y ∈ Rd.

We know that if w ≥ 0 (and w vanishes at infinity), then the corresponding energy

e0
H(λ) := inf{E0

H(u) |u ∈ H1(Rd), ‖u‖2
L2 = λ}

is simply zero. However, if w ≤ 0 (or if w has a non-trivial negative part), then in principle

the energy e0
H(λ) can be negative. Thus even if we start with a general (non-zero) external

potential V , understanding the problem at infinity is still very helpful to justify the binding

inequality

EVH (1) < EVH (λ) + E0
H(1− λ), ∀0 ≤ λ < 1.

On the other hand, the method in the previous section is not enough to deal with the

translation-invariant case, because the binding inequality

EVH (1) < EVH (λ) + E0
H(1− λ), ∀0 ≤ λ < 1.

cannot hold true with V ≡ 0 (just take λ = 0). Therefore, we will need the following result.

Theorem (Existence of Hartree minimizers: translation-invariant case). Consider the

Hartree functional

E0
H(u) :=

∫
Rd
|∇u(x)|2dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy

with w ∈ Lp(Rd) + Lp(Rd), max(d/2, 1) < p, q <∞. For any λ ∈ [0, 1] define

e0
H(λ) := inf

{
E0

H(u) : u ∈ H1(Rd), ‖u‖2
L2(Rd) = λ

}
.
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Then we always have the binding inequality

e0
H(λ) ≤ e0

H(λ′) + e0
H(λ− λ′), ∀0 < λ′ < λ.

Moreover, if we have the strict binding inequality

e0
H(λ) < e0

H(λ′) + e0
H(λ− λ′), ∀0 < λ′ < λ,

then e0
H(λ) has a minimizer. In fact, for the existence of minimizers for e0

H(λ), we only

need the strict binding inequality when both e0
H(λ′) and e0

H(λ− λ′) have minimizers.

Remarks:

• Note that in the above strict binding inequality we do not include the case λ′ = 0 (and

the case λ′ = λ). This is the main difference to the previous section .

• Since e0
H(λ′) ≤ 0 for all λ′ (see a previous exercise), the strict binding inequality in

particular implies the non-vanishing condition e0
H(λ) < 0.

The main difficulty in the proof of the above Theorem is as follows: if u0 is a minimizer for

e0
H(λ), then

un(x) = u0(x− yn), yn ∈ Rd

are also minimizers for e0
H(λ). On the other hand, if limn→∞ |yn| = +∞, then un ⇀ 0 weakly

in H1(Rd). Similarly, there are several minimizing sequences for e0
H(λ) that converge weakly

to 0. Thus to apply the method of calculus of variations, we have to modify minimizing

sequences using appropriate translations.

Exercise. Assume that un → u0 strongly in L2(Rd). Let {yn}∞n=1 ⊂ Rd such that

|yn| → +∞ and denote

vn(x) := un(x− yn), ∀x ∈ Rd, ∀n ∈ N.

Prove that vn ⇀ 0 weakly in L2(Rd).

The following key lemma provides a proper understanding of the vanishing case in the

translation-invariant setting, namely the situation when we have the weak convergence to 0

up to all translations.
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Lemma (Concentration–Compactness Lemma.). Let {un}n≥1 be a bounded sequence in

H1(Rd). Then there are two alternatives:

• Vanishing case: un → 0 strongly in Lr(Rd) for all 2 < r < 2∗, where 2∗ =∞ if

d ≤ 2 and 2∗ = 2d/(d− 2) if d ≥ 3.

• Non-vanishing case: There exist a subsequence {unk}k≥1 and a sequence {yk} ⊂
Rd such that vk := unk(· − yk) converges weakly to a function v0 6≡ 0 in H1(Rd).

Proof. We define “the largest mass that stays in a bounded region”

M({un}) := lim
R→∞

lim sup
n→∞

sup
y∈Rd

∫
|x−y|≤R

|un(x)|2dx.

There are two possibilities.

Case 1: Non-vanishing: M({un}) > 0. Then by the definition, there exists R > 0 such

that

lim sup
n→∞

sup
y∈Rd

∫
|x−y|≤R

|un(x)|2dx > 0.

Thus there exists a subsequence {unk}, a sequence {yk} ⊂ Rd and ε > 0 such that∫
|x−yk|≤R

|unk(x)|2dx ≥ ε > 0, ∀k ≥ 1.

Define vk := unk(x− yk). Then the above lower bound can be rewritten as∫
|x|≤R

|vk(x)|2dx ≥ ε > 0, ∀k ≥ 1.

On the other hand, ‖vk‖H1 = ‖unk‖H1 is bounded. Therefore, up to a subsequence we can

assume that vk ⇀ v0 weakly in H1(Rd). By the Sobolev’s embedding theorem we find that∫
|x|≤R

|v0(x)|2dx = lim
k→∞

∫
|x|≤R

|vk(x)|2dx ≥ ε.

Thus v0 6≡ 0, as desired.
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Case 2: Vanishing: M({un}) = 0. Then for all R > 0 we have

lim
n→∞

sup
y∈Rd

∫
|x−y|≤R

|un(x)|2dx = 0.

Fix R > 0 sufficiently large. We can write the space Rd as a union of finite balls

Rd =
⋃
z∈Zd

B(z, R/2).

Let χ : Rd → [0, 1] be a smooth function such that χ(x) = 1 if |x| ≤ R/2 and χ(x) = 0 if

|x| ≥ R. Define χz(x) = χ(x− z). Then

1 ≤
∑
z∈Rd

χz(x)s ≤ C,
∑
z∈Rd
|∇χz(x)|2 ≤ C, ∀x ∈ Rd, ∀s ∈ (0,∞).

For any z ∈ Rd, by Hölder inequality we have∫
Rd
|χzun|r ≤

(∫
Rd
|χzun|2

)θ(∫
Rd
|χzun|q

)1−θ

for any

2 < r < q, 0 < θ < 1, 2θ + q(1− θ) = r.

In particular, for r > 2 and sufficiently close to 2, we can choose

θ =
r

2
− 1, q =

4

4− r
< 2∗, such that q(1− θ) = 2.

The conditions q < 2∗ and q(1− θ) = 2 allow us to use Sobolev’s inequality

(∫
Rd
|χzun|q

)1−θ
= ‖χzun‖2

Lq ≤ C‖χzun‖2
H1 .

Thus in summary, for r > 2 and close to 2 we have∫
Rd
|χzun|r ≤ C

(∫
Rd
|χzun|2

)r/2−1

‖χzun‖2
H1 .

Summing over z ∈ Rd we obtain∫
Rd
|un|r ≤

∑
z∈Rd

∫
Rd
|χzun|r ≤ C

[
sup
y∈Zd

∫
Rd
|χyun|2

]r/2−1 ∑
z∈Rd
‖χzun‖2

H1(Rd)
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≤ C
(

sup
y∈Rd

∫
|x−y|≤R

|un(x)|2dx
)r/2−1

‖un‖2
H1(Rd) → 0.

Here we have used
∑

z∈Rd ‖χzun‖2
H1 ≤ C‖un‖2

H1 (see an exercise below), together with the

fact that ‖un‖H1(Rd) is bounded and the vanishing condition. Thus un → 0 strongly in Lr(Rd)

with r > 2 and close to 2. Since {un} is bounded in H1(Rd), by interpolation (Sobolev’s and

Hölder’s inequalities) we conclude that un → 0 strongly in Lr(Rd) for any 2 < r < 2∗. q.e.d.

Exercise. Let {un}n≥1 be a bounded sequence in H1(Rd). Define

M({un}) := lim
R→∞

lim sup
n→∞

sup
y∈Rd

∫
|x−y|≤R

|un(x)|2dx

and

M′({un}) := sup{‖v‖2
L2(Rd) | ∃ a subsequence unk(· − yk) ⇀ v weakly in H1(Rd)}.

(Here {unk} is a subsequence of {un} and the sequence {yk} ⊂ Rd can be chosen arbi-

trarily). Prove that

M({un}) = M′({un}).

Exercise. Let {χn}n≥1 be a sequence of smooth functions χn : Rd → [0, 1] satisfying

sup
x∈Rd

∑
n≥1

[
|χn(x)|2 + |∇xχn(x)|2

]
<∞.

Prove that ∑
n≥1

‖χnu‖2
H1 ≤ C‖u‖2

H1(Rd), ∀u ∈ H1(Rd).

The constant C > 0 is dependent on {χn}n≥1, but independent of u.

Proof of the existence theorem. The finiteness of e0
H(λ) and the binding inequality

e0
H(λ) ≤ e0

H(λ′) + e0
H(λ− λ′), ∀0 < λ′ < λ

have been proved before. Thus it remains to prove the existence of minimizers under the
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strict binding inequality

e0
H(λ) < e0

H(λ′) + e0
H(λ− λ′), ∀0 < λ′ < λ.

From the lower bound

E0
H(u) ≥ 1

2

∫
Rd
|∇u|2 − C

we find that any minimizing sequence for e0
H(λ) is bounded inH1(Rd). Thus by the concentration-

compactness lemma, there are two possibilities: vanishing case and non-vanishing case.

Vanishing case: un → 0 strongly in Lr(Rd) for all 2 < r < 2∗. In this case, using

w ∈ Lp(Rd) + Lq(Rd) with p, q > max(d/2, 1) we find that∫∫
Rd×Rd

|un(x)|2|un(y)|2w(x− y)dxdy → 0.

In fact, if w ∈ Lp(Rd) for example, then by Hölder and Young inequalities∫∫
Rd×Rd

|un(x)|2|un(y)|2|w(x− y)|dxdy ≤ ‖|un|2‖Lp′‖w ∗ |un|2‖Lp ≤ ‖un‖2
L2p′‖w‖Lp‖un‖2

L2 → 0.

Here
1

p
+

1

p′
= 1

and the condition p > max(d/2, 1) implies that 2 < p′ < 2∗. Consequently, we find that

e0
H(λ) = lim

n→∞
E0

H(un) ≥ 0.

However, it contradicts with the strict binding inequality (which particularly implies that

e0
H(λ) < 0).

Non-vanishing case: Up to subsequences and translations, we can assume that un ⇀ u0

weakly in H1(Rd) with u0 6≡ 0. As proved in the previous section , we can split the energy

lim
n→∞

(
E0

H(un)− E0
H(u0)− E0

H(un − u0)
)

= 0.

Denote λ′ := ‖u0‖2
L2 > 0. Then

‖un − u0‖L2 = ‖un‖2
L2 + ‖u0‖2

L2 − 2<〈un, u0〉 → λ+ λ′ − 2λ′ = λ− λ′.
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Thus by the variational principle we have

e0
H(λ) = lim

n→∞
E0

H(un) ≥ E0
H(u0) + lim

n→∞
E0

H(un − u0) ≥ e0
H(λ′) + e0

H(λ− λ′).

In comparison to the binding inequality

e0
H(λ) ≤ e0

H(λ′) + e0
H(λ− λ′)

we find that E0
H(u0) = e0

H(λ′) (i.e. u0 is a minimizer for e0
H(λ′)).

Moreover, if the strict binding inequality holds, then we must have λ′ = λ (as we have known

already that λ′ = ‖u0‖2
L2 > 0. Thus u0 is a minimizer for e0

H(λ). q.e.d.

Here is an application of the above abstract theorem.

Theorem (Choquard-Pekar Problem). Consider the Hartree functional with gravita-

tional interaction potential

E0
H(u) :=

∫
R3

|∇u|2 − 1

2

∫∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy.

Prove that for every λ > 0, the minimization problem

e0
H(λ) := inf

{
E0

H(u) |u ∈ H1(Rd), ‖u‖2
L2 = λ

}
has a minimizer.

Proof. Recall that −|x|−1 ∈ L3−ε(R3) + L3+ε(R3). We need to check the strict binding

inequality

e0
H(λ) < e0

H(λ′) + e0
H(λ− λ′), ∀0 < λ′ < λ.

Step 1: We prove that e0
H(λ) < 0 for all λ > 0.

In fact, take ϕ ∈ H1(R3) with ‖ϕ‖2
L2 = λ. For every R > 0 define

ϕR(x) = R−3/2ϕ(x/R).

Then ‖ϕR‖2
L2 = λ and

E0
H(ϕR) =

1

R2
‖∇ϕ‖2

L2 −
1

2R

∫∫
R3×R3

|ϕ(x)|2|ϕ(y)|2

|x− y|
dxdy.
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By taking R > 0 sufficiently large, we conclude by the variational principle

e0
H(λ) ≤ E0

H(ϕR) < 0.

Step 2: We prove that for all λ > 0, for all 0 < θ < 1,

e0
H(θλ) ≥ θ2e0

H(λ).

Indeed, take a minimizing sequence {un}n≥1 ⊂ H1(Rd) for e0
H(θλ), i.e.

‖un‖2
L2 = θλ, E0

H(un)→ e0
H(θλ).

Define

vn =
un√
θ
, ‖vn‖2

2 = λ.

Then by the variational principle we have

e0
H(λ) 6 E0

H(vn) =
1

θ
‖∇un‖2

L2 −
1

2θ2

∫∫
R3×R3

|un(x)|2|un(y)|2

|x− y|
dxdy

=
(1

θ
− 1

θ2

)
‖∇un‖2

L2 +
1

θ2
E0

H(un)

≤ 1

θ2
E0

H(un)→ 1

θ2
e0

H(θλ).

Step 3: Using the estimates in Step 1 and Step 2, for every λ > λ′ > 0 we can bound

e0
H(λ′) + e0

H(λ− λ′) = e0
H

(λ′
λ
λ
)

+ e0
H

(λ− λ′
λ

λ
)

≥
(λ′
λ

)2

e0
H(λ) +

(λ− λ′
λ

)2

e0
H(λ)

>
(λ′
λ

)
e0

H(λ) +
(λ− λ′

λ

)
e0

H(λ) = eH
0 (λ).

Thus the strict binding inequality holds, and hence eH
0 (λ) has a minimizer for every λ >

0. q.e.d.

The above analysis can be also adapted to treat the Hartree problem with a general potential

vanishing at infinity.
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Exercise (Choquard-Pekar Problem with an external potential). Consider the Hartree

functional

EVH (u) :=

∫
R3

(
|∇u|2 + V |u|2

)
− 1

2

∫∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy

with real-valued potentials V,w ∈ Lp(Rd) + Lq(Rd), ∞ > p, q > max(d/2, 1). Assume

that V ≤ 0 and V 6≡ 0. Prove that for every λ > 0 the minimization problem

eVH(λ) := inf
{
EVH (u) |u ∈ H1(Rd), ‖u‖2

L2 = λ
}

has a minimizer.

3.4 Hartree equation

Theorem (Hartree equation). Consider the Hartree functional

EVH (u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy

with V−, w ∈ Lp(Rd) + L∞(Rd), V+ ∈ Lploc(Rd) with p > max(d/2, 1). Assume that for

some λ > 0 the minimization problem

eVH(λ) := inf
{
EVH (u) : u ∈ H1(Rd), ‖u‖2

L2(Rd) = λ
}

has a minimizer u0. Then u0 satisfies the Hartree equation(
−∆ + V (x) + (w ∗ |u0|2)(x)− µ(λ)

)
u0(x) = 0.

in the distributional sense, namely∫
Rd

[
∇ϕ · ∇u0 + V ϕu0 + ϕ(w ∗ |u0|2)u0 − µϕu0

]
= 0, ∀ϕ ∈ C∞c (Rd).

Here the constant µ(λ) ∈ R is called the Lagrange multiplier or chemical potential.

Proof. Let us consider the case λ = 1 for simplicity. By the variational principle, for every
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ϕ ∈ C∞c (Rd) we have

EVH
( u0 + εϕ

‖u0 + εϕ‖L2

)
≥ EVH (u0)

for all ε ∈ R sufficiently close to 0. Therefore,

0 =
d

dε
EVH
( u0 + εϕ

‖u0 + εϕ‖L2

)
|ε=0 = 2<

∫
Rd

[
∇ϕ · ∇u0 + V ϕu0 + ϕ(w ∗ |u0|2)u0 − µϕu0

]
with

µ =

∫
Rd

(
|∇u0(x)|2 + V (x)|u0(x)|2

)
dx+

∫∫
Rd×Rd

|u0(x)|2|u0(y)|2w(x− y)dxdy.

Replacing ϕ by iϕ (with i2 = −1) we find that

0 = 2=
∫
Rd

[
∇ϕ · ∇u0 + V ϕu0 + ϕ(w ∗ |u0|2)u0 − µϕu0

]
.

Thus for all ϕ ∈ C∞c (Rd) we have∫
Rd

[
∇ϕ · ∇u0 + V ϕu0 + ϕ(w ∗ |u0|2)u0 − µϕu0

]
= 0.

q.e.d.

3.5 Regularity of minimizers

Theorem (Hartree equation). Assume that u0 ∈ H1(Rd) is a solution to the Hartree

equation (
−∆ + V (x) + (w ∗ |u0|2)(x)− µ

)
u0 = 0.

in the distributional sense. Assume that µ ∈ R, V = V1 + V2 and

• V1, w ∈ Lp(Rd) + L∞(Rd) with p > max(d/2, 2);

• 0 ≤ V2 ∈ L∞loc and |∇V2(x)| ≤ C(V2(x) + 1).

Then u0 ∈ H2(Rd) and −∆u0, V u0 ∈ L2(Rd), (w ∗ |u0|2)u0 ∈ L2(Rd). In particular, the

Hartree equation holds in the pointwise sense.

Remark: The conditions V2 ≥ 0 and |∇V2(x)| ≤ C(V1(x) + 1) allow trapping potentials, e.g.
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V2(x)→ +∞ as |x| → ∞ and it does not grow faster than exponentially.

Proof. Potentials vanishing at infinity. First let us consider the case V2 ≡ 0, namely

V = V1 vanishes at infinity. In this case, since V ∈ Lp + L∞ with p > max(d/2, 2), it is

relatively bounded with the Laplacian with an arbitrarily relative bound, namely

‖V ϕ‖L2 ≤ ε‖∆ϕ‖L2 + Cε‖ϕ‖L2 , ∀ϕ ∈ H2(Rd), ∀ε > 0.

Moreover, we have w ∗ |u0|2 ∈ L∞(Rd). Indeed, if w ∈ Lp for example, then by Young’s and

Sobolev’s inequality we find that

‖w ∗ |u0|2‖L∞ ≤ ‖w‖Lp‖u2
0‖Lp′ = ‖w‖Lp‖u0‖2

L2p′ ≤ C‖w‖Lp‖u0‖2
H1 .

Here 1/p+ 1/p′ = 1 and the condition p > max(d/2, 2) ensures that 2p′ < 2∗. Thus we have

‖V (x) + (w ∗ |u0|2)(x)ϕ‖L2 ≤ 1

2
‖∆ϕ‖L2 + C‖ϕ‖L2 , ∀ϕ ∈ H2(Rd).

By the Kato-Rellich theorem,

A := −∆ + V (x) + (w ∗ |u0|2)(x)− µ.

is a self-adjoint operator on L2(Rd) with domain H2(Rd)

On the other hand, the Hartree equation can be rewritten as

〈u0, Aϕ〉 = 0, ∀ϕ ∈ C∞c (Rd).

Using

C∞c (Rd)
‖.‖D(A)

= C∞c (Rd)
‖.‖

H2(Rd) = H2(Rd)

(as ‖.‖D(A) is comparable to ‖.‖H2(Rd)) we find that

〈u0, Aϕ〉 = 0, ∀ϕ ∈ H2(Rd).

This implies that u0 ∈ D(A∗). Since A is self-adjoint, we find that u0 ∈ D(A) = H2(Rd).

General potential. Now we consider the general case when V = V1 + V2. Define

A0 := −∆ + V2.
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Then A0 is a self-adjoint operator on L2(Rd) with domain

D(A0) = H2(Rd) ∩D(V2), D(V2) :=
{
u ∈ L2(Rd) |V2u ∈ L2(Rd)

}
(exercise). Now we prove that

C−1
(
‖ϕ‖H2 + ‖V2ϕ‖L2

)
≤ ‖ϕ‖D(A0) ≤ ‖ϕ‖H2 + ‖V2ϕ‖L2 , ∀ϕ ∈ D(A0),

namely the norm ‖ϕ‖D(A0) is equivalent to ‖ϕ‖H2 + ‖V2ϕ‖L2 . Recall that ‖ϕ‖D(A0) :=

‖A0ϕ‖L2 + ‖ϕ‖L2 . The second bound follows from the triangle inequality. For the first

bound, using the IMS formula we can write

A2
0 = (−∆)2 + V 2

2 + V2(−∆) + (−∆)V2

= (−∆)2 + V 2
2 − 2(−∆) + (V2 + 1)(−∆) + (−∆)(V2 + 1)

= (−∆)2 + V 2
2 − 2(−∆) + 2

√
V2 + 1(−∆)

√
V2 + 1− 2|∇

√
V2 + 1|2

= (−∆)2 + V 2
2 − 2(−∆) + 2

√
V2 + 1(−∆)

√
V2 + 1− |∇V2|2

2(V2 + 1)
.

Then by the condition |∇V2(x)| ≤ C(V2(x) + 1) and the Cauchy-Schwarz inequality

A2
0 ≥ (−∆)2 + V 2

2 − 2(−∆)− C(V2 + 1)

≥ (1− ε)
(

(−∆)2 + V 2
2

)
− Cε, ∀ε ∈ (0, 1).

Putting differently,

‖A0ϕ‖2
L2 ≥ (1− ε)‖∆ϕ‖2

L2(Rd) + ‖V ϕ‖2
L2(Rd) − Cε‖ϕ‖

2
L2 , ∀ε ∈ (0, 1), ∀ϕ ∈ D(A).

Thus
1

C

(
‖ϕ‖H2 + ‖V2ϕ‖L2

)
‖ϕ‖D(A0) ≤ ‖ϕ‖H2 + ‖V2ϕ‖L2 .

In particular, we have

C∞c (Rd)
D(A0)

= D(A0).

Next, using the bound

‖V1(x) + (w ∗ |u0|2)(x)ϕ‖L2 ≤ ε‖∆ϕ‖L2 + Cε‖ϕ‖L2 , ∀ϕ ∈ H2(Rd), ∀ε > 0
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we conclude, by the Kato-Rellich theorem that

A := −∆ + V (x) + (w ∗ |u0|2)(x)− µ.

is a self-adjoint operator on L2(Rd) with domain D(A) = D(A0). The Hartree equation can

be rewritten as

〈u0, Aϕ〉 = 0, ∀ϕ ∈ C∞c (Rd).

Using

C∞c (Rd)
D(A)

= C∞c (Rd)
D(A0)

= D(A0) = D(A).

we find that

〈u0, Aϕ〉 = 0, ∀ϕ ∈ D(A).

Since A is self-adjoint, we conclude that u0 ∈ D(A∗) = D(A) = H2(Rd) ∩D(V2). Thus

−∆u, V u, (w ∗ |u0|2)u0 ∈ L2(Rd)

and hence the Hartree equation holds in the usual sense of L2(Rd), which is equivalent to the

pointwise equality (almost everywhere). q.e.d.

Exercise. Let V : Rd → R be a measurable function. Consider the Schrödinger operator

A = −∆ +V (x) on L2(Rd) with D(A) = H2(Rd)∩D(V ). Prove that A is a self-adjoint

operator.

3.6 Positivity of minimizers

Theorem (Positivity of Hartree minimizers). Consider the Hartree functional

EVH (u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy

with V+ ∈ L∞loc(Rd), V−, w ∈ Lp(Rd) + L∞(Rd), p > max(d/2, 1). Assume that the

minimization problem

eVH(λ) := inf
{
EVH (u) : u ∈ H1(Rd), ‖u‖2

L2(Rd) = λ
}
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has a minimizer u0 ∈ H2(Rd) and it satisfies the Hartree equation(
−∆ + V (x) + (w ∗ |u0|2)(x)− µ

)
u0(x) = 0, for a.e. x ∈ Rd.

Then we have

• Positivity of minimizer: There exists a constant z ∈ C, |z| = 1 such that

zu0(x) = |u0(x)| > 0, for a.e. x ∈ Rd.

Moreover, |u0| is also a Hartree minimizer.

• Positivity of mean-field operator: We have

−∆ + V (x) + (w ∗ |u0|2)(x)− µ ≥ 0.

Moreover, this operator has the ground state energy 0, and |u0| > 0 is its unique

ground state up to a phase factor (i.e. all ground state are given by z′|u0| with

z′ ∈ C, |z′| = 1). )

We start with recalling a very useful bound.

Theorem (Diamagnetic inequality). For any u ∈ H1(Rd), we have |u| ∈ H1(Rd) and

|∇|u|(x)| ≤ |∇u(x)|, for a.e. x ∈ Rd.

This is equivalent to the convexity of gradient: for real-valued functions f, g ∈
H1(Rd),

|∇
√
f 2 + g2(x)|2 ≤ |∇f(x)|2 + |∇g(x)|2, for a.e. x ∈ Rd.

In the latter bound, if we have the equality

|∇
√
f 2 + g2(x)|2 = |∇f(x)|2 + |∇g(x)|2, for a.e. x ∈ Rd.

and f(x) > 0 for a.e. x ∈ Rd or g(x) > 0 for a.e. x ∈ Rd, then f(x) = cg(x) for a

constant c independent of x ∈ Rd.

Remarks:
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• The the convexity of gradient holds true also for complex valued functions as∣∣∣∇√|f(x)|2 + |g(x)|2
∣∣∣2 ≤ |∇|f |(x)|2 + |∇|g|(x)|2 ≤ |∇f(x)|2 + |∇g(x)|2.

• A more general form of the diamagnetic inequality: For any given vector field A ∈
L2

loc(R3,R3) we have the pointwise estimate

|∇|u|(x)| ≤ |(∇+ iA(x))u(x)|, for a.e. x ∈ Rd.

This explains the name “diamagnetic inequality”.

Proof. Step 1. Consider u = f + ig with real-valued functions f, g ∈ H1(Rd). Then we have

the pointwise formula

∇|u|(x) =


0 if u(x) = 0,

f(x)∇f(x) + g(x)∇g(x)

|u(x)|
if u(x) 6= 0.

In fact, for any ε > 0 we define

Gε =
√
|u|2 + ε2 − ε =

√
f 2 + g2 + ε2 − ε.

Note that

0 ≤ Gε(x) =
f 2(x) + g2(x)√

f 2(x) + g2(x) + ε2 + ε
≤
√
f 2(x) + g2(x) ∈ L2(Rd)

and

∇Gε(x) =
f(x)∇f(x) + g(x)∇g(x)√

f 2(x) + g2(x) + ε2
.

By the Cauchy-Schwarz inequality, we have the pointwise estimate

|∇Gε(x)| ≤
√
f 2(x) + g2(x)

√
|∇f(x)|2 + |∇g(x)|2√

f 2(x) + g2(x) + ε2
≤
√
|∇f(x)|2 + |∇g(x)|2 ∈ L2(Rd).

Since {Gε} is bounded in H1(Rd) and Gε(x)→ |u(x)| pointwise as ε→ 0, we obtain Gε ⇀ |u|
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weakly in H1(Rd). Moreover, since

∇Gε → D :=


0 if u(x) = 0,

f(x)∇f(x) + g(x)∇g(x)

|u(x)|
if u(x) 6= 0.

strongly in L2 (by Dominated convergence), we find that ∇|u| = D.

Step 2. By the Cauchy-Schwarz inequality we have, when u(x) = f(x) + ig(x) 6= 0,

|∇|u|(x)| = |f(x)∇f(x) + g(x)∇g(x)|
|u(x)|

≤
√
f 2(x) + g2(x)

√
|∇f(x)|2 + |∇g(x)|2
|u(x)|

=
√
|∇f(x)|2 + |∇g(x)|2 = |∇u(x)|.

Step 3. In the above Cauchy-Schwarz inequality, the equality

|∇
√
f 2 + g2(x)| =

√
|∇f(x)|2 + |∇g(x)|2, for a.e. x ∈ Rd.

occurs if and only if

f(x)∇g(x)− g(x)∇f(x) = 0, for a.e. x ∈ Rd.

Now assume that g(x) > 0 for a.e. x ∈ Rd (the case f(x) > 0 is similar). Then the above

equality implies that

∇
(f(x)

g(x)

)
=
f(x)∇g(x)− g(x)∇f(x)

g2(x)
= 0, for a.e. x ∈ Rd.

Thus f/g = c a constant. q.e.d.

Exercise. Prove that if un ⇀ u0 weakly in H1(Rd), then |un|⇀ |u0| weakly in H1(Rd).

Now we apply the diamagnetic inequality to Hartree theory.

Proof of the positivity of Hartree minimizers. Step 1. By the diamagnetic inequality we

have

EVH (u)− EH(|u|) = ‖∇u‖2
L2 − ‖∇|u|‖2

L2 ≥ 0.
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Therefore, if u0 is a minimizer for eVH(λ), then |u0| is also a minimizer.

Step 2. Now assume that u0 ≥ 0 is a minimizer for eVH(λ). We prove that u0(x) > 0 for all

x ∈ Rd. We write the Hartree equation as

(
−∆ +W (x)

)
u0(x) = 0

with

W (x) := V (x) + (w ∗ |u0|2)(x)− µ(λ)

The special case V+ ∈ L∞(Rd). Then because w ∗ |u0|2 ∈ L∞(Rd), we have W+ ∈ L∞(Rd).

Thus we can take a large number m > 0 and rewrite the Hartree equation as

(−∆ +m2)u0(x) = (m2 −W )u0(x) ≥ 0, ∀x ∈ Rd.

Since the operator (−∆ + m2)−1 is positivity improving, this implies that u0(x) > 0 for

all x ∈ Rd.

Exercise (Positivity improving property). Let m > 0. Prove that the Yukawa potential

satisfies

K(x) :=

∫
Rd

1

|2πk|2 +m2
e2πik·xdk =

∫ ∞
0

1

(4πt)d/2
exp

(
− |x|

2

4t
−m2t

)
dt > 0.

Deduce that if 0 ≤ g ∈ L2(Rd) and g 6≡ 0, then ((−∆ +m2)−1g)(x) > 0 for a.e. x ∈ Rd.

The general case V+ ∈ L∞loc(Rd). We have W+ ∈ L∞loc(Rd). Thus for any R > 0 there exists

m > 0 large such that

(−∆ +m2)u0(x) = (m2 −W (x))u0(x) ≥ 0, ∀|x| < R.

The strict positivity u(x) > 0 on |x| < R then follows from the following general result (see

[Lieb-Loss, Analysis, Theorem 9.10] for a proof, and even a more general version).

Theorem (Harnack’s inequality). Let m > 0 and 0 ≤ f ∈ H2(Rd). Assume that

(−∆ +m2)f(x) ≥ 0, for a.e. |x| ≤ R.



3.6. POSITIVITY OF MINIMIZERS 73

Then

f(x) ≥ c0

∫
|y|≤r

f(y)dy, for a.e. |x| ≤ r < R.

The constant c0 = c0(m,R, r) > 0 is independent of f .

Since u0 ≥ 0 and u0 6≡ 0, we can choose R > 0 large enough such that∫
|y|≤R/2

u0(y)dy > 0.

Then by Harnack’s inequality, from (−∆ +m2)u0(x) ≥ 0 for |x| ≤ R we find that

u0(x) ≥ c0

∫
|y|≤R/2

u0(y)dy > 0, for a.e. |x| ≤ R/2.

By sending R→∞, we obtain u0(x) > 0 for a.e. x ∈ Rd.

Step 3. Assume that u0 > 0 is a strictly positive solution to the Schrödinger equation

(−∆ +W (x))u0(x) = 0, x ∈ Rd.

Then 0 is the ground state energy of −∆ +W (x) and u0 is a ground state. This follows from

the following general fact.

Theorem (Perron-Frobenius Principle). Let 0 < f ∈ H2(Rd), W ∈ L1
loc(Rd) such that

−∆f(x) +W (x)f(x) = 0, for a.e. x ∈ Rd.

Then −∆ +W ≥ 0, namely∫
Rd

(
|∇ϕ|2 +W |ϕ|2

)
≥ 0, ∀ϕ ∈ C∞c (Rd).

Proof. Since f > 0, we can define g = ϕ/f . Then substituting ϕ = fg we find that∫
|∇ϕ|2 =

∫
|∇(fg)|2 =

∫
|f(∇g)+g(∇f)|2 =

∫ [
|f |2|∇g|2+|g|2|∇f |2+2<f(∇g)·g(∇f)

]
.

Moreover, by integration by part∫
|g|2|∂jf |2 = −

∫
f∂j((∂jf)|g|2) = −

∫
f(∂2

j f)|g|2 −
∫
f∂jf(∂j|g|2)
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and hence by summing over j = 1, 2, ..., d∫
|g|2|∇f |2 =

∫
f(−∆f)|g|2 − 2

∫
f∇f<(g(∇g)).

In summary, ∫
|∇ϕ|2 =

∫
|f |2|∇g|2 +

∫
f(−∆f)|g|2.

Therefore,∫ (
|∇ϕ|2 +W |ϕ|2

)
=

∫
|f |2|∇g|2 +

∫
f (−∆f +Wf)︸ ︷︷ ︸

=0

|g|2 =

∫
|f |2|∇g|2 ≥ 0.

q.e.d.

Since C∞c (Rd) is the core domain of −∆ + W , the above quadratic form estimate ensures

that −∆ +W ≥ 0 as an operator.

Step 4. Now let us conclude. Assume that u0 is a Hartree minimizer. By Step 1, |u0| ≥ 0

is also a Hartree minimizer. By Step 2, |u0| > 0 pointwise. By step 3, both u0 and |u0| are

ground states for the Schrödinger operator −∆ + W (x). Let us prove that |u0(x)| = zu0(x)

for a constant z ∈ C independent of x ∈ Rd.

In fact, we can write u0 = f + ig with real-valued functions f, g. Then f, g are also ground

states for −∆+W (x). By the diamagnetic inequality, |f | is also ground states for −∆+W (x).

Since |f | ≥ 0, arguing as in Step 2 we conclude that |f | > 0.

Next, let h ∈ {f, g}. Since h and |f | are ground states for −∆ +W (x), the function

Φ := h+ i|f |

is also a ground state for −∆ + W (x). By the diamagnetic inequality again, |Φ| is also a

ground state for −∆ +W (x), and moreover we have the equality∫
|∇|Φ||2 =

∫
|∇Φ|2

namely

|∇
√
h2(x) + f 2(x)| =

√
|∇h(x)|2 + |∇|f |(x)|2, for a.e. x ∈ Rd.

Since |f | > 0, the equality case in the diamagnetic inequality tell us that h(x) = ch|f(x)| for
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a constant independent of x. Thus

u0(x) = f(x) + ig(x) = cf |f(x)|+ icg|f(x)| = (cf + icg)|f(x)|

with cf + icg independent of x ∈ Rd. This implies that zu0(x) = |u0(x)| for a constant z ∈ C
independent of x ∈ Rd. q.e.d.

3.7 Uniqueness of minimizers

In general, uniqueness is a hard question, and the answer depends a lot on the potentials. In

this section we will focus on a simple case where the interaction potential is of positive-type,

making the Hartree functional convex.

Definition (Positive-type potential). A potential w : Rd → R is of positive-type if

w(x− y) is the kernel of a positive operator on L2(Rd), namely

〈f, w ∗ f〉 =

∫∫
f(x)f(y)w(x− y)dxdy ≥ 0.

This property is equivalent to ŵ ≥ 0 because

〈f, w ∗ f〉L2 =

∫
Rd
f̂(k)ŵ ∗ f(k)dk =

∫
Rd
|f̂(k)|2ŵ(k)dk.

Theorem (Uniqueness of Hartree minimizers). Consider the Hartree functional

EH(u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy

with V+ ∈ L∞loc(Rd), V−, w ∈ Lp(Rd) + L∞(Rd) with p > max(d/2, 1). Assume further

ŵ(k) ≥ 0, for a.e. k ∈ Rd.

Then the followings hold true.

• Convexity of the functional: 0 ≤ ρ 7→ EVH (
√
ρ) is convex, namely for ρ1 ≥ 0,
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ρ2 ≥ 0 such that
√
ρ1,
√
ρ2 ∈ H1(Rd) and for t ∈ [0, 1],

tEVH (
√
ρ1) + (1− t)EVH (

√
ρ2) ≥ EVH

(√
tρ1 + (1− t)ρ2

)
.

• Uniqueness of minimizers: For any λ > 0 the minimization problem

eVH(λ) := inf
{
EVH (u) : u ∈ H1(Rd), ‖u‖2

L2(Rd) = λ
}

has at most one minimizer u0 > 0. This minimizer is unique up to a phase factor

(i.e. all minimizers must be given by zu0 with z ∈ C, |z| = 1).

Proof. Step 1. Let ρ1 ≥ 0, ρ2 ≥ 0 such that
√
ρ1,
√
ρ2 ∈ H1(Rd). For any t ∈ [0, 1] we have

t

2

∫∫
ρ1(x)ρ1(y)w(x− y)dxdy +

1− t
2

∫∫
ρ2(x)ρ2(y)w(x− y)dxdy

− 1

2

∫∫ [
tρ1(x) + (1− t)ρ2(x)

][
tρ1(y) + (1− t)ρ2(y)

]
w(x− y)dxdy

= t(1− t)
∫∫ (

ρ1(x)− ρ2(x)
)(
ρ1(y)− ρ2(y)

)
w(x− y)dxdy ≥ 0.

In the last estimate we used the fact that w is of positive-type. Combining with the convexity

of the gradient term

t

∫
|∇√ρ1|2 + (1− t)

∫
|∇√ρ2|2 ≥

∫
|∇
√
tρ1 + (1− t)ρ2|2

we find that for all t ∈ [0, 1],

tEVH (
√
ρ1) + (1− t)EVH (

√
ρ2) ≥ EVH

(√
tρ1 + (1− t)ρ2

)
.

Step 2. Assume that eVH(λ) has minimizers u0, v0. By a previous theorem, we know that

zu0(x) = |u0(x)| > 0 and z′v0(x) = |v0(x)| > 0 with phase factors z, z′ ∈ Z, |z| = |z′| = 1.

Moreover, |u0| and |v0| are also minimizers for eVH(λ), thanks to the diamagnetic inequality.

It remains to prove that |u0| = |v0|.

By the above convexity of the Hartree functional, we have

eVH(λ) =
1

2
EVH (|u0|) +

1

2
EVH (|v0|) ≥ EVH

(√1

2
|u0|2 +

1

2
|v0|2

)
≥ eVH(λ).
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Here the last estimate follows from the variational principle and the constraint∫ (1

2
|u0|2 +

1

2
|v0|2

)
= λ.

Thus we must have

1

2
EVH (|u0|) +

1

2
EVH (|v0|) = EVH

(√1

2
|u0|2 +

1

2
|v0|2

)
,

which in particular implies that for the gradient terms

1

2

∫
|∇|u0||2 +

1

2

∫
|∇|v0||2 =

∫ ∣∣∣∇√1

2
|u0|2 +

1

2
|v0|2

∣∣∣2.
By the diamagnetic inequality, this means that

1

2
|∇|u0|(x)|2 +

1

2
|∇|v0|(x)|2 =

∣∣∣∇√1

2
|u0(x)|2 +

1

2
|v0(x)|2

∣∣∣2, for a.e. x ∈ Rd

and because |u0| > 0, |v0| > 0 we must have |u0| = c|v0| for a phase factor c. Since∫
|u0|2 =

∫
|v0|2 = λ

the phase factor is c = 1. Thus we conclude that |u0| = |v0|. This completes the proof. q.e.d.

Note that in the above theorem, we did not discuss the existence of minimizers. In the

trapping case V (x)→ +∞ as |x| → ∞, the existence of minimizers is guaranteed. However,

in the vanishing case V (x)→ 0 as |x| → ∞, it may happen that the minimizers do not exist

if the mass is large enough. Using the convexity property, we can also prove the existence of

a critical mass λc, where a minimmizer exists if and only if λ ≤ λc.

Theorem (Convexity and the critical mass). Consider the Hartree functional

EH(u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
dx+

1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy

and the Hartree energy

eVH(λ) := inf
{
EVH (u) : u ∈ H1(Rd), ‖u‖2

L2(Rd) = λ
}
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with V,w ∈ Lp(Rd) + Lq(Rd) with ∞ > p, q > max(d/2, 1) and ŵ(k) ≥ 0. Then the

followings hold true.

• The mapping λ→ eVH(λ) is convex and decreasing. Consequently, there exists

a critical value 0 ≤ λc ≤ ∞ such that

eVH(λ) > eVH(λc) = eVH(λ′), ∀λ < λc ≤ λ′.

Here we used the convention eVH(0) = 0 and eVH(∞) =∞.

• The minimization problem eVH(λ) has a minimizer if and only if λ ≤ λc.

Proof. Exercise! q.e.d.

Let us give an example where the previous abstract theorems apply.

Theorem (Hartree minimizers for bosonic atoms). Let Z > 0 and consider the Hartree

functional for atoms

EH(u) :=

∫
R3

(
|∇u(x)|2 − Z

|x|
|u(x)|2

)
dx+

1

2

∫∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy.

and the Hartree energy

E(Z, λ) = inf
{
EH(u) |u ∈ H1(R3),

∫
R3

|u|2 = λ
}
.

Then there exists a critical mass λc = λc(Z) ∈ [Z, 2Z) such that E(Z, λ) has a minimizer

if and only if λ ≤ λc. Moreover, the minimizer is strictlly positive, unique up to a

phase, and radially symmetric.

Proof. The Coulomb potentials satisfy all relevant conditions, in particular

|̂.|−1(k) = 4π|k|−2 > 0, k ∈ R3.

The existence of the critical mass λc thus follows. The lower bound λc(Z) ≥ Z has been

proved before. The upper bound λc < 2Z is an exercise (c.f. Lieb’s non-existence theorem

for many-body Schrödinger theory). From the above discussion, we know that when exists,

the minimizer u0 is strictly positive and unique up to a phase. Morever, since the external
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potential V (x) = −Z/|x| is radially symmetric, the Hartree functional u 7→ EVH (u) is rotation-

invariant. Therefore, the unique minimizer u0 > 0 must be radially symmetric. q.e.d.

Remark: For bosonic atoms the critical mass is λc(Z) = 1.21Z. The linearity on Z can be

seen easily by scaling (how?). The value 1.21 is numerical. As we will see the behavior

λc(Z) ∼ 1.21Z also holds for the many-body Schrödinger theory in the limit Z →∞.

Exercise. Denote cα := π−α/2Γ(α/2) with the Gamma function

Γ(z) =

∫ ∞
0

tz−1e−tdt.

(Note that Γ(n) = (n− 1)! for n ∈ N.) Prove that for all 0 < α < d we have

ĉα
|x|α

=
cd−α
|k|d−α

, ∀k ∈ Rd.

Hint: You can write
cα
|x|α

=

∫ ∞
0

e−πλ|x|
2

λα/2−1dλ

and use the Fourier transform of the Gaussian.

3.8 Hartree theory with Dirac-delta interaction

So far we have study the Hartree theory with regular interaction potentials. The method

represented in this chapter can be adapted to treat Dirac-delta potentials, which model

short-range interactions appear often in physical set up. In this case, the Hartree theory

is often called the Gross-Pitaaevskii theory or nonlinear Schrödinger theory.

Exercise. Consider the Hartree functional with Dirac-delta interaction

EVH (u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2 +

a

2
|u(x)|4

)
dx

with a constant a > 0 and a function V : Rd → R satisfying

V+ ∈ Lploc(R
d), V− ∈ Lp(Rd) + Lq(Rd), ∞ > p, q > max(d/2, 1).
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For every λ > 0 define

eVH(λ) := inf
{
EVH (u) : u ∈ H1(Rd), ‖u‖2

L2(Rd) = λ
}
.

1. Prove that if V (x)→ +∞ as |x| → ∞, then eVH(λ) has a minimizer for all λ > 0.

2. Prove that if V ∈ Lp(Rd) + Lq(Rd) and the strict binding inequality holds

eVH(λ) < eVH(λ′), ∀0 ≤ λ′ < λ,

then eVH(λ) has a minimizer.

3. Prove that if eVH(λ) has a minimizer, then it has a unique non-negative mini-

mizer. (Hint: 0 ≤ ρ 7→ EVH (
√
ρ) is strictly convex).



Chapter 4

Validity of Hartree approximation

In this chapter we will derive rigorously the Hartree theory as an effective description for

many-body quantum systems.

We start from many-body quantum mechanics. Consider a system of N identical bosons

in Rd, described by the Hamilttonian

HN =
N∑
i=1

(−∆xi + V (xi)) + λ
∑

1≤i<j≤N

w(xi − xj)

acting on L2(Rd)⊗sN . As usual, V,w : Rd → R and w is even. The parameter λ > 0 is used

to adjust the strength of the interaction. In this chapter, we will focus on the mean-field

regime

λ =
1

N − 1
.

In this case, the Hartree functional obtained by taking expectation against the product state

u⊗N is independent of N :

1

N
〈u⊗N , HNu

⊗N〉 =

∫
Rd

(
|∇u(x)|2+V (x)|u(x)|2

)
+

1

2

∫∫
|u(x)|2|u(y)|2w(x−y)dxdy =: EH(u).

We consider the ground state energy of HN

EN := inf
‖Ψ‖

L2(Rd)⊗sN=1
〈Ψ, HNΨ〉

and the Hartree energy

eH := inf
‖u‖

L2(Rd)=1
EH(u).

81
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We will prove that under appropriate conditions on V,w, the Hartree theory describes cor-

rectly the leading order behavior of the ground state energy and the ground states of HN

when N →∞.

4.1 Reduced density matrices

Definition. For any wave function ΨN ∈ L2(Rd)⊗sN and any 0 ≤ k ≤ N , we introduce

the k-body reduced density matrix γ
(k)
ΨN

: this is an operator on L2(Rd)⊗sk with

kernel

γ
(k)
ΨN

(z1, ..., zk; z
′
1, ..., z

′
k) =

N !

(N − k)!

∫
Rd(N−k)

ΨN(z1, ..., zk, xk+1, ..., xN)×

×ΨN(z′1, ..., z
′
k, xk+1, ..., xN)dxk+1...dxN .

Equivalently, we can interpret γ
(k)
ΨN

as the partial trace over all but the first k variables

γ
(k)
ΨN

=
N !

(N − k)!
Trk+1→N |ΨN〉〈ΨN |.

Note that γ
(k)
ΨN

is a non-negative, trace class operator on L2(Rd)⊗sk and

Tr γ
(k)
ΨN

=
N !

(N − k)!
.

For example, the one-body density matrix γ
(1)
ΨN

is the operator on the one-body space

L2(Rd) with kernel

γ
(1)
ΨN

(x, y) := N

∫
Rd(N−1)

ΨN(x, x2, ..., xN)ΨN(y, x2, ..., xN)dx2...dxN .

Its diagonal part is called the one-body density

ρΨN (x) := N

∫
Rd(N−1)

|ΨN(x, x2, ..., xN)|2dx2...dxN .

The function ρΨN is the probability distribution of the particle density, namely
∫

Ω
ρΨN can
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be interpreted as the expected number of particles in Ω ⊂ Rd; in particular∫
Rd
ρΨN = Tr γ

Ψ
(1)
N

= N.

Exercise. Consider a wave function ΨN ∈ L2(Rd)⊗sN and a one-body operator h on

L2(Rd). Prove that 〈
ΨN ,

N∑
i=1

hiΨN

〉
= Tr(hγ

(1)
ΨN

).

Moreover, prove that for any multiplication operator V (x) on L2(Rd) regular enough

(e.g. V ∈ C∞c (Rd)) we have

Tr(V γ
(1)
ΨN

) =

∫
Rd
V (x)ρΨN (x)dx.

Exercise. Let γ be a non-negative trace class operator on L2(Rd) with the spectral

decomposition γ =
∑

n≥1 λn|un〉〈un|. We define its density as

ργ(x) =
∑
n≥1

λn|un(x)|2.

Prove that if γn → γ0 strongly in trace class, then ργn → ργ0 strongly in L1(Rd).

Remark: In physics littérature the density of an operator is often written as ργ(x) = γ(x, x).

Mathematically, the kernel of an operator on L2(Rd) is often defined for a.e. (x, y) ∈ Rd×Rd,

making the discussion on the “diagonal part” γ(x, x) a bit formal (as the set {(x, x) ∈ Rd}
has 0 measure in Rd×Rd). However, using the spectral decomposition γ =

∑
n≥1 λn|un〉〈un|

we can properly define the kernel

γ(x, y) =
∑
n≥1

λnun(x)un(y)

which makes sense for a.e. x, y ∈ Rd, and hence the formula ργ(x) = γ(x, x) becomes correct.

An equivalent way to define the density ργ without using the spectral decomposition is to

use the formula

Tr(V γ) =

∫
Rd
V (x)ργ(x)dx
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for all regular multiplication operators V (x) on L2(Rd).

The energy expectation of

HN =
N∑
i=1

(−∆xi + V (xi)) + λ
∑

1≤i<j≤N

w(xi − xj)

can be rewritten conveniently using the one- and two-body density matrices〈
ΨN , HNΨN

〉
= Tr((−∆ + V )γ

(1)
ΨN

) +
λ

2
Tr(wγ

(2)
ΨN

).

The complexity of the N -body problem lies on the fact that it is very difficult to characterize

the set of all two-body density matrices for N large. The so-called the N-representability

problem is (quantum) NP hard, see e.g. a paper of Liu, Christandl, and Verstraete (PRL

2007).

On the other hand, the set of one-body density matrices is well-understood.

Exercise. Let γ ≥ 0 be a non-negative, trace class operator on L2(Rd) with Tr γ = N .

Then there exists a wave function ΨN ∈ L2(Rd)⊗sN such that

γ = γ
(1)
ΨN
.

Hint: Given the spectral decomposition γ =
∑

n≥1 λn|un〉〈un| you can choose

ΨN = N−1/2
∑
n≥1

λ1/2
n u⊗Nn .

The key idea of the mean-field approximation is to replace the complicated two-body

density matrix γ
(2)
ΨN

by the tensor product of the one-body density matrix

γ
(2)
ΨN
≈ γ

(1)
ΨN
⊗ γ(1)

ΨN
.

For the ground state energy of the Hamiltonian HN , we will even go down to the level of

one-body density ρΨN and try to prove that

1

N
〈u⊗N , HNu

⊗N〉 ≈ EH

(√ρΨN

N

)
,

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.110503
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.110503
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which eventually leads to the validity of the Hartree theory.

4.2 Hoffmann–Ostenhof inequality

The approximation
1

N
〈u⊗N , HNu

⊗N〉 ≈ EH

(√ρΨN

N

)
,

is nontrivial even for non-interacting systems. For the external potential, we have the exact

identity 〈
ΨN ,

N∑
i=1

V (xi)ΨN

〉
= Tr(V γ

(1)
ΨN

) =

∫
Rd
V (x)ρΨN (x)dx.

However, for the kinetic operator, in general we have

〈
ΨN ,

N∑
i=1

−∆xiΨN

〉
= Tr(−∆γ

(1)
ΨN

) 6=
∫
Rd
|∇√ρΨN |2.

Nevertheless, we still have the following sharp lower bound, which will be very useful to

justify the Hartree approximation.

Lemma (Hoffmann–Ostenhof inequality). For every wave function ΨN ∈ L2(Rd)⊗sN

we have 〈
ΨN ,

N∑
i=1

(−∆xi)ΨN

〉
≥ 〈√ρΨN ,−∆

√
ρΨN 〉 =

∫
Rd
|∇√ρΨN |2.

Proof. Step 1. Since the one-body density matrix γ
(1)
ΨN

is a non-negative trace class operator,

we have the spectral decomposition

γ
(1)
ΨN

=
∑
n≥1

|fn〉〈fn|

with an orthogonal family {fn}n≥1 ⊂ L2(Rd) (the functions fn are not necessarily normal-

ized). Then we have the one-body density

ρΨN (x) =
∑
n≥1

|fn(x)|2.
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Thus the Hoffmann–Ostenhof inequality is equivalent to

∑
n≥1

∫
Rd
|∇fn(x)|2dx ≥

∫
Rd

∣∣∣∇√∑
n≥1

|fn(x)|2
∣∣∣2dx.

Step 2. We prove the latter bound for finite sums

m∑
n=1

∫
Rd
|∇fn(x)|2dx ≥

∫
Rd

∣∣∣∇
√√√√ m∑

n=1

|fn(x)|2
∣∣∣2dx, ∀m = 1, 2, ...

We can prove that by induction in m. The case m = 1 follows from the diamagnetic inequality

|∇f1(x)| ≥ |∇|f1|(x)|. For m = 2, by the diamagnetic inequality we have∫
Rd
|∇f1(x)|2dx+

∫
Rd
|∇f2(x)|2dx ≥

∫
Rd

∣∣∣∇√|f1(x)|2 + |f2(x)|2
∣∣∣2dx.

For m = 3, using the diamagnetic inequality twice we have∫
Rd
|∇f1|2 +

∫
Rd
|∇f2|2 +

∫
Rd
|∇f3|2 ≥

∫
Rd

∣∣∣∇√|f1|2 + |f2|2
∣∣∣2 +

∫
Rd
|∇f3|2

≥
∫
Rd

∣∣∣∇√|f1|2 + |f2|2 + |f3|2
∣∣∣2.

The same applies to other values of m.

Step 3. In principle passing from finite sums to infinite sum should be easy thanks to

standard density arguments. Let us explain it here. Of course it suffices to consider the case

when the left side is finite. For any m ≥ 1, denoting

gm(x) =

√√√√ m∑
n=1

|fn(x)|2.

Then {gm}m≥1 is an increasing sequence and

0 ≤ gm(x) ≤

√√√√ ∞∑
n=1

|fn(x)|2 =
√
ρΨN (x) ∈ L2(Rd).

Therefore, by Lebesgue Motonone Convergence Theorem, gm →
√
ρΨN strongly in L2(Rd) as
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m→∞. On the other hand, we have proved in Step 2 that∫
Rd
|∇gm|2 ≤

m∑
n=1

∫
Rd
|∇fn(x)|2dx ≤

∞∑
n=1

∫
Rd
|∇fn(x)|2dx <∞.

Thus the sequence {gm} is bounded in H1(Rd), and hence gm ⇀
√
ρΨN weakly in H1(Rd).

By Fatou’s lemma, we conclude that∫
Rd
|∇√ρΨN |2 ≤ lim inf

m→∞

∫
Rd
|∇gm|2 ≤

∞∑
n=1

∫
Rd
|∇fn(x)|2dx = Tr(−∆γ

(1)
ΨN

).

q.e.d.

Remark: In general, for any operator h ≥ 0 on L2(Rd) satisfying

〈u, hu〉 ≥ 〈|u|, h|u|〉, ∀u ∈ L2(Rd)

then we have the Hoffmann–Ostenhof inequality

〈
ΨN ,

N∑
i=1

hiΨN

〉
= Tr(hγ

(1)
ΨN

) ≥ 〈√ρΨN , h
√
ρΨN 〉.

The condition 〈u, hu〉 ≥ 〈|u|, h|u|〉 is equivalent to each of the following statements.

1. The resolvent (h+ C)−1 is positivity preserving, namely it maps positive functions to

positive functions(
f(x) ≥ 0 for a.e. x ∈ Rd

)
⇒
(

((h+ C)−1f)(x) ≥ 0 for a.e. x ∈ Rd
)
.

2. The operator e−th is positivity preserving for all t > 0.

Exercise. Let h > 0 be a self-adjoint operator on L2(Rd) such that(
f(x) ≥ 0 for a.e. x ∈ Rd

)
⇒
(

(e−thf)(x) ≥ 0 for a.e. x ∈ Rd
)
, ∀t > 0.

Prove that for any function u belongs to the quadratic form domain of h we have

〈u, hu〉 ≥ 〈|u|, h|u|〉.



88 CHAPTER 4. VALIDITY OF HARTREE APPROXIMATION

Since the heat kernel et∆(x; y) is positive, the operator et∆ is positivity preserving for all

t > 0. Thus the above exercise gives an alternative proof of the diamagnetic inequality.

4.3 Onsager’s lemma

Now we consider the approximation

1

N
〈u⊗N , HNu

⊗N〉 ≈ EH

(√ρΨN

N

)
,

from the angle of the interaction terms. A simple but very useful observation is

Lemma (Onsager’s lemma). If 0 ≤ ŵ ∈ L1(Rd), then for all 0 ≤ g ∈ L1(Rd) we have

the pointwise estimate

∑
1≤i<j≤N

w(xi − xj) ≥
N∑
j=1

(g ∗ w)(xj)−
1

2

∫∫
g(x)g(y)w(x− y)dxdy − N

2
w(0).

Consequently, for any wave function ΨN ∈ L2(Rd)⊗sN we have

〈
ΨN ,

∑
1≤i<j≤N

w(xi − xj)ΨN

〉
≥ 1

2

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy − N

2
w(0).

Note that the condition ŵ ∈ L1(Rd) implies that w ∈ L∞. Thus the error term −N
2
w(0) is

of order N , which is much smaller than the main term.

Proof. Step 1. Since ŵ ≥ 0, the potential w is of positive-type. Therefore,∫∫
f(x)f(y)w(x− y)dxdy = 〈f, w ∗ f〉 ≥ 0

for any “reasonable function” f . By choosing

f(x) =
N∑
i=1

δ0(x− xi)− g(x)

with δ0 the Dirac-delta function and using the identity δ0 ∗ ϕ = ϕ we obtain the pointwise
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bound

∑
1≤i<j≤N

w(xi − xj) ≥
N∑
j=1

(g ∗ w)(xj)−
1

2

∫∫
g(x)g(y)w(x− y)dxdy − N

2
w(0).

Remark: An alternative proof without using the Dirac-delta function: we write

∑
1≤`<j≤N

w(x` − xj) +
N

2
w(0) =

1

2

N∑
`,j=1

w(x` − xj)

=
1

2

∫
ŵ(k)

N∑
`,j=1

e2πik·(x`−xj)dk =
1

2

∫
ŵ(k)

∣∣∣ N∑
j=1

e2πik·xj
∣∣∣2dk.

Since ŵ(k) ≥ 0, we can complete the square

∣∣∣ N∑
j=1

e2πik·xj
∣∣∣2 ≥ 2<ĝ(k)

N∑
j=1

e2πik·xj − |ĝ(k)|2

and find that

1

2

∫
ŵ(k)

∣∣∣ N∑
j=1

e2πik·xj
∣∣∣2dk ≥ <

∫
ŵ(k)ĝ(k)

N∑
j=1

e2πik·xjdk − 1

2

∫
ŵ(k)|ĝ(k)|2dk

= <
N∑
j=1

∫
ŵ ∗ g(k)e2πk·xjdk − 1

2

∫
ŵ(k)|ĝ(k)|2dk

=
N∑
j=1

w ∗ g(xj)−
1

2

∫
ŵ(k)|ĝ(k)|2dk.

Step 2. Now we apply the above pointwise estimate with g = ρΨN , and then take the

expectation against ΨN . We obtain

〈
ΨN ,

∑
1≤i<j≤N

w(xi − xj)ΨN

〉
≥
〈

ΨN ,
N∑
j=1

(w ∗ ρΨN )(xj)ΨN

〉
− 1

2

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy − N

2
w(0)

=

∫
ρΨN (x)(w ∗ ρΨN )(x)dx− 1

2

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy − N

2
w(0)

=
1

2

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy − N

2
w(0).
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q.e.d.

Exercise. Consider the periodic function

w(x) :=
∑
k∈Zd

ŵ(k)e2πik·x

with 0 ≤ ŵ ∈ `1(Zd). Prove that for any N ≥ 2 and {x}Nn=1 ⊂ Rd we have

∑
1≤i<j≤N

w(xi − xj) ≥
N2

2

∫
Rd
w − N

2
w(0).

4.4 Convergence to Hartree energy

Theorem (Convergence to Hartree energy). Assume that

V+ ∈ L∞loc(Rd), w, V− ∈ Lp(Rd) + Lq(Rd), ∞ > p, q > max(d/2, 1).

Let EN be the ground state energy of

HN =
N∑
i=1

(−∆xi + V (xi)) +
1

N − 1

∑
1≤i<j≤N

w(xi − xj)

and let eH be the corresponding Hartree energy. Then EN/N is increasing in N and

lim
N→∞

EN
N

= eH.

Proof. Step 1. By the variational principle, it is easy to see that EN/N ≤ eH. Moreover,

we can prove that EN/N is increasing as follows. By the symmetry of the wave function

ΨN ∈ L2(Rd)⊗sN , we can write

1

N

〈
ΨN , HNΨN

〉
= 〈ΨN , (−∆x1 + V (x1))ΨN〉+

1

2
〈ΨN , w(x1 − x2)ΨN〉

=
1

N − 1

〈
ΨN ,

(N−1∑
i=1

(−∆xi + V (xi)) +
1

N − 2

∑
1≤i<j≤N−1

w(xi − xj)
)

ΨN

〉
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=
1

N − 1

〈
ΨN , HN−1ΨN

〉
where the operator HN−1 acts on the first (N − 1) variables. By the variational principle,

1

N

〈
ΨN , HNΨN

〉
=

1

N − 1

〈
ΨN , HN−1ΨN

〉
≥ EN−1

N − 1

for all wave functions ΨN ∈ L2(Rd)⊗sN . Therefore,

EN
N
≥ EN−1

N − 1
.

Thus EN/N is increasing, and hence the limit exists. It remains to prove that the limit

limN→∞EN/N is exactly eH.

Step 2. Now we consider the “easy case” 0 ≤ ŵ ∈ L1(Rd). For any wave function ΨN ∈
L2(Rd)⊗sN , by the Hoffmann–Ostenhof inequality we have

〈
ΨN ,

N∑
i=1

(−∆xi + V (xi))ΨN

〉
≥
∫
|∇√ρΨN |2 +

∫
V ρΨN

and by Onsager’s lemma we have

1

N − 1

〈
ΨN ,

∑
1≤i<j≤N

w(xi − xj)ΨN

〉
≥ 1

N − 1

[1

2

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy − N

2
w(0)

]
≥ 1

2N

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy − C.

In the last inequality we have used that w is positive-type to replace 1/(N − 1) by 1/N in

the main term. Thus 〈
ΨN , HNΨN

〉
≥ NEH

(√ρΨN

N

)
− C ≥ NeH − C.

In the last estimate we have used the variational principle for eH. In conclusion we have

NeH ≥ EN ≥ NeH − C

which implies the desired convergence EN/N → eH.

Step 3. Now we consider the case ŵ ∈ L1(Rd). Since ŵ has no sign, we will use Onsager’s

lemma for its positive and negative parts separately. The proof below is due to M. Lewin,
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using ideas of Lévy-Leblond and Lieb–Yau. We decompose

w = w1 − w2, ŵ1 = (ŵ)+ ≥ 0, ŵ2 = (ŵ)− ≥ 0.

It is more convenient to consider E2N . Take a wave function Ψ2N ∈ L2(Rd)⊗s2N . Then using

the bosonic symmetry we can rewrite the expectation 〈Ψ2N , H2NΨ2N〉 as follows. For the

one-body terms, we have

〈
Ψ2N ,

2N∑
i=1

(−∆xi + V (xi))Ψ2N

〉
= 2N

〈
Ψ2N , (−∆x1 + V (x1))Ψ2N

〉
= 2
〈

Ψ2N ,
N∑
i=1

(−∆xi + V (xi))Ψ2N

〉
.

For the interaction terms involving w1, we write

1

2N − 1

〈
Ψ2N ,

∑
1≤i<j≤2N

w1(xi − xj)Ψ2N

〉
= N

〈
Ψ2N , w1(x1 − x2)Ψ2N

〉
=

2

N − 1

〈
Ψ2N ,

∑
1≤i<j≤N

w1(xi − xj)Ψ2N

〉
.

For the interaction terms involving w2, we decompose as the difference of two quantities

− 1

2N − 1

〈
Ψ2N ,

∑
1≤i<j≤2N

w2(xi − xj)Ψ2N

〉
= −N

〈
Ψ2N , w2(x1 − x2)Ψ2N

〉
= N

〈
Ψ2N , w2(x1 − x2)Ψ2N

〉
− 2N

〈
Ψ2N , w2(x1 − x2)Ψ2N

〉
=

2

N − 1

〈
Ψ2N ,

∑
N+1≤i<j≤2N

w2(xi − xj)Ψ2N

〉
− 2

N

〈
Ψ2N ,

N∑
i=1

2N∑
j=N+1

w2(xi − xj)Ψ2N

〉
Thus in summary, by introducing the notations yk = xN+k, we can write

〈Ψ2N , H2NΨ2N〉 = 2〈Ψ2N , H̃NΨ2N〉

where

H̃N :=
N∑
i=1

(−∆xi + V (xi)) +
1

N − 1

∑
1≤i<j≤N

w1(xi − xj)
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+
1

N − 1

∑
1≤i<j≤N

w2(yi − yj)−
1

N

N∑
i=1

N∑
j=1

w2(yj − xi).

Next, we show that for any given y1, ..., yN ∈ Rd, the operator H̃N of variables x1, ..., xN

satisfying

H̃N ≥ NeH − C.

Indeed, for any wave function ΦN ∈ L2(Rd)⊗sN , by the Hoffmann–Ostenhof inequality and

Onsager’s lemma (twice) we have

〈
ΦN , H̃NΦN

〉
=
〈

ΦN ,
N∑
i=1

(−∆xi)ΦN

〉
+

∫
V ρΦN +

1

N − 1

〈
ΦN ,

∑
1≤i<j≤N

w1(xi − xj)ΦN

〉
+

1

N − 1

∑
1≤i<j≤N

w2(yi − yj)−
1

N

N∑
j=1

∫
ρΦN (x)w2(yj − x)dx

≥
∫
|∇√ρΦN |2 +

∫
V ρΦN +

1

N − 1

[
1

2

∫∫
ρΦN (x)ρΦN (y)w1(x− y)dxdy − N

2
w1(0)

]
+

1

N − 1

[
N∑
j=1

(g ∗ w2)(yj)−
1

2

∫∫
g(x)g(y)w2(x− y)dxdy − N

2
w2(0)

]

− 1

N

N∑
j=1

(ρΦN ∗ w2)(yj)

for any function 0 ≤ g ∈ L1(Rd). By choosing

g =
N − 1

N
ρΦN

we have
1

N − 1

N∑
j=1

(g ∗ w2)(yj)−
1

N

N∑
j=1

(ρΦN ∗ w2)(yj) = 0

and hence〈
ΦN , H̃NΦN

〉
≥
∫
|∇√ρΦN |2 +

∫
V ρΦN +

1

2(N − 1)

∫∫
ρΦN (x)ρΦN (y)w1(x− y)dxdy

− (N − 1)

2N2

∫∫
ρΦN (x)ρΦN (y)w2(x− y)dxdy − N

2(N − 1)

(
w1(0) + w2(0)

)
≥
∫
|∇√ρΦN |2 +

∫
V ρΦN +

1

2N

∫∫
ρΦN (x)ρΦN (y)w1(x− y)dxdy
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− 1

2N

∫∫
ρΦN (x)ρΦN (y)w2(x− y)dxdy − N

2(N − 1)

(
w1(0) + w2(0)

)
= NEH

(√ρΦN

N

)
− N

2(N − 1)

∫
|ŵ| ≥ NeH − C.

Since this holds for any wave function ΦN ∈ L2(Rd)⊗sN , we conclude that for any given

y1, ..., yN ∈ Rd,

H̃N ≥ NeH − C.

Consequently, for any wave function Ψ2N ∈ L2(Rd)⊗s2N we have

〈Ψ2N , H2NΨ2N〉 = 2〈Ψ2N , H̃NΨ2N〉 ≥ 2NeH − C.

Therefore,

E2N ≥ 2NeH − C,

and hence

eH ≥
E2N

2N
≥ eH −

C

N
∀N ≥ 1.

Since N 7→ EN/N is increasing, we conclude that

eH ≥
EN
N
≥ eH −

C

N
∀N ≥ 1.

This concludes the proof of limN→∞EN/N = eH when ŵ ∈ L1(Rd).

Step 4. Now we consider the general case w ∈ Lp(Rd)+Lq(Rd) with∞ > p, q > max(d/2, 1).

Then we can take wε ∈ C∞c (Rd) such that wε → w in Lp +Lq as ε→ 0+. More precisely, we

write

w = f + g, f ∈ Lp(Rd), g ∈ Lq(Rd)

and choose

wε = fε + gε, fε, gε ∈ C∞c (Rd), ‖fε − f‖Lp + ‖gε − g‖Lq ≤ ε.

We take a wave function ΨN ∈ L2(RdN) such that〈ΨN , HNΨN〉 ≤ CN. Then using

HN ≥
1

2

N∑
i=1

(−∆xi)− CN
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(why?) we have the a-priori estimate

〈
ΨN ,

N∑
i=1

(−∆xi)ΨN

〉
≤ CN.

By Holder’s and Sobolev’s inequalities, we can bound

〈ΨN , |(fε − f)(x1 − x2)|ΨN〉 =

∫
RdN
|(fε − f)(x1 − x2)||ΨN(x1, ..., xN)|2dx1...dxN

≤
∫
Rd(N−1)

(∫
Rd
|(fε − f)(x1 − x2)|pdx1

)1/p(∫
Rd
|ΨN(x1, ..., xN)|2p′dx1

)1/p′

dx2...dxN

≤ C‖fε − f‖Lp(Rd)〈ΨN , (1−∆x1)ΨN〉.

Here 1
p

+ 1
p′

= 1 and the condition p > max(d/2, 1) implies that 2p′ ∈ (2, 2∗). Similarly,

〈ΨN , |(gε − g)(x1 − x2)|ΨN〉 ≤ C‖gε − g‖Lq(Rd)〈ΨN , (1−∆x1)ΨN〉.

Using the choice of fε, gε and the bosonic symmetry we deduce that

1

N − 1

∑
1≤i<j≤N

〈ΨN , (w − wε)(xi − xj)ΨN〉 ≥ −Cε
N∑
i=1

〈ΨN , (1−∆xi)ΨN〉 ≥ −CεN.

On the other hand, since wε ∈ C∞c (Rd), we have ŵε ∈ L1(Rd) and from Step 3 we get

N∑
i=1

(−∆xi + V (xi)) +
1

N − 1

∑
1≤i<j≤N

wε(xi − xj) ≥ NeH,ε − Cε

where

eH,ε := inf
‖u‖

L2(Rd)=1

{∫
(|∇u|2 + V |u|2) +

1

2

∫∫
|u(x)|2|u(y)|2wε(x− y)dxdy

}
.

Thus in summary, we obtain the lower bound

〈ΨN , HNΨN〉 ≥ NeH,ε − Cε − CεN

for any wave function ΨN satisfying 〈ΨN , HNΨN〉 ≤ CN . This implies that

lim
N→∞

EN
N
≥ eH,ε − Cε, ∀ε > 0.
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The conclusion follows from the fact that eH,ε → eH as ε→ 0 (exercise). q.e.d.

Exercise. Assume that

V+ ∈ L∞loc(Rd), w0, V− ∈ Lp(Rd) + Lq(Rd), ∞ > p, q > max(d/2, 1).

Let wε → w0 in Lp + Lq as ε→ 0+ and define the Hartree energy

eH,ε := inf
‖u‖

L2(Rd)=1

{∫
Rd

(|∇u|2 + V |u|2) +
1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2wε(x− y)dxdy
}
.

Prove that eH,ε → eH,0 as ε→ 0+.

4.5 Convergence to Hartree minimizer

Now we turn to the convergence of ground states. Heuristically, if ΨN is a ground state of

HN , or more generally an approximate ground state, i.e.

〈ΨN , HNΨN〉 = EN + o(N)N→∞,

then we expect that

ΨN ≈ u⊗N0

where u0 is a Hartree minimizer. Here the approximation ΨN ≈ u⊗N0 means that most of the

particles in the N -body state ΨN occupy a common one-body state u0. This phenomenon is

called the Bose-Einstein condensation (BEC). Note that the approximation ΨN ≈ u⊗N0

has to be understood in an appropriate sense. In fact, ΨN and u⊗N0 are not close in the

usual norm of the Hilbert space L2(Rd)⊗sN (except the non-interacting case). The proper

meaning of the Bose-Einstein condensation can be formulated in terms of reduced density

matrices.

Definition. Consider the quantum states {ΨN}N≥1, where ΨN is a wave function in

L2(Rd)⊗sN . We say that there is the complete Bose-Einstein condensation if there
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exists a one-body state u0 ∈ L2(Rd) such that

lim
N→∞

〈u0, γ
(1)
ΨN
u0〉

N
= 1.

Remarks:

• If ΨN = u⊗N0 , then γ
(1)
ΨN

= N |u0〉〈u0|, and hence

〈u0, γ
(1)
ΨN
u0〉

N
= 1.

• For any wave function ΨN ∈ L2(Rd)⊗sN , 〈u0, γ
(1)
ΨN
u0〉 is interpreted as the expectation

of the particle number in the condensate state u0. In general, we always have

〈u0, γ
(1)
ΨN
u0〉 ≤ Tr(γ

(1)
ΨN

) = N.

The complete BEC means that we have the lower bound

〈u0, γ
(1)
ΨN
u0〉 ≥ N + o(N).

• By the variational principle, the complete BEC is equivalent to the fact that the

largest eigenvalue of γ
(1)
ΨN

is N + o(N). Further equivalent statements of the BEC

are in the following exercise.

Exercise. Consider the quantum states {ΨN}N≥1, where ΨN is a wave function in

L2(Rd)⊗sN . Let u0 ∈ L2(Rd). Prove that the following statements are equivalent.

1. limN→∞N
−1〈u0, γ

(1)
ΨN
u0〉 = 1.

2. N−1γ
(1)
ΨN
→ |u0〉〈u0| strongly in the operator norm.

3. N−1γ
(1)
ΨN
→ |u0〉〈u0| strongly in the trace class norm.

Hint: A = N−1γ
(1)
ΨN
− |u0〉〈u0| has trace 0, and exactly one negative eigenvalue (except

if A = 0).

In principle, the BEC is not equivalent to convergence of ground states. In fact, proving the

BEC is often more difficult than proving the convergence of ground states.
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Theorem (Convergence to Hartree minimizer: “easy case”). Assume that

• 0 ≤ ŵ ∈ L1(Rd);

• V ∈ L∞loc(Rd) and V (x)→ +∞ as |x| → ∞.

Let ΨN ∈ L2(Rd)⊗sN be an approximate ground state of

HN =
N∑
i=1

(−∆xi + V (xi)) +
1

N − 1

∑
1≤i<j≤N

w(xi − xj).

Then we have the complete BEC with optimal error estimate

〈u0, γ
(1)
ΨN
u0〉 = N +O(1).

Here u0 is the unique Hartree minimizer (up to a phase factor).

Proof. Step 1. Similarly to the previous section, using 0 ≤ ŵ ∈ L1(Rd) and Onsager’s

lemma we have

1

N − 1

〈
ΨN ,

∑
1≤i<j≤N

w(xi − xj)ΨN

〉
≥ 1

N − 1

[1

2

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy − N

2
w(0)

]
≥ 1

2N

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy − C.

For the kinetic term, we do not use the Hoffmann–Ostenhof inequality. Thus we get〈
ΨN , HNΨN

〉
≥ Tr((−∆ + V )γ

(1)
ΨN

) +
1

2N

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy − C.

Here we keep the one-body density matrix because it is the relevant object for the BEC.

Step 2. The new idea now is to linearize the non-linear term. Since w is of positive-type,

we can use ∫∫
f(x)f(y)w(x− y)dxdy ≥ 0

with f = ρΨN (x)−N |u0|2 with u0 the Hartree minimizer. This gives

1

2N

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy

≥
∫∫

ρΨN (x)|u0(y)|2w(x− y)dxdy − N

2

∫∫
|u0(x)|2|u0(y)|2w(x− y)dxdy.
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Recall that under our conditions on w, V , the existence and uniqueness of the Hartree mini-

mizer u0 have been proved in the previous chapter. Moreover, we have the Hartree equation

hmfu0 = 0, hmf := −∆ + V + (w ∗ |u0|2)− µ

with the chemical potential

µ =

∫
Rd

(
|∇u0(x)|2 + V (x)|u0(x)|2

)
dx+

∫∫
Rd×Rd

|u0(x)|2|u0(y)|2w(x− y)dxdy

= eH +
1

2

∫∫
Rd×Rd

|u0(x)|2|u0(y)|2w(x− y)dxdy.

Thus

1

2N

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy

≥
∫∫

ρΨN (x)|u0(y)|2w(x− y)dxdy − N

2

∫∫
|u0(x)|2|u0(y)|2w(x− y)dxdy

=

∫
ρΨN (|u0|2 ∗ w) +N(eH − µ) = NeH + Tr

(
(|u0|2 ∗ w − µ)γ

(1)
ΨN

)
.

Combining the latter bound with the previous bound on
〈

ΨN , HNΨN

〉
we deduce that

〈
ΨN , HNΨN

〉
≥ Tr

(
(−∆ + V )γ

(1)
ΨN

)
+

1

2N

∫∫
ρΨN (x)ρΨN (y)w(x− y)dxdy − C

≥ NeH + Tr
(
hmfγ

(1)
ΨN

)
− C.

Thanks to the uniform upper bound
〈

ΨN , HNΨN

〉
≤ NeH, we conclude that

Tr
(
hmfγ

(1)
ΨN

)
≤ C.

Step 3. From the Hartree theory, we know that the one-body Schrödinger operator

hmf := −∆ + V + (w ∗ |u0|2)− µ

has the lowest eigenvalue 0 and u0 is its unique ground state (up to a phase factor). Moreover,

since V (x)→∞ when |x| → ∞, hmf has compact resolvent. Thus it has eigenvalues

0 = λ1 < λ2 ≤ λ3 ≤ ...



100 CHAPTER 4. VALIDITY OF HARTREE APPROXIMATION

The strict inequality λ1 < λ2 is called the spectral gap. By the min-max principle, if we

introduce the projection

P = |u0〉〈u0|, Q = 1− P,

then we have hmfP = Phmf = 0 and

hmfQ = QhmfQ ≥ (λ2 − λ1)Q.

Next, let us decompose

γ
(1)
ΨN

= (P +Q)γ
(1)
ΨN

(P +Q) = Pγ
(1)
ΨN
P + Pγ

(1)
ΨN
Q+Qγ

(1)
ΨN
P +Qγ

(1)
ΨN
Q.

Then by the above properties of hmfP, hmfQ and the cyclicity of the trace we have

Tr
(
hmfγ

(1)
ΨN

)
= Tr

(
hmfQγ

(1)
ΨN
Q
)

= Tr
(
QhmfQγ

(1)
ΨN

)
≥ (λ2 − λ1) Tr

(
Qγ

(1)
ΨN

)
.

Combining with the previous bound

Tr
(
hmfγ

(1)
ΨN

)
≤ C.

and the spectral gap λ2 − λ1 > 0 we conclude that

C ≥ Tr
(
Qγ

(1)
ΨN

)
= Tr

(
(1− P )γ

(1)
ΨN

)
= N − 〈u0, γ

(1)
ΨN
u0〉.

This completes the proof of the BEC. q.e.d.

Theorem (Convergence to Hartree minimizer: general case). Assume that

• V+ ∈ L∞loc(Rd), w, V− ∈ Lp(Rd) + Lq(Rd), ∞ > p, q > max(d/2, 1).

• The Hartree problem eH = inf‖u‖L2=1 EH(u) has a unique minimizer u0 (up to

a phase factor). Moreover, any minimizing sequence of eH has a subsequence

converging to u0 (up to a phase) strongly in L2(Rd).

Let ΨN ∈ L2(Rd)⊗sN be an approximate ground state for

HN =
N∑
i=1

(−∆xi + V (xi)) +
1

N − 1

∑
1≤i<j≤N

w(xi − xj).
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Then we have the complete Bose-Einstein condensation

lim
N→∞

〈u0, γ
(1)
ΨN
u0〉

N
= 1.

Remarks:

• For the complete BEC on u0 to hold, u0 must be the unique Hartree minimizer

(up to a phase factor). In fact, if v0 is another Hartree minimizer, then v⊗N0 is an

approximate ground state and γ
(1)

v⊗N0

= N |v0〉〈v0|. Therefore,

1 = lim
N→∞

〈u0, γ
(1)
ΨN
u0〉

N
= |〈u0, v0〉|2

implies that v0 is equal to u0 up to a phase factor.

• The pre-compactness of the minimizing sequences holds when either V (x) → ∞ as

|x| → ∞, or V ∈ Lp(Rd) + Lq(Rd) and we have the strict binding inequality

eVH(1) < eVH(λ) + e0
H(1− λ), ∀0 ≤ λ < 1.

Proof. We will use the Hellmann-Feynman argument, a general method to derive the

information on ground states from the ground state energy of perturbed Hamiltonians.

Step 1. For any ε > 0, we define the perturbed N-body Hamiltonian

HN,ε = HN + ε
N∑
i=1

Pxi , P = |u0〉〈u0|

and call EN,ε the ground state energy of HN,ε. We prove that the complete BEC follows from

the following claim:

lim inf
ε→0+

lim inf
N→∞

EN,ε − EN
εN

≥ 1.

Indeed, assume that the latter inequality holds true. Let ΨN ∈ L2(Rd)⊗sN be an approximate

ground state for HN . Then by the variational principle, we have

ε〈u0, γ
(1)
ΨN
u0〉 = 〈ΨN , HN,εΨN〉 − 〈ΨN , HNΨN〉 ≥ EN,ε − EN + o(N),

and hence

lim inf
N→∞

〈u0, γ
(1)
ΨN
u0〉

N
≥ lim inf

ε→0+
lim inf
N→∞

EN,ε − EN + o(N)

εN
≥ 1.
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Step 2. Now we estimate EN,ε − EN . By the convergence to Hartree energy, we know that

EN = NeH + o(N)

where

eH := inf
‖u‖

L2(Rd)=1

{∫
Rd

(|∇u|2 + V |u|2) +
1

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2w(x− y)dxdy
}
.

For our purpose, it is useful to introduce the Hartree energy for mixed states

ẽH := inf
γ≥0 on L2(Rd)

Tr γ=1

{
Tr((−∆ + V )γ) +

1

2

∫∫
Rd×Rd

ργ(x)ργ(y)w(x− y)dxdy
}
.

Here recall that ργ(x) = γ(x, x) is the density of γ (defined properly by spectral decomposi-

tion). At first sight, it does not look very useful because eH and ẽH coincide!

Exercise. Prove that eH = ẽH. Hint: You can use the Hoffmann-Ostenhof inequality.

However, the advantage of ẽH is that its definition can be extended easily to the perturbed

problem. For any ε > 0, we define

ẽH,ε := inf
γ≥0 on L2(Rd)

Tr γ=1

{
Tr((−∆ + V + εP )γ) +

1

2

∫∫
Rd×Rd

ργ(x)ργ(y)w(x− y)dxdy
}
.

This is the relevant limit of the perturbed N-body energy EN,ε.

Exercise. Prove that

lim
N→∞

EN,ε
N

= ẽH,ε.

Hint: You can follow exactly the proof of the “Convergence to Hartree energy”, without

using the Hoffmann-Ostenhof inequality.

Thus we have proved that for any ε > 0,

lim
N→∞

EN,ε − EN
N

= ẽH,ε − eH.

Step 3. Finally, we prove that

lim
ε→0+

ẽH,ε − eH

ε
= 1.
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The upper bound ẽH,ε ≤ eH + ε follows by choosing the trial state γ = |u0〉〈u0| for ẽH,ε. It

remains to prove the lower bound.

Let γε be an approximate ground state for ẽH,ε, namely γε ≥ 0 on L2(Rd), Tr(γε) = 1 and

ẼH,ε(γε) := Tr((−∆ + V + εP )γε) +
1

2

∫∫
Rd×Rd

ργε(x)ργε(y)w(x− y)dxdy ≤ ẽH,ε + o(ε).

The key point is to prove that

Tr(Pγε) = 〈u0, γεu0〉 → 1.

If the latter convergence holds, then by the Hoffmann-Ostenhof inequality we find that

ẼH,ε(γε) ≥ EH(
√
ργε) + ε〈u0, γεu0〉 ≥ eH + ε+ o(ε)

and the lower bound ẽH,ε ≥ eH +ε+o(ε) follows. Thus it remains to show that 〈u0, γεu0〉 → 1.

Convergence of density ργε . By the Hoffmann-Ostenhof inequality and the upper bound

ẽH,ε ≤ eH + ε, we find that

EH(
√
ργε) ≤ EH(

√
ργε) + εTr(Pγε) ≤ ẼH,ε(γε) ≤ ẽH,ε + o(ε) ≤ eH +O(ε).

Thus
√
ργε is a miminizing sequence for eH when ε→ 0+. Thanks to the assumption on the

pre-compactness of minimizing sequences for eH, up to a subsequence as ε → 0+ and up to

a phase factor of u0, we have
√
ργε → u0 ≥ 0 strongly in L2(Rd). Since

√
ργε is bounded in

H1(Rd) (as EH(
√
ργε) is bounded), by Sobolev’s inequality we obtain

√
ργε → u0 strongly in Lr(Rd) for all r ∈ [2, 2∗).

Linearized equation. Using
√
ργε → u0 in Lr(Rd) for all r ∈ [2, 2∗) and the assumption

w ∈ Lp + Lq, we get

1

2

∫∫
Rd×Rd

(ργε(x)− |u0(x)|2)(ργε(y)− |u0(y)|2)w(x− y)dxdy → 0

which is equivalent to

1

2

∫∫
ργε(x)ργε(y)w(x− y)dxdy =

∫∫
|u0(x)|2ργε(y)w(x− y)dxdy
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− 1

2

∫∫
|u0(x)|2|u0(y)|2w(x− y)dxdy + o(1)

=

∫
(|u0|2 ∗ w)ργε + eH − µ

where

µ =

∫
Rd

(
|∇u0(x)|2 + V (x)|u0(x)|2

)
dx+

∫∫
Rd×Rd

|u0(x)|2|u0(y)|2w(x− y)dxdy

is the chemical potential in the Hartree equation

hmfu0 = 0, hmf := −∆ + V + (w ∗ |u0|2)− µ ≥ 0.

Thus

ẼH,ε(γε) = eH + Tr(hmfγε) + ε〈u0, γεu0〉+ o(1).

Consequently,

Tr(hmfγε)→ 0.

Weak-limit in Hilbert-Schmidt topology. Using the operator lower bound

hmf ≥ −
1

2
∆− C

we find that

Tr((1−∆)γε) = Tr((1−∆)1/2γε(1−∆)1/2) ≤ C.

Thus (1−∆)1/2γε(1−∆)1/2 is bounded in trace class, and hence it is bounded in the Hilbert-

Schmidt topology. By the Banach-Alaoglu theorem for the Hilbert-Schmidt space, up to a

subsequence ε→ 0+ we have

(1−∆)1/2γε(1−∆)1/2 ⇀ (1−∆)1/2γ0(1−∆)1/2

weakly in the Hilbert-Schmidt topology, namely

Tr(K(1−∆)1/2γε(1−∆)1/2)→ Tr(K(1−∆)1/2γ0(1−∆)1/2), ∀K Hilbert-Schmidt operators.

for a non-negative trace class operator γ0 ≥ 0 on L2(Rd) (exercise). From this weak conver-
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gence and the fact that ργε → |u0|2 strongly in L1(Rd), we deduce that ργ0 = |u0|2 (exercise).

Let us determine the limit γ0. Since γε ⇀ γ0 weakly in Hilbert-Schmidt and hmf ≥ 0, by

Fatou’s lemma we have

0 ≤ Tr(hmfγ0) ≤ lim inf
ε→0+

Tr(hmfγε)→ 0.

Thus hmfγ0 = 0. Since hmf has a unique ground state u0, we have γ0 = λ|u0〉〈u0| for some

λ ≥ 0. But we have proved that ργ0 = |u0|2, hence λ = 1. Thus

γε ⇀ γ0 = |u0〉〈u0|

weakly in the Hilbert-Schmidt topology. Consequently,

〈u0, γεu0〉 = Tr
(
|u0〉〈u0|γε

)
→ 1.

This completes the proof. q.e.d.

Exercise. Let {An}n≥1 be a sequence Hilbert-Schmidt operators on L2(Rd). Prove that

An ⇀ A0 weakly in the Hilbert-Schmidt topology if and only if An(·, ·) ⇀ A0(·, ·) weakly

in L2(Rd × Rd), where An(x, y) is the kernel of An.

Exercise. Let {γn}n≥1 be a sequence of Hilbert-Schmidt operators on L2(Rd) such that

γn ≥ 0 and γn ⇀ γ0 weakly in the Hilbert-Schmidt topology. Prove that γ0 ≥ 0 and for

any self-adjoint operator A ≥ 0 on L2(Rd), we have

Tr(Aγ0) ≤ lim inf
n→∞

Tr(Aγn).

Here Tr(Aγn) := Tr(A1/2γnA
1/2) = Tr(γ

1/2
n Aγ

1/2
n ) ∈ [0,∞].

Exercise. Let {γn}n≥1 be a sequence of trace class operators on L2(Rd) such that γn ≥ 0,

Tr γn = 1 and

Tr((1−∆)1/2γn(1−∆)1/2) ≤ C.
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1. Prove that up to a subsequence, we have the weak convergence

(1−∆)1/2γn(1−∆)1/2 ⇀ (1−∆)1/2γ0(1−∆)1/2

in the Hilbert-Schmidt topology, where γ0 ≥ 0 is a trace class operator on L2(Rd).

2. Prove that

lim
n→∞

∫
Rd
Uργn =

∫
Rd
Uργ0 , ∀U ∈ C∞c (Rd).

Hint: If d ≤ 3 you can show that (1−∆)−1/2U(1−∆)−1/2 is a Hilbert-Schmidt operator

on L2(Rd). For general case d ≥ 1, you may use the weak-* convergence in trace class.

4.6 Short-range interactions

So far we have derived Hartree theory with regular interaction potentials. Now we consider

the case of short-range potentials. Fix a constant β > 0 and consider the Hamiltonian

HN =
N∑
i=1

(−∆xi + V (xi)) +
1

N − 1

∑
1≤i<j≤N

Ndβw(Nβ(xi − xj))

on L2(Rd)⊗sN . By restricting to the uncorrelated states u⊗N and taking the formal limit

Ndβw(Nβx) ⇀ bδ0(x), b =

∫
Rd
w

we obtain the Hartree/Gross-Pitaevskii functional

EGP(u) =

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2 +

b

2
|u(x)|4

)
.

We consider the ground state energy of HN

EN := inf
‖Ψ‖

L2(Rd)⊗sN=1
〈Ψ, HNΨ〉

and the Gross-Pitaevskii energy

eGP := inf
‖u‖

L2(Rd)=1
EGP(u).
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When V (x)→∞ as |x| → ∞ and b ≥ 0, eGP has a unique minimizer (up to a phase) u0 ≥ 0

which solves the Gross-Pitaevskii equation

(−∆ + V + b|u0|2 − µ)u0 = 0, µ ∈ R.

Theorem (Convergence to Gross-Pitaevskii theory). Assume that

• 0 ≤ V ∈ L∞loc(Rd), lim|x|→∞ V (x) =∞,

• 0 ≤ w ∈ C∞c (Rd).

Fix 1 ≤ d ≤ 3 and 0 < β < 1/d. Then we have

lim
N→∞

EN
N

= eGP.

Moreover, if ΨN is an approximate ground state for HN , namely 〈ΨN , HNΨN〉 = NeGP+

o(N), then we have the complete Bose-Einstein condensation

lim
N→∞

〈u0, γ
(1)
ΨN
u0〉

N
= 1.

Proof. Step 1. Denote wN(x) = N bβw(Nβx) and define the N-dependent Hartree energy

eH,N := inf
‖u‖

L2(Rd)=1
EH,N(u)

where

EH,N(u) :=

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
dx+

1

2

∫∫
|u(x)|2|u(y)|2wN(x− y)dxdy.

By the variational principle, we have the obvious upper bound

EN
N
≤ inf
‖u‖L2=1]

〈u⊗N , HNu
⊗N〉

N
≤ eH,N .

Note that

ŵN(k) =

∫
Rd
wN(x)e−i2πk·xdx =

∫
Rd
Ndβw(Nβx)e−i2π(N−βk)·(Nβx)dx
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=

∫
Rd
w(x)e−i2π(N−βk)·xdx = ŵ(N−βk).

Therefore, since ŵ ∈ L1(Rd) and β < 1/d we have∫
Rd
|ŵN | =

∫
Rd
|ŵ(N−βk)|dk = Ndβ

∫
Rd
|ŵ| = o(N).

Therefore, we can repeat the proof of the convergence to Hartree energy to obtain

lim
N→∞

∣∣∣EN
N
− eH,N

∣∣∣ = 0.

Step 2. Next, we show that

lim
N→∞

eH,N = eGP.

Since w ≥ 0 by the Cauchy-Schwarz inequality we have∫∫
|u(x)|2|u(y)|2wN(x− y)dxdy ≤

∫∫
|u(x)|4 + |u(y)|4

2
wN(x− y)

= ‖wN‖L1

∫
Rd
|u|4 = b

∫
Rd
|u|4.

Therefore,

EH,N(u) ≤ EGP(u), ∀u ∈ H1(Rd)

and hence by the variational principle we get the uniform upper bound

eH,N ≤ eGP, ∀N.

Moreover,

EGP(u)− EH,N(u) = b

∫
Rd
|u|4 −

∫∫
|u(x)|2|u(y)|2wN(x− y)dxdy

=

∫∫
|u(x)|4wN(x− y)dxdy −

∫∫
|u(x)|2|u(y)|2wN(x− y)dxdy

=

∫∫
|u(x)|2(|u(x)|2 − |u(y)|2)wN(x− y)dxdy

Using

∣∣∣|u(x)|2 − |u(y)|2
∣∣∣ =

∣∣∣ ∫ 1

0

d

dt
|u(y + t(x− y))|2dt

∣∣∣
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≤
∫ 1

0

2|u(y + t(x− y)||∇u(y + t(x− y))|.|x− y|dt

and Hölder’s inequality we find that∣∣∣EGP(u)− EH,N(u)
∣∣∣

≤ 2

∫ 1

0

(∫∫
Rd×Rd

|u(x)|2|u(y + t(x− y))||∇u(y + t(x− y))|.|x− y|wN(x− y)dxdy
)
dt

= 2

∫ 1

0

∫
Rd

(∫
Rd
|u(y + z)|2|u(y + tz)||∇u(y + tz)|dy

)
|z|wN(z)dzdt

≤ 2

∫ 1

0

∫
Rd

(∫
Rd
|u(y + z)|6dy

)1/3(∫
Rd
|u(y + tz)|6dy

)1/6(∫
Rd
|∇u(y + tz)|2dy

)1/2

|z|wN(z)dzdt

≤ 2

∫ 1

0

‖u‖3
L6‖∇u‖L2

∫
Rd
|z|wN(z)dzdt ≤ CN−β‖u‖3

L6‖∇u‖L2

When d ≤ 3, we have the Sobolev’s embedding H1(Rd) ⊂ L6(Rd), and hence∣∣∣EGP(u)− EH,N(u)
∣∣∣ ≤ CN−β‖u‖4

H1 .

Now let uN be a ground state for the Hartree problem eH,N . Then ‖uN‖L2 = 1. Moreover,

using V,w ≥ 0 we have

C ≥ EH,N(uN) ≥
∫
Rd
|∇uN |2.

Thus {uN}N≥1 is bounded in H1(Rd). Therefore,∣∣∣EGP(uN)− EH,N(uN)
∣∣∣ ≤ CN−β‖uN‖4

H1 → 0 as N →∞.

Consequently,

eGP ≤ EGP(uN) ≤ EH,N(uN) + o(1)N→∞ ≤ eH,N + o(1)N→∞.

Thus we conclude that

lim
N→∞

eH,N = eGP.

Combining with the result from Step 1, we obtain the energy convergence

lim
N→∞

EN
N

= eGP.

Step 3. Finally we prove the BEC. This can be done by the Hellmann-Feynman argument
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again. For any ε > 0, we define the perturbed Hamiltonian

HN,ε = HN + ε
N∑
i=1

Pxi , P = |u0〉〈u0|

and call EN,ε the ground state energy of HN,ε. Then following the above proof of

EN = NeGP + o(N),

we also have

EN,ε = NeGP,ε + o(N)

where

eGP,ε := inf
γ≥0 on L2(Rd)

Tr γ=1

{
Tr((−∆ + V + εP )γ) +

b

2

∫
Rd
ρ2
γ(x)dx

}
.

Therefore, if ΨN is an approximate ground state for HN , then by the variational principle,

we have

〈u0, γ
(1)
ΨN
u0〉

N
=

1

N
〈ΨN ,

N∑
i=1

PiΨN〉 =
1

εN

(
〈ΨN ,

N∑
i=1

HN,εΨN〉 − 〈ΨN , HNΨN〉
)

≥ 1

εN

(
EN,ε − EN + o(N)

)
=

1

εN

(
NeGP,ε −NeGP + o(N)

)
→N→∞

eGP,ε − eGP

ε
.

Thus to obtain the complete BEC it remains to show that

lim
ε→0+

eGP,ε − eGP

ε
= 1.

Since εTr(Pγ) ≤ ε we get the uniform upper bound

eGP,ε − eGP

ε
≤ 1.

For the lower bound, let γε be an approximate minimizer for eGP,ε, namely

Tr((−∆ + V + εP )γε) +
b

2

∫
Rd
ρ2
γε(x)dx = eGP,ε + o(ε).

Then using Tr(Pγ) ≥ 0 and the Hoffmann–Ostenhof inequality we get

EGP(
√
ργε) ≤ eGP,ε + o(ε) ≤ eGP +O(ε).



4.6. SHORT-RANGE INTERACTIONS 111

Thus
√
ργε is a minimizing sequence for eGP, and hence we deduce that

√
ργε → u0 strongly in

L2(Rd). Since
√
ργε is bounded inH1(Rd), by Sobolev’s embedding theorem we get

√
ργε → u0

strongly in Lp(Rd) for all p ∈ [2, 2∗). When d ≤ 3, we get 2∗ ≥ 6 > 4, and hence∫
Rd

(ργε − |u0|2)2 → 0,

which is equivalent to

b

2

∫
Rd
ρ2
γε(x)dx = b

∫
Rd
ργε(x)|u0(x)|2dx− b

2

∫
Rd
|u0(x)|4dx+ o(1)ε→0

= bTr(|u0|2γε) + eGP − µ

Here µ ∈ R is the chemical potential in the GP equation

(−∆ + V + b|u0|2 − µ)u0 = 0.

Thus we find that

eGP,ε + o(ε) = Tr((−∆ + V + εP )γε) +
b

2

∫
Rd
ρ2
γε(x)dx

= Tr((−∆ + V + b|u0|2 − µ)γε) + eGP + o(1)ε→0.

Since we have prove eGP,ε → eGP, we get

Tr((−∆ + V + b|u0|2 − µ)γε)→ 0.

Note that u0 is the unique ground state of the operator

h = −∆ + V + b|u0|2 − µ.

Moreover, since V (x)→∞ as |x| → ∞, h has compact resolvent. Thus h has eigenvalues

0 = λ1(h) < λ2(h) ≤ ...

Using the spectral gap λ2(h) > λ1(h), we conclude that

Tr(Pγε)→ 1.
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Thus

eGP,ε + o(ε) = Tr((−∆ + V + εP )γε) +
b

2

∫
Rd
ρ2
γε(x)dx

≥ Tr((−∆ + V )γε) +
b

2

∫
Rd
ρ2
γε(x)dx+ ε

≥ EGP(
√
ργε) + ε ≥ eGP + ε

which gives the desired lower bound

lim inf
ε→0+

eGP,ε − eGP

ε
≥ 1.

This completes the proof of the BEC. q.e.d.

Remarks:

• The same result holds true for all 0 < β <∞ if d = 1, 2 and all 0 < β < 1 if d = 3, but

the proof is more complicated. The case β > 1/d is interesting because in this case,

the range of the interaction potential N−β is much smaller than the mean-distance

between particles N−1/d. This is called the dilute regime. In contrast, when β < 1/d,

then the range of the interaction potential N−β is much bigger than the mean-distance

between particles N−1/d, and hence each particle interacts with many others. This

is the reason why the case β < 1/d is easier to justify the mean-field approximation

(which is somewhat similar to the law of large numbers in probability theory).

• In the case d = 3 and β = 1, the result is still correct provided that in the Gross-

Pitaevskii functional

EGP(u) =

∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2 +

b

2
|u(x)|2

)
.

the constant b is not
∫
w but rather given by the scattering energy of w

b := inf

{∫
R3

2|∇f |2 + w|f |2, lim
|x|→∞

f(x) = 1

}
.

This variational problem has a unique minimizer 0 ≤ f ≤ 1 and it solves the zero-

scattering equation

(−2∆ + w)f = 0.
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Moreover, we have

f(x) = 1− a

|x|
+ o(|x|−1)|x|→∞

and

a =
1

8π
b

is called the scattering length of w. If w is the hard sphere potential of B(0, R),

then a = R. In general, we have Born’s series

b = 8πa =

∫
R3

wf =

∫
R3

w −
∫
R3

w(−2∆ + w)−1w = ...

Thus 1
8π

∫
w is the first Born’s approximation for the scattering length (it is > a except

when w ≡ 0). By scaling, the scattering length of N2w(N ·) is a/N . The derivation

of the GP theory in this critical case is significantly more difficult. We will come back

to this problem later when we have more tools from the Fock space formalism and

Bogoliubov’s approximation.
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Fock space formalism

Definition. Let H be a one-particle Hilbert space. The bosonic Fock space associ-

ated to H is the Hilbert space

F = F(H ) =
∞⊕
n=0

H ⊗sn = C⊕H ⊕H ⊗s2 ⊕ ...

• Any vector in F has the form Ψ = (Ψn)∞n=0 where Ψn ∈H ⊗sn and

‖Ψ‖2
F =

∞∑
n=0

‖Ψn‖2
H ⊗sn

• The vector Ω = (1, 0, 0, ...) is called the vacuum.

• The expectation of the number of particles in the state Ψ = (Ψn)∞n=0 ∈ F is

∞∑
n=0

n‖Ψn‖2
H ⊗sn .

This is the same to 〈Ψ,NΨ〉 where

N :=
∞∑
n=0

n1H ⊗sn

is called the number operator. In particular, 〈Ω,NΩ〉 = 0.

114
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5.1 Creation and annihilation operators

Definition. Let H be a one-particle Hilbert space and let F = F(H ) be the bosonic

Fock space. For any f ∈ H we can define the creation operator a∗(f) and the

annihilation operator a(f) on F as follows:

• a∗(f) : H ⊗sn →H ⊗sn+1 for all n = 0, 1, 2, ...

(a∗(f)Ψn)(x1, . . . , xn+1) =
1√
n+ 1

n+1∑
j=1

f(xj)Ψn(x1, . . . , xj−1, xj+1, . . . , xn+1).

• a(f) : H ⊗sn →H ⊗sn−1 for all n = 0, 1, 2, ... (with convention H ⊗s−1 = {0})

(a(f)Ψn)(x1, . . . , xn−1) =
√
n

∫
f(xn)Ψ(x1, . . . , xn)dxn.

Here we think of H ⊂ L2(Rd) to simplify the notation.

Remarks:

• a∗(f)Ω = f and a(f)Ω = 0.

• f 7→ a∗(f) is linear, but f 7→ a(f) is anti-llinear.

Example: If H is one-dimensional, H = span{f}, ‖f‖ = 1. Then F(H ) has an orthonor-

mal basis {|n〉}n=0,1,2,... where

|0〉 = (1, 0, 0, ...) = Ω, |1〉 = (0, f, 0, ...), |2〉 = (0, 0, f⊗2, 0, ...), |n〉 = (0, ..., f⊗n, 0, ...)

In this case,

a∗(f)|n〉 =
√
n+ 1|n+ 1〉, n ≥ 0

a(f)|n〉 =
√
n|n− 1〉, ∀n ≥ 1.
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Exercise. This problem allows us to think of L2(R) as the Fock space F(C).

Define the operators a and a+ on L2(R) by

a =
1√
2

(
x+

d

dx

)
, a∗ =

1√
2

(
x− d

dx

)
.

Define the functions {fn}n≥0 ⊂ L2(R) by

f0(x) = π−1/4e−|x|
2/2, fn+1 =

a∗fn√
n+ 1

, ∀n ≥ 0.

1. Prove that [a, a∗] = 1 (identity).

2. Prove that af0 = 0 and afn+1 =
√
n+ 1fn for all n ≥ 0.

3. Prove that {fn}n≥0 is an orthonormal basis for L2(R).

Hint: You can use the fact that Span{p(x)e−x
2/2 | p(x) is a polynomial} is dense in

L2(R).

Exercise. Consider the Fock space F(H ). Prove that for all f ∈H , we have

‖a(f)Ψ‖F ≤ ‖f‖H ‖N 1/2Ψ‖, ∀Ψ ∈ Q(N ).

Here Q(N ) is the quadratic form domain for the number operator N .

Exercise. Consider the Fock space F(H ). Prove that for all f ∈ H , a(f) and a∗(f)

are adjoints, namely

〈a(f)Ψ,Φ〉F = 〈Ψ, a∗(f)Φ〉F , ∀Ψ,Φ ∈ Q(N ).

Theorem (Canonical Commutation Relations - CCR). Consider the Fock space F(H ).

For all f, g ∈H , we have

[a(f), a(g)] = 0, [a∗(f), a∗(g)] = 0, [a(f), a∗(g)] = 〈f, g〉H .
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Here [A,B] := AB −BA.

Proof. We may think of H ⊂ L2(Rd) for simplicity.

Step 1. First, let us prove that [a(f), a(g)] = 0, namely

a(f)a(g) = a(g)a(f).

It suffices to show that

a(f)a(g)Ψn = a(g)a(f)Ψn

for any function Ψn ∈ H ⊗sn and for any n ≥ 2. By the definition of the annihilation

operator, we have

(a(f)a(g)Ψn)(x1, ..., xn−2) = (a(f)(a(g)Ψn))(x1, ..., xn−2)

=
(
a(f)

[
(y1, ..., yn−1) 7→

√
n

∫
g(xn)ΨN(y1, ..., yn−1, xn)dxn

])
(x1, ..., xn−2)

=
√
n
√
n− 1

∫
f(xn−1)

(∫
g(xn)Ψn(x1, ..., xn−1, xn)dxn

)
dxn−1

=
√
n(n− 1)

∫∫
f(xn−1)g(xn)Ψn(x1, ..., xn−1, xn)dxn−1dxn.

Using Fubini’s theorem and the bosonic symmetry

Ψn(x1, ..., xn−1, xn) = Ψn(x1, ..., xn, xn−1)

we can write

(a(g)a(f)Ψn)(x1, ..., xn−2) =
√
n(n− 1)

∫∫
g(xn−1)f(xn)Ψn(x1, ..., xn−1, xn)dxn−1dxn

=
√
n(n− 1)

∫∫
g(xn)f(xn−1)Ψn(x1, ..., xn, xn−1)dxn−1dxn

=
√
n(n− 1)

∫∫
g(xn)f(xn−1)Ψn(x1, ..., xn−1, xn)dxn−1dxn

= (a(f)a(g)Ψn)(x1, ..., xn−2).

Thus a(f)a(g) = a(g)a(f).

Step 2. Since a∗(f) is the adjoint of a(f), using [a(f), a(g)] = 0 we have

0 = ([a(f), a(g)])∗ = (a(f)a(g)− a(g)a(f))∗ = (a∗(g)a∗(f)− a∗(f)a∗(g)) = −[a∗(f), a∗(g)].
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Thus [a∗(f), a∗(g)] = 0.

Step 3. Finally, we prove that

[a(f), a∗(g)] = a(f)a∗(g)− a∗(g)a(f) = 〈f, g〉.

When testing with the vacuum, we have

a(f)a∗(g)Ω− a∗(g)a(f)Ω = a(f)g − 0 = 〈f, g〉.

Now consider any function Ψn ∈H ⊗sn with any n ≥ 1. We have

(a(f)a∗(g)Ψn)(x1, ..., xn) =
(
a(f)(a∗(g)Ψn)

)
(x1, ..., xn)

=
(
a(f)

1√
n+ 1

n+1∑
i=1

g(yi)Ψn(y1, ..., yi−1, yi+1, ..., yn+1)
)

(x1, ..., xn)

=

∫
f(xn+1)

n+1∑
i=1

g(xi)Ψn(x1, ..., xi−1, xi+1, ..., xn+1)dxn+1

= 〈f, g〉Ψn(x1, ..., xn) +
n∑
i=1

g(xi)

∫
f(xn+1)Ψn(x1, ..., xi−1, xi+1, ..., xn+1)dxn+1.

On the other hand,

(a∗(g)a(f)Ψn)(x1, ..., xn) =
(
a∗(g)(a(f)Ψn))

)
(x1, ..., xn)

=
(
a∗(g)

√
n

∫
f(yn)Ψn(y1, ..., yn)dyn

)
(x1, ..., xn)

=
n∑
i=1

g(xi)

∫
f(yn)Ψn(x1, ..., xi−1, xi+1, ..., xn, yn)dyn

=
n∑
i=1

g(xi)

∫
f(xn+1)Ψn(x1, ..., xi−1, xi+1, ..., xn, xn+1)dxn+1.

Here in the last identity we simply “renamed” yn to xn+1. Thus

a(f)a∗(g)Ψn − a∗(g)a(f)Ψn = 〈f, g〉Ψn(x1, ..., xn)

for all Ψn ∈H ⊗sn. This means

[a(f), a∗(g)] = a(f)a∗(g)− a∗(g)a(f) = 〈f, g〉.
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q.e.d.

Exercise. Assume that H has an orthonormal basis {un}n≥1. Let an = a(un) on the

bosonic Fock space F(H ). Prove that F(H ) has an orthonormal basis with vectors

|n1, n2, ...〉 := (n1!n2!...)−1/2(a∗1)n1(a∗2)n2 ...Ω.

Here n1, n2, ... ∈ {0, 1, 2, ...} and there are only finitely many of {nk} are non-zero.

Remark: Sometimes it is also convenient to write |0〉 = Ω.

5.2 Second quantization

Using the creation and annihilation operators, we can represent many operators on Fock

space in a convenient way.

Theorem (Second quantization of one-body operators). Let h be a self-adjoint operator

on the one-body Hilbert space H . Then the operator on the bosonic Fock space F(H )

dΓ(h) :=
∞⊕
n=0

( n∑
i=1

hi

)
= 0⊕ h⊕ (h⊗ 1 + 1⊗ h)⊕ ...

is called the second quantization of h. It can be rewritten as

dΓ(h) =
∑
m,n≥1

〈um, hun〉a∗man.

Here {un}n≥1 is an orthogonal basis for H and an = a(un). The representation is

independent of the choice of the basis (provided that all 〈um, hun〉 are finite). The

identity can be made rigorous at least on the domain

∞⋃
M=1

M⊕
N=0

D(h1 + ...+ hN) ⊂ F .

Example: When h = 1 (the identity) we obtain the number operator

N = dΓ(1) =
∑
m,n≥1

〈um, un〉a∗man =
∑
m,n≥1

δm=na
∗
man =

∑
n≥1

a∗nan.
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Proof. It suffices to prove that

N∑
i=1

hiΨN =
∑
m,n≥1

〈um, hun〉a∗manΨN

for all ΨN ∈H ⊗sN and for all N . Recall from a previous computation

(a∗manΨN)(x1, ..., xN) =
N∑
i=1

um(xi)

∫
un(y)Ψn(x1, ..., xi−1, xi+1, ..., xN , y)dy.

Therefore,

∑
m,n

〈um, hun〉(a∗manΨN)(x1, ..., xN)

=
∑
m,n

〈um, hun〉
N∑
i=1

um(xi)

∫
un(y)ΨN(x1, ..., xi−1, xi+1, ..., xN , y)dy

=
N∑
i=1

∑
n

(∑
m

〈um, hun〉um(xi)
)∫

un(y)ΨN(x1, ..., xi−1, xi+1, ..., xN , y)dy

=
N∑
i=1

∑
n

(hun)(xi)

∫
un(y)ΨN(x1, ..., xi−1, xi+1, ..., xN , y)dy

=
N∑
i=1

∑
n

[
(|hun〉〈un|)xiΨN

]
(x1, ..., xi−1, xi, xi+1, ..., xN)

=
N∑
i=1

[(
h
∑
n

|un〉〈un|
)
xi

ΨN

]
(x1, ..., xi−1, xi, xi+1, ..., xN)

=
N∑
i=1

[
hiΨN

]
(x1, ..., xN).

Here we have used the Parseval’s identity

∑
m

〈um, hun〉um = hun

and the the resolution of the identity operator

∑
n

|un〉〈un| = 1

(both use the fact that {un} is an orthonormal basis for H ). This completes the proof.
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q.e.d.

Theorem (Second quantization of two-body operators). Let W be a self-adjoint op-

erator on H ⊗2 such that W12 = W21. Then the operator on the bosonic Fock space

F(H )
∞⊕
n=0

( ∑
1≤i<j≤n

Wij

)
= 0⊕ 0⊕W ⊕ (W12 +W23 +W13)⊕ ...

is called the second quantization of W . It can be rewritten as

∞⊕
n=0

( ∑
1≤i<j≤n

Wij

)
=

1

2

∑
m,n,p,q≥1

〈um ⊗ un,Wup ⊗ uq〉H ⊗2 a∗ma
∗
napaq

Here {un}n≥1 is an orthogonal basis for H and an = a(un). The representation is

independent of the choice of the basis.

Proof. It suffices to prove that

2
〈

ΦN ,
∑

1≤i<j≤N

WijΨN

〉
=
〈

ΦN ,
∑
m,n,p,q

〈um ⊗ un,Wup ⊗ uq〉a∗ma∗napaqΨN

〉

for all ΦN ,ΨN ∈H ⊗sN and for all N . Recall from a previous computation

(a(f)a(g)ΨN)(x1, ..., xN−2) =
√
N(N − 1)

∫∫
f(y)g(z)ΨN(x1, ..., xN−2, y, z)dydz.

Therefore,〈
ΦN ,

∑
m,n,p,q

〈um ⊗ un,Wup ⊗ uq〉a∗ma∗napaqΨN

〉
=
∑
m,n,p,q

〈um ⊗ un,Wup ⊗ uq〉
〈
amanΦN , apaqΨN

〉
=
∑
m,n,p,q

〈um ⊗ un,Wup ⊗ uq〉
∫

(amanΦN)(x1, ..., xN−2)(apaqΨN)(x1, ..., xN−2)dx1...dxN−2

=
∑
m,n,p,q

〈um ⊗ un,Wup ⊗ uq〉
∫ (√

N(N − 1)

∫∫
um(y′)un(z′)ΦN(x1, ..., xN−2, y′, z′)dy′dz′

)
×

×
(√

N(N − 1)

∫∫
up(y)uq(z)ΨN(x1, ..., xN−2, y, z)dydz

)
dx1...dxN−2

= N(N − 1)
∑
m,n,p,q

〈um ⊗ un,Wup ⊗ uq〉
∫
um(y′)un(z′)up(y)uq(z)×
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× ΦN(x1, ..., xN−2, y′, z′)ΨN(x1, ..., xN−2, y, z)dx1...dxN−2dydy′dzdz′

Since {um ⊗ um}m,n is an orthonormal basis for H ⊗2, we can use Parseval’s identity to get

∑
m,n

〈um ⊗ un,Wup ⊗ uq〉um ⊗ un = Wup ⊗ uq.

Therefore,〈
ΦN ,

∑
m,n,p,q

〈um ⊗ un,Wup ⊗ uq〉a∗ma∗napaqΨN

〉
= N(N − 1)

∫ ∑
m,n,p,q

〈um ⊗ un,Wup ⊗ uq〉(um ⊗ un)(y′, z′)up(y)uq(z)×

× ΦN(x1, ..., xN−2, y′, z′)ΨN(x1, ..., xN−2, y, z)dx1...dxN−2dydy′dzdz′

= N(N − 1)

∫ ∑
p,q

(Wup ⊗ uq)(y′, z′)up(y)uq(z)×

× ΦN(x1, ..., xN−2, y′, z′)ΨN(x1, ..., xN−2, y, z)dx1...dxN−2dydy′dzdz′

= N(N − 1)
∑
p,q

〈
ΦN ,

(
W |up ⊗ uq〉〈up ⊗ uq|

)
xN−1,xN

ΨN

〉
x1,...,xN

= N(N − 1)
〈

ΦN ,WN−1,NΨN

〉
= 2
〈

ΦN ,
∑

1≤i<j≤N

Wi,jΨN

〉
.

Here we have used ∑
p,q

|up ⊗ uq〉〈up ⊗ uq| = 1H ⊗2

because {up ⊗ uq}p,q is an orthonormal basis for H ⊗2. Thus we conclude that〈
ΦN ,

∑
m,n,p,q

〈um ⊗ un,Wup ⊗ uq〉a∗ma∗napaqΨN

〉
= 2
〈

ΦN ,
∑

1≤i<j≤N

Wi,jΨN

〉
.

for all ΦN ,ΨN ∈H ⊗sN , and for all N . This completes the proof. q.e.d.

Remarks:

• From the method of second quantization, the typical Hamiltonian

HN =
N∑
i=1

hi +
∑

1≤i<j≤N

Wij
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on H ⊗sN can be extended to be an operator on the bosonic Fock space F(H ) as

∞⊕
N=0

HN =
∑
m,n

hmna
∗
man +

1

2

∑
m,n,p,q

Wmnpqa
∗
ma
∗
napaq

where an = a(un) with an orthonormal basis {un} for H and

hmn = 〈um, hun〉H , Wmnpq = 〈um ⊗ un,Wup ⊗ uq〉H ⊗2 .

• In the littérature, when H ⊂ L2(Rd) people also use the creation and annihilation

operators a∗x and ax, defined by

a∗(f) =

∫
f(x)a∗xdx, a(f) =

∫
f(x)axdx, ∀f ∈H .

These operator-valued distributions satisfy the CCR

[ax, ay] = 0, [a∗x, a
∗
y] = 0, [ax, a

∗
y] = δ0(x− y).

The advantage of these notations is that we can use the second quantization without

specifying an orthonormal basis for H . For example, the typical Hamiltonian

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

1≤i<j≤N

W (xi − xj)

on L2(Rd)⊗sN can be extended to be an operator on Fock space as

∞⊕
N=0

HN =

∫
Rd
a∗x(−∆x + V (x))axdx+

1

2

∫∫
W (x− y)a∗xa

∗
yaxaydxdy.

5.3 Generalized one-body density matrices

Definition. Let Ψ be a normalized vector in the bosonic Fock space F(H ). Assume

that Ψ ∈ Q(N ), namely 〈Ψ,NΨ〉 < ∞. We define the one-body density matrix
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γΨ : H →H by

〈g, γΨf〉H = 〈Ψ, a∗(f)a(g)Ψ〉, ∀f, g ∈H .

Exercise. Let Ψ be a normalized vector in the bosonic Fock space F(H ) with 〈Ψ,NΨ〉 <
∞. Prove that the one-body density matrix γΨ is a non-negative, trace class operator

and

Tr γΨ = 〈Ψ,NΨ〉 <∞.

Exercise. Let a normalized vector Ψ ∈H ⊗sN ⊂ F(H ) with H = L2(Rd). Prove that

the one-body density matrix γΨ defined by

〈g, γΨf〉H = 〈Ψ, a∗(f)a(g)Ψ〉, ∀f, g ∈H

is the same to the operator defined via the kernel

γΨ(x, y) = N

∫
(Rd)N−1

Ψ(x, x2, ..., xN)Ψ(y, x2, ..., xN)dx2...dxN .

If Ψ ∈ F(H ) does not have a fixed particle number, then it is also important to know

〈Ψ, a(f)a(g)Ψ〉 and 〈Ψ, a∗(f)a∗(g)Ψ〉. This gives rise to an operator αΨ : H ∗ →H .

Definition. Let H be a Hilbert space and let H ∗ be its dual (i.e. the space of all

continuous linear functionals from H to C). Define the mapping J : H →H ∗ by

J(f)(g) = 〈f, g〉, ∀f, g ∈H .

Note that J is anti-linear. The adjoint J∗ : H ∗ →H is an anti-linear map defined by

〈J∗u, v〉H = 〈Jv, u〉H ∗ = 〈u, Jv〉H ∗ , ∀u ∈H ∗, v ∈H .

By Riesz representation Theorem, J is an anti-unitary, namely

J∗J = 1H , JJ∗ = 1H ∗ .
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In particular,

〈Ju, Jv〉H ∗ = 〈v, u〉H = 〈u, v〉H , ∀u, v ∈H .

Remarks:

• The point here is that we do not identify H to H ∗, but rather think of H ∗ = JH

with an anti-unitary J .

• If H = L2(Rd), then we can simply take J as the complex conjugation.

Definition. Let Ψ be a normalized vector in the bosonic Fock space F(H ) with 〈Ψ,NΨ〉 <
∞. We define the pairing operator αΨ : H ∗ →H by

〈g, αΨJf〉 = 〈Ψ, a(f)a(g)Ψ〉, ∀f, g ∈H .

Its adjoint α∗Ψ : H →H ∗ is defined by

〈α∗Ψg, Jf〉H ∗ = 〈g, αΨJf〉H = 〈Ψ, a(f)a(g)Ψ〉, ∀f, g ∈H .

Note that α∗Ψ = JαΨJ .

Remarks:

• The advantage of introducing the anti-linear isomorphism J : H → H ∗ is that αΨ

and α∗Ψ are linear maps.

• The relation α∗Ψ = JαΨJ can be seen from the definition of α∗Ψ and the CCR:

〈α∗Ψg, Jf〉H ∗ = 〈Ψ, a(f)a(g)Ψ〉 = 〈Ψ, a(g)a(f)Ψ〉

= 〈f, αΨJg〉H = 〈JαΨJg, Jf〉H ∗ , ∀f, g ∈H .

• The relation α∗Ψ = JαΨJ is equivalent to the fact that the kernel αΨ(·, ·) of αΨ is

symmetric. We can think of H = L2(Rd) for simplicity, where the kernel αΨ(·, ·) of αΨ

is defined as

(αΨJf)(x) =

∫
αΨ(x, y)(Jf)(y)dy, ∀f ∈ L2(Rd).

Then by the definition of αΨ, we can write

〈g ⊗ f, αΨ(·, ·)〉 =

∫∫
g(x)f(y)αΨ(x, y)dxdy =

∫
g(x)(αΨJf)(x)dx
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= 〈g, αΨJf〉 = 〈Ψ, a(f)a(g)Ψ〉, ∀f, g ∈ L2(Rd).

In particular, since a(f)a(g) = a(g)a(f) by the CCR, we deduce that

〈g ⊗ f, αΨ(·, ·)〉 = 〈f ⊗ g, αΨ(·, ·)〉

and hence the kernel αΨ(·, ·) is symmetric, i.e. an element of H ⊗s2.

Definition. Let Ψ be a normalized vector in the bosonic Fock space F(H ) with 〈Ψ,NΨ〉 <
∞. We define the generalized one-body density matrix ΓΨ as an operator on

H ⊕H ∗ by the block matrix form

ΓΨ :=

(
γΨ αΨ

α∗Ψ 1 + JγΨJ
∗

)
=

(
γΨ αΨ

JαΨJ 1 + JγΨJ
∗

)

Theorem. Let Ψ be a normalized vector in the bosonic Fock space F(H ) with 〈Ψ,NΨ〉 <
∞. Then ΓΨ ≥ 0 on H ⊕H ∗. This is equivalently to the operator inequality

γΨ ≥ J∗α∗Ψ(1 + γΨ)−1αΨJ on H .

Consequently,

Tr(αΨα
∗
Ψ) ≤ (1 + ‖γΨ‖op) Tr(γΨ) <∞.

Proof. Step 1. By the definitions of γΨ, αΨ and the CCR we can write

〈f ⊕ Jg,ΓΨf ⊕ Jg〉H ⊕H ∗ =

〈(
f

Jg

)
,

(
γΨ αΨ

JαΨJ 1 + JγΨJ
∗

)(
f

Jg

)〉
H ⊕H ∗

= 〈f, γΨf〉H + 〈f, αΨJg〉H + 〈Jg, JαΨJf〉H ∗ + 〈Jg, (1 + JγΨJ
∗)Jg〉H ∗

= 〈f, γΨf〉H + 〈f, αΨJg〉H + 〈g, αΨJf〉H + ‖g‖2
H + 〈g, γΨg〉H

= 〈Ψ, a∗(f)a(f)Ψ〉+ 〈Ψ, a(g)a(f)Ψ〉+ 〈Ψ, a∗(f)a∗(g)Ψ〉+ ‖g‖2
H + 〈Ψ, a∗(g)a(g)Ψ〉

=
〈

Ψ,
(
a∗(f) + a(g)

)(
a∗(g) + a(f)

)
Ψ
〉

=
∥∥∥(a∗(g) + a(f)

)
Ψ
∥∥∥2

F
≥ 0

for all f, g ∈H . Thus ΓΨ ≥ 0.
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Step 2. From the above proof, we can also see that ΓΨ ≥ 0 is equivalent to

〈f, γΨf〉+ 〈g, (1 + γΨ)g〉 ≥ 2<〈g, αΨJf〉, ∀f, g ∈H .

By replacing f 7→ λf and optimizing over λ ∈ C, we get

〈f, γΨf〉〈g, (1 + γΨ)g〉 ≥ |〈g, αΨJf〉|2, ∀f, g ∈H .

Replacing g by (1 + γΨ)−1g we get the equivalent formula

〈f, γΨf〉〈g, (1 + γΨ)−1g〉 ≥ |〈g, (1 + γΨ)−1αΨJf〉|2, ∀f, g ∈H .

Then choosing g = αΨJf we find that

〈f, γΨf〉 ≥ 〈αΨJf, (1 + γΨ)−1αΨJf〉 = 〈f, J∗α∗Ψ(1 + γΨ)−1αΨJf〉, ∀f ∈H .

Thus we obtain the operator inequality

γΨ ≥ J∗α∗Ψ(1 + γΨ)−1αΨJ on H .

Step 3. Reversely, let us start from the operator inequality

γΨ ≥ J∗α∗Ψ(1 + γΨ)−1αΨJ on H .

Then

〈f, γΨf〉 ≥ 〈αΨJf, (1 + γΨ)−1αΨJf〉 = ‖(1 + γΨ)−1/2αΨJf‖2, ∀f ∈H .

Therefore, by the Cauchy-Schwarz inequality we can bound

〈f, γΨf〉〈g, (1 + γΨ)g〉 ≥ ‖(1 + γΨ)−1/2αΨJf‖2‖(1 + γΨ)−1/2g‖2

≥ |〈(1 + γΨ)−1/2g, (1 + γΨ)−1/2αΨJf〉|2 = |〈g, (1 + γΨ)−1αΨJf〉|2, ∀f, g ∈H

which is equivalent to ΓΨ ≥ 0. q.e.d.

The above Theorem gives rise to a natural question: given an operator on H ⊕H ∗ of the
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block matrix form

Γ :=

(
γ α

α∗ 1 + JγJ∗

)
satisfying that Γ ≥ 0 and α∗ = JαJ , Tr γ <∞. Then is Γ the generalized one-body density

matrix of a state on the bosonic Fock space F(H )? The answer is yes, provided that we

extend the consideration to mixed states.

Definition. Let G be a mixed state on the bosonic Fock space F = F(H ), namely

G ≥ 0 on F and TrF G = 1, with TrF(NG) < ∞. We define the generalized one-

body density matrix of G as an operator on H ⊕H ∗ of the block matrix form

ΓG :=

(
γG αG

α∗G 1 + JγGJ
∗

)

where γG : H →H and αG : H ∗ →H are linear maps defined by

〈g, γGf〉H = Tr(a∗(f)a(g)G), 〈g, αGJf〉H = Tr(a(f)a(g)G), ∀f, g ∈H .

In case G = |Ψ〉〈Ψ| for a normalized vector Ψ ∈ F(H ), we say that G is a pure state. All

of the results discussed above for pure states extend to mixed states, in particular

ΓG ≥ 0, α∗G = JαGJ, Tr γG = TrF(NG) <∞.

We will prove that any such a block-matrix operators on H ⊕H ∗ is a one-body density

matrix of a mixed state. Moreover, the mixed state can be chosen in a special class called

quasi-free states.

5.4 Coherent/Gaussian/Quasi-free states

In this section we introduce some special states on Fock space which are relevant to the

analysis of the Bose-Einstein condensation and fluctuations around the condensate.

First, we consider coherent states of the form

e−‖f‖
2/2ea

∗(f)Ω = e−‖f‖
2/2
⊕
n≥0

f⊗n√
n!
.

This is the analogue of Hartree states u⊗N on Fock space. Similar to Hartree states, coherent
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states can be used to describe the Bose-Einstein condensate.

Definition. Let H be a one-body Hilbert space. For every f ∈ H (not necessarily

normalized), we define the Weyl operator W (f) as a unitary operator on the bosonic

Fock space F = F(H ) by

W (f) = exp(a∗(f)− a(f)).

Then W (f)Ω is called a coherent state.

Theorem. For every f ∈H , the Weyl operator W (f) on F(H ) satisfies

W ∗(f)a(g)W (f) = a(g) + 〈g, f〉, W ∗(f)a∗(g)W (f) = a∗(g) + 〈f, g〉, ∀g ∈H .

Proof. We will use a “Grönwall argument”. In general, if we have two operator A and B,

then
d

dt
(e−tABetA) = e−tA(−AB +BA)etA = e−tA[B,A]etA.

Therefore, integrating over t ∈ [0, 1] we find that

e−ABeA −B =

∫ 1

0

e−tA[B,A]etAdt.

Now we apply this identity to A = a∗(f)− a(f) and B = a(g). By the CCR,

[B,A] = [a(g), a∗(f)− a(f)] = 〈g, f〉

and hence

e−tA[B,A]etA = 〈g, f〉e−tAetA = 〈g, f〉.

Therefore,

W ∗(f)a(g)W (f)− a(g) = e−ABeA −B =

∫ 1

0

e−tA[B,A]etAdt = 〈g, f〉.

By the adjointness, it is equivalent to

W ∗(f)a∗(g)W (f)− a∗(g) = 〈g, f〉 = 〈f, g〉.
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q.e.d.

Exercise. Let f ∈ H and consider Weyl operator W (f) on F(H ). Prove that the

corresponding coherent state is

Ψ := W (f)Ω = e−‖f‖
2/2ea

∗(f)Ω = e−‖f‖
2/2
⊕
n≥0

f⊗n√
n!
.

Prove that

〈Ψ,NΨ〉 = ‖f‖2
H .

Next, we consider excited particles outside of the condensate. We will focus on the quasi-

free states, where the excited particles come in pairs. The simplest examples of quasi-free

states are Gaussian states

Theorem (Gaussian states). Let h > 0 be self-adjoint on H such that Tr(e−h) < ∞.

Then we have the following properties.

• The partition function is

Z := Tr e−dΓ(h) = exp
(
− Tr(log(1− e−h))

)
∈ (0,∞).

Consequently, the Gaussian state G = Z−1e−dΓ(h) is well-defined.

• The one-body density matrix of G is

γG =
1

eh − 1
.

This is a non-negative trace class operator on H , namely Tr(NG) <∞.

• The Gaussian state G satisfies Wick’s Theorem, namely

Tr(a#
1 ...a

#
2m−1G) = 0, ∀m ≥ 1

and

Tr(a#
1 ...a

#
2mG) =

∑
σ∈P2m

Tr(a#
σ(1)a

#
σ(2)G)...Tr(a#

σ(2m−1)a
#
σ(2m)G), ∀m ≥ 1.
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Here a#
n is either a(fn) or a∗(fn) with arbitrary vectors (f1, f2, ...) ⊂H . The set

of pairings P2m is

P2m = {σ ∈ S2m | σ(2j − 1) < σ(2j + 1), j = 1, . . . ,m− 1,

σ(2j − 1) < σ(2j), j = 1, . . . ,m}.

Remark: Wick’s theorem is used extensively in quantum field theory, especially in con-

nection to Feynman diagrams. As an example, Wick’s theorem with order 4 gives

Tr(a∗1a
∗
2a3a4G) = Tr(a∗1a

∗
2G) Tr(a3a4G) + Tr(a∗1a3G) Tr(a∗2a4G) + Tr(a∗1a4G) Tr(a∗2a3G)

with ai = a(fi) for arbitrary vectors {fi} ⊂H . In case G is a normal state, i.e. [G,N ] = 0

(e.g. the Gaussian state), the pairing terms Tr(a∗1a
∗
2G) and Tr(a3a4G) are 0, and we get the

simplify formula

Tr(a∗1a
∗
2a3a4G) = Tr(a∗1a3G) Tr(a∗2a4G) + Tr(a∗1a4G) Tr(a∗2a3G).

Proof. Step 1. The condition Tr(e−h) <∞ implies that h has compact resolvent. Therefore,

we have the spectral decomposition

h =
∑
n≥1

λn|un〉〈un|

with an orthonormal basis {un}n≥1 for H and 0 < λ1 ≤ λ2 ≤ ... with

∑
n≥1

e−λn = Tr(e−h) <∞.

Then we can write

dΓ(h) =
∑
n≥1

λndΓ(|un〉〈un|) =
∑
n≥1

λna
∗
nan

where an = a(un). Since a∗nan and a∗mam commute, we can decompose

e−dΓ(h) = e−
∑
n λna

∗
nan =

∏
n

e−λna
∗
nan .

Next, recall that the bosonic Fock space F(H ) has an orthonormal basis

|n1, n2, ...〉 := (n1!n2!...)−1/2(a∗1)n1(a∗2)n2 ...Ω.
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Here n1, n2, ... ∈ {0, 1, 2, ...} and there are only finitely many nk > 0. Let us compute

e−dΓ(h)|n1, n2, ...〉 =
∏
i

e−λia
∗
i ai |n1, n2, ...〉.

For every i = 1, 2, ... we have

d

dλ
e−λa

∗
i ai|n1, n2, ...〉 = −e−λa∗i ai(a∗i ai)|n1, n2, ...〉 = −nie−λa

∗
i ai |n1, n2, ...〉

for all λ ≥ 0. Here we used the fact that |n1, n2, ...〉 has exactly ni particles in the mode ui.

Integrating over λ ∈ [0, λi] gives

e−λia
∗
i ai |n1, n2, ...〉 = e−λini |n1, n2, ...〉

for all i = 1, 2, ... (The latter equality can be also deduced from the Spectral Theorem and

the fact that |n1, n2, ...〉 is an eigenfunction of a∗i ai with eigenvalue ni). Thus

e−dΓ(h)|n1, n2, ...〉 =
∏
i

e−λia
∗
i ai |n1, n2, ...〉 =

∏
i

e−λini |n1, n2, ...〉.

This means that all eigenvalues of e−dΓ(h) are
∏

i≥1 e
−λini , and hence

Z = Tr e−dΓ(h) =
∑

ni=0,1,2,...

∏
i≥1

e−λini =
∏
i≥1

[ ∑
n=0,1,2,...

e−λin
]

=
∏
i≥1

1

1− e−λi
.

The result can be rewritten in a “fancy way”

− logZ =
∑
i≥1

log(1− e−λi) = Tr(log(1− e−h))

which is equivalent to Z = exp(−Tr(log(1 − e−h))). To prove that Z is finite, we need to

check ∏
i≥1

(1− e−λi) > 0,

but this follows from the assumption
∑

i≥1 e
−λi = Tr e−h <∞.

Exercise. Let {si}i≥1 ⊂ (0, 1). Prove that the following two statements are equivalent.

1.
∑

i≥1 si <∞.
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2.
∏

i≥1(1− si) > 0.

Step 2. Now we compute the one-body density matrix γG. Since {un}n≥1 is an orthonormal

basis for H , it suffices to prove that

〈um, γGu`〉 =
〈
um, (e

h − 1)−1u`

〉
= δm=`(e

λ` − 1)−1, ∀m, ` ≥ 1.

We compute the left side using the definition of γG and the fact that |n1, n2, ...〉 are eigen-

functions of e−dΓ(h) with eigenvalues
∏

i≥1 e
−λini . This gives

〈um, γGu`〉 = Tr(a∗`amG) = Z−1 Tr
(
a∗`ame

−dΓ(h)
)

= Z−1
∑

nj=0,1,...

〈n1, n2, ...|a∗`ame−dΓ(h)|n1, n2, ...〉

= Z−1
∑

nj=0,1,...

∏
i≥1

e−λini〈n1, n2, ...|a∗`am|n1, n2, ...〉

= Z−1
∑

nj=0,1,...

∏
i≥1

e−λinin`δm=`.

Using

e−λ`n`n` = − d

dλ`
e−λ`n`

we can simplify

〈um, γGu`〉 = δm=`Z
−1

∑
nj=0,1,...

(
− d

dλ`

)∏
i≥1

e−λini

= δm=`Z
−1
(
− d

dλ`

)
(Z) = δm=`(1− e−λ`)

(
− d

dλ`

)[ 1

1− e−λ`
]

= δm=`
e−λ`

1− e−λ`
= δm=`

1

eλ` − 1
.

Thus we conclude that γG = (eh−1)−1. The fact that Tr γG <∞ follows from the assumption

Tr e−h <∞ (why?).

Step 3. Finally, we prove Wick’s Theorem. We denote by ci either aj or a∗j (the indexes i

and j may be different). Our aim is to show that

Tr[c1c2c3c4...ckG] = Tr[c1c2G] Tr[c3c4...ckG]

+ Tr[c1c3G] Tr[c2c4...ckG] + ...+ Tr[c1ckG] Tr[c2c3...ck−1G]
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and the result follows immediately by induction. By the same way of computing the partition

function and the one-body density matrix, we have

Tr[c1c2G] = f(c1)[c1, c2]

where [c1, c2] = c1c2 − c2c1 ∈ {0,−1, 1} and

f(c1) =

{
(1− e−λj)−1 if c1 = aj,

(1− eλj)−1 if c1 = a∗j .

Thus the desired equality is equivalent to

Tr[c1c2c3c4...ckG] = f(c1)[c1, c2] Tr[c3c4...ckG]

+ f(c1)[c1, c3] Tr[c2c4...ckG] + ...+ f(c1)[c1, ck] Tr[c2c3...ck−1G].

Let us focus on the last equality. From the identity

c1c2c3c4...ck = [c1, c2]c3c4...ck + ...+ c2c4...ck−1[c1, ck] + c2c3c4...ckc1

we deduce that

Tr [c1c2c3c4...ckG] = Tr [[c1, c2]c3c4...ckG]

+ ...+ Tr [c2c4...ck−1[c1, ck]G] + Tr [c2c3c4...ckc1G] .

It is straightforward to see that c1G = e±λjGc1 where (+) if c1 = a∗j and (-) if c1 = aj. This

implies that

Tr [c2c3c4...ckc1G] = e±λjTr [c2c3c4...ckGc1] = e±λjTr [c1c2c3c4...ckG] .

From that and the definition of f we conclude that

Tr [c1c2c3c4...ckG] =
[c1, c2]

1− e±λj
Tr [c3c4...ckG]

+
[c1, c3]

1− e±λj
Tr [c2c4...ckG] + ...+

[c1, ck]

1− e±λj
Tr [c2c4...ck−1G]

= f(c1)[c1, c2] Tr[c3c4...ckG]

+ f(c1)[c1, c3] Tr[c2c4...ckG] + ...+ f(c1)[c1, ck] Tr[c2c3...ck−1G].
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This completes the proof of Wick’s theorem. q.e.d.

Finally we define

Definition. Let G be a mixed state on a bosonic Fock space F(H ) with Tr(GN ) <∞.

We call G a quasi-free state if it satisfies Wick’s Theorem, namely

Tr(a#
1 ...a

#
2m−1G) = 0, ∀m ≥ 1

and

Tr(a#
1 ...a

#
2mG) =

∑
σ∈P2m

Tr(a#
σ(1)a

#
σ(2)G)...Tr(a#

σ(2m−1)a
#
σ(2m)G), ∀m ≥ 1.

Here a#
n is either a(fn) or a∗(fn) with arbitrary vectors (f1, f2, ...) ⊂H and P2m is set

of pairings

P2m = {σ ∈ S2m | σ(2j − 1) < σ(2j + 1), j = 1, . . . ,m− 1,

σ(2j − 1) < σ(2j), j = 1, . . . ,m}.

• If a quasi-free state is a pure state |Ψ〉〈Ψ|, we call it a pure quasi-free state.

• If a quasi-free state G commutes with the number operator, i.e. [G,N ] = 0, we call

it a normal quasi-free state. In this case, the paring operator vanishes αG = 0.

In principle, any quasi-free state G on F(H ) is determined completely by its generalized

one-body density matrix

ΓG :=

(
γG αG

α∗G 1 + JγGJ
∗

)
.

Moreover, from the general discussion in the previous section we know that ΓG ≥ 0 on

H ⊕H ∗, α∗G = JαGJ and Tr γG < ∞. The reverse is also true, namely any block-matrix

operator of this form is a

Thus a natural question is that given an operator on H ⊕H ∗ of the block matrix form

is the generalized one-body density matrix of a quasi-free state.
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Theorem 5.1. Consider a bounded linear operator on H ⊕H ∗

Γ :=

(
γ α

α∗ 1 + JγJ∗

)
.

with Γ ≥ 0, α∗ = JαJ , Tr γ < ∞. Then there exists a unique (mixed) quasi-free

state G on the bosonic Fock space F(H ) such that Γ = ΓG, the generalized one-body

density matrix of G. �

The proof of this theorem requires to use Bogoliubov transformations which will be

introduced in the next chapter.

Exercise. Let N be the number operator on a bosonic Fock space F(H ). Let N ∈ N
be a large parameter.

1. Prove that

N2 = inf
{

Tr(N 2G) | G a mixed state on F(H ) satisfying Tr(NG) = N
}
.

2. Let Ψ be an arrbitrary coherent state satisfying 〈Ψ,NΨ〉 = N . Prove that

〈Ψ,N 2Ψ〉 = N2 +N.

3. Consider the variational problem

EN = inf
{

Tr(N 2G) |G = W ∗(f)KW (f), f ∈H and

K a (mixed) quasi-free state such that Tr(NG) = N
}
.

Prove that EN = N2 +O(N2/3).

Hint: You can write N (N−1) =
∑

m,n≥1 a
∗
ma
∗
naman with an = a(un) for an orthonormal

basis {un} for H . You can use the result on the correspondence between G and ΓG.



Chapter 6

Bogoliubov theory

6.1 Bogoliubov heuristic argument

In 1947, Bogoliubov suggested an approximation method to study the low lying spectrum of

interacting Bose gases. Recall that the typical N -body Hamiltonian with pair interactions

HN =
N∑
i=1

hi +
∑

1≤i<j≤N

Wij

on H ⊗sN can be extended to be an operator on the bosonic Fock space F(H ) as

H =
∑
m,n≥0

hmna
∗
man +

1

2

∑
m,n,p,q≥0

Wmnpqa
∗
ma
∗
napaq

where an = a(un) with an orthonormal basis {un}n≥0 for H and

hmn = 〈um, hun〉H , Wmnpq = 〈um ⊗ un,Wup ⊗ uq〉H ⊗2 .

Bogoliubov suggested that after factoring out the contribution of the Bose-Einstein conden-

sate described by u0, then the contribution from excited particles (orthogonal to u0) can

be effectively described by a quadratic Hamiltonian on Fock space F({u0}⊥).

Definition (Bogoliubov’s approximation method).

137
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• Step 1 (Ignoring higher order terms) In the second quantization form

H =
∑
m,n≥0

hmna
∗
man +

1

2

∑
m,n,p,q≥0

Wmnpqa
∗
ma
∗
napaq

we ignore all terms with 3 or 4 operators a#
n 6=0 (a#

n is either a∗n or an).

• Step 2 (c-number substitution) Replacing the operators a#
0 by a scalar number

√
N0 with N0 > 0.

• Step 3 (Cancelation of linear terms) The linear terms containing only one

a#
n 6=0 are cancelled by the property of u0

h̃u0 ≈ 0, h̃ := h+N0(W ∗ |u0|2)− µ.

• Step 4 (Quadratic approximation) We get H ≈ E0 + HBog with E0 ∈ R and

HBog =
∑
m,n≥1

(h̃mn +N0Wm00n)a∗man +
1

2

∑
m,n≥1

(
N0Wmn00a

∗
ma
∗
n + h.c.

)
.

Here we write X+h.c. for X+X∗. This quadratic Hamiltonian can be exactly

diagonalized, leading to an effective description for the spectrum of H.

Explanation:

• Motivation of Step 1 (Ignoring higher order terms): most of particles occupy

the condensate described by u0, and there are very few particles in the excited modes

{un}n6=0. Therefore, the contribution from a#
n 6=0 is much smaller than a#

0 , allowing us

to ignore terms higher than quadratic in a#
n6=0.

• Motivation of Step 2 (c-number substitution): the condensation on the mode u0

implies 〈a∗0a0〉 = N0 � 1 while [a0, a
∗
0] = 1. Hence we can think of a0 and a∗0 as they

commuted. The most natural candidate for the c-number substitution is thus
√
N0.

Technically, since the term a∗0a
∗
0a0a0 is quite large, we should rewrite

a∗0a
∗
0a0a0 = a∗0a0(a∗0a0 − 1)
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before applying the c-number substitution. The first two steps result in

H ≈ N0h00 +
N0(N0 − 1)

2
W0000 +

√
N0

∑
m≥1

[
(h0m +N0W000m)am + h.c.

]
+
∑
m,n≥1

(hmn +N0Wm0n0 +N0Wm00n)a∗man +
1

2

∑
m,n≥1

(
N0Wmn00a

∗
ma
∗
n + h.c.

)
.

• Step 3 (Cancelation of linear terms) essentially follows from Hartree equation.

More precisely, from the leading order behavior of u0, we can expect that

h̃u0 ≈ 0, h̃ := h+N0(W ∗ |u0|2)− µ.

Consequently, for every m 6= 0,

h0m +N0W000m =
〈
um,

(
h+N0(W ∗ |u0|2)

)
u0

〉
≈
〈
um, µu0

〉
= 0.

• Finally, given that the total particle number is N , we can rewrite N0 = N −N+ where

N+ = 〈
∑
n≥1

a∗nan〉.

Therefore, when think of the mean-field situation W0000 ∼ 1/N we obtain

N0h00 +
N0(N0 − 1)

2
W0000 = (N −N+)h00 +

(N −N+)2

2
W0000 −

N0

2
W0000

= Nh00 +
N2

2
W0000 −N+(h00 +NW0000)− N0

2
W0000 +

N 2
+

2
W0000

≈ Nh00 +
N2

2
W0000 − (h00 +N0W0000)N+ −

N

2
W0000

= Nh00 +
N(N − 1)

2
W0000 − µN+ ≈ E0 +

N(N − 1)

2
W0000 − µ

∑
n≥1

a∗nan

with

E0 = Nh00 +
N(N − 1)

2
W0000 = NeH.

Thus we end up with Step 4 (Quadratic approximation)

H ≈ NeH − µ
∑
n≥1

a∗nan
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+
∑
m,n≥1

(hmn +N0Wm0n0 +N0Wm00n)a∗man +
1

2

∑
m,n≥1

(
N0Wmn00a

∗
ma
∗
n + h.c.

)
= NeH +

∑
m,n≥1

(h̃mn +N0Wm00n)a∗man +
1

2

∑
m,n≥1

(
N0Wmn00a

∗
ma
∗
n + h.c.

)
.

• The quadratic Hamiltonian

HBog =
∑
m,n≥1

(h̃mn +N0Wm00n)a∗man +
1

2

∑
m,n≥1

(
N0Wmn00a

∗
ma
∗
n + h.c.

)
.

acts on the excited Fock space F({u0}⊥). In principle, it can be rewritten as a

non-interacting Hamiltonian up to a unitary transformation U on F (called a

Bogoliubov transformation), namely

U∗HBogU = eBog + dΓ(ξ)

with eBog the ground state energy of HBog and ξ ≥ 0 a one-body self-adjoint operator

on H+ = {u0}⊥. Thus in summary,

H ≈ NeH + HBog = NeH + eBog + UdΓ(ξ)U∗.

The spectrum of the non-interacting Hamiltonian is easy to understand

σ(dΓ(ξ)) =
{∑

k

nkek | ek ∈ σ(ξ), nk = 0, 1, 2, ...
}

leading to an effective description for the spectrum of H. More precisely, the low lying

eigenvalues of H are of the form

NeH + eBog +
∑
k

nkek

where ek ∈ σ(ξ) called elementary excitations and nk = 0, 1, 2, ... Here we have finite

sum, namely there are only finitely many nk > 0. In particular, the lowest eigenvalue

is

inf σ(H) ≈ NeH + eBog

and the ground state is approximately UΩ (after removing the condensation). We will

see later that when U is a Bogoliubov transformation, then UΩ is a quasi-free state.
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Remark: Bogoliubov’s approximation is a quantized version of Taylor’s expansion

of the Hartree functional. Recall that if x0 is a local minimizer of a smooth function f : R→ R
then near x0 we have Taylor’s expansion

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + o(|x− x0|2)

= f(x0) +
1

2
f ′′(x0)(x− x0)2 + o(|x− x0|2).

Here the first derivative f ′(x0) = 0 because the minimizing property of x0. Similarly, near

the minimizer u0 of the Hartree functional (we think of the case H = L2(Rd))

EH(u) = 〈u, hu〉+

∫∫
(N − 1)W (x− y)|u(x)|2|u(y)|2dxdy

under the constraint ‖u‖ = 1 we can write for v ∈ {u0}⊥

EH

(
u0 + v

(1 + ‖v‖2)1/2

)
= EH(u0) +

1

2
Hess EH(u0)(v, v) + o

(
〈v, (h+ C)v〉

)
.

The Hessian operator is

1

2
Hess EH(u0)(v, v)

= 〈v, h̃v〉+
1

2

∫∫
w(x− y)

(
v(x)u0(x)u0(y)v(y) + v(x)u0(x)u0(y)v(y)

+ v(x)u0(x)u0(y)v(y) + v(x)u0(x)u0(y)v(y)

)
dx dy

=
1

2

〈(
v

v

)(
h̃+K1 K2

K∗2 h̃+K1

)(
v

v

)〉

Here we identify L2(Rd)∗ = L2(Rd) and K1, K2 are operators on L2(Rd) with kernels

K1(x, y) = u0(x)u0(y)(N − 1)W (x− y), K2(x, y) = u0(x)u0(y)(N − 1)W (x− y).

The second quantization form of the Hessian matrix can be obtained by formally replacing

v(x) by an operator a∗(x) which creates an excited particle at x, and v(x) by an operator

a(x) which annihilates it. This gives

HBog :=

∫∫
(h̃+K1)(x, y)a∗xaydxdy +

1

2

∫∫ (
K2(x, y)a∗(x)a∗(y) +K2(x, y)a(x)a(y)

)
dx dy.
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Here we are working on the excited Fock space F({u0}⊥). This is the same to write

HBog =
∑
m,n≥1

〈um, (h̃+K1)un〉a∗man +
1

2

∑
m,n≥1

(
〈um ⊗ un, K2〉a∗ma∗n + h.c.

)
which coincides to

∑
m,n≥1

(h̃mn +N0Wm00n)a∗man +
1

2

∑
m,n≥1

(
N0Wmn00a

∗
ma
∗
n + h.c.

)
.

up to a small adjustment N0 ≈ (N − 1).

6.2 Example for the homogeneous gas

Let us consider the simplest model where we have N bosons in a unit torus Td (i.e. [0, 1]d

with periodic boundary condition). The particles interacts via an interaction potential W =

(N − 1)−1w with

w(x) = w(−x) =
∑

k∈2πZd
ŵ(k)eik·x.

We will assume that the interaction potential is of positive type and smooth, namely

0 ≤ ŵ ∈ `1(2πZd).

Here we do not put any external potential, and hence the system is translation-invariant.

The corresponding N -body Hamiltonian reads

HN =
N∑
i=1

(−∆xi) +
1

N − 1
w(xi − xj)

acting on L2(Td)⊗sN . In this case, the Hartree theory has a unique minimizer (up to a phase)

u0(x) = 1, ∀x ∈ Td.

Exercise. Consider the Hartree functional

EH(u) =

∫
Td
|∇u|2 +

1

2

∫∫
Td×Td

w(x− y)|u(x)|2|u(y)|2dxdy.
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Prove that if 0 ≤ ŵ ∈ `1(2πZd), then the Hartree energy is

inf
{
EH(u) |u ∈ H1(Td), ‖u‖L2(Td) = 1

}
=

1

2
ŵ(0).

Moreover, u0 ≡ 1 is the unique Hartree minimizer (uniqueness is up to a phase).

Now we apply Bogoliubov’s heursitic argument to this Hamiltonian. We take the orthonormal

basis {uk} for H = L2(Td) with

uk(x) = eik·x, ∀k ∈ 2πZd.

Then we have

h̃ = −∆ +N0(W ∗ |u0|2)− µ = −∆

(u0 ≡ 1 is the unique ground state for h̃) and

N0Wm00n ≈ (N − 1)Wm00n =

∫∫
Td×Td

um(x)u0(y)w(x− y)u0(x)un(y)dxdy

=

∫∫
Td×Td

e−im·x
∑

k∈2πZd
ŵ(k)eik·(x−y)ein·ydxdy

=
∑

k∈2πZd
ŵ(k)

∫∫
Td×Td

ei(k−m)·xei(n−k)·ydxdy

=
∑

k∈2πZd
ŵ(k)δm=kδn=k

= δm=nŵ(n),

N0Wmn00 ≈ (N − 1)Wmn00 =

∫∫
Td×Td

um(x)un(y)w(x− y)u0(x)u0(y)dxdy

=

∫∫
Td×Td

e−im·xe−in·y
∑

k∈2πZd
ŵ(k)eik·(x−y)dxdy

=
∑

k∈2πZd
ŵ(k)

∫∫
Td×Td

ei(k−m)·xei(n+k)·ydxdy

=
∑

k∈2πZd
ŵ(k)δm=kδn=−k

= δm=−nŵ(n).

Thus Bogoliubov theory suggests that

HN ≈
N

2
ŵ(0) + HBog
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where

HBog =
∑

06=p∈2πZd

[(
|p|2 + ŵ(p)

)
a∗pap +

1

2
ŵ(p)(a∗pa

∗
−p + apa−p)

]
=

1

2

∑
06=p∈2πZd

[(
|p|2 + ŵ(p)

)
(a∗pap + a∗−pa−p) + ŵ(p)(a∗pa

∗
−p + apap

)]

As realized in Bogoliubov’s 1947 paper, for any momentum 0 6= p ∈ 2πZd, we can “diagonal-

ize” the summand by completing the square.

Exercise. Prove that for any given parameters Ap > Bp ≥ 0, we have

Ap

(
a∗pap + a−pa−p

)
+Bp(a

∗
pa
∗
−p + apa−p) =

√
A2
p −B2

p −Ap +
√
A2
p −B2

p (b∗pbp + b∗−pb−p)

where

bp = ap

√
ν2
p + 1 + a∗−pνp, νp =

√
1

2

( Ap√
A2
p −B2

p

− 1
)
.

Moreover, prove that [bp, bq] = 0 and [bp, b
∗
q] = δp=q for every p, q ∈ 2πZd.

In particular, applying the above exercise with Ap = |p|2 + ŵ(p) and Bp = ŵ(p) we obtain

HBog =
1

2

∑
06=p∈2πZd

[(
|p|2 + ŵ(p)

)
(a∗pap + a∗−pa−p) + ŵ(p)(a∗pa

∗
−p + apap

)]
= eBog +

∑
06=p∈2πZd

epb
∗
pbp

with

eBog =
1

2

∑
0 6=p∈2πZd

(
√
A2
p −B2

p − Ap) =
1

2

∑
06=p∈2πZd

(√
|p|4 + 2|p|2ŵ(p)− |p|2 − ŵ(p)

)

and

ep =
√
|p|4 + 2|p|2ŵ(p), bp = ap

√
ν2
p + 1 + a∗pνp, νp =

√
1

2

( |p|2 + ŵ(p)√
|p|4 + 2|p|2ŵ(p)

− 1
)
.
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In summary, for the homogeneous gas, Bogoliubov’s approximation reads

HN ≈
N

2
ŵ(0) + eBog +

∑
06=p∈2πZd

epb
∗
pbp.

Note that b#
p ’s form new creation/annihilation operators as they satisfy the CCR

[bp, bq] = 0, [b∗p, b
∗
q] = 0, [bp, b

∗
q] = δp=q, ∀p, q ∈ 2πZd.

So we can treat
∑

0 6=p∈2πZd epb
∗
pbp as the second quantization of a one-body operators. More

precisely, we can show that there exists a unitary operator U (the Bogoliubov transfor-

mation) on the bosonic Fock space such that

U∗apU = bp = ap

√
1 + ν2

p + a∗−pνp, ∀0 6= p ∈ 2πZd.

Consequently,

∑
06=p∈2πZd

epb
∗
pbp = U∗

( ∑
0 6=p∈2πZd

epa
∗
pap

)
U = U∗dΓ

( ∑
06=p∈2πZd

ep|up〉〈up|
)
U.

whose eigenvalues are ∑
06=p∈2πZd

epnp, np = 0, 1, 2, ...

Thus the low lying eigenvalues of HN are of the forms

N

2
ŵ(0) + eBog +

∑
06=p∈2πZd

epnp, np = 0, 1, 2, ...

This calculation goes back to Bogoliubov’s 1947 paper. However, this formula of the excita-

tion spectrum was only proved rigorously in 2010 by Seiringer (CMP 2011).

In the homogeneous gas, the diagonalization of the quadratic Hamiltonian HBog can

be done explicitly in the level of 2×2 matrices. In order to deal with inhomogeneous trapped

cases, it is important to understand Bogoliubov transformations in a more abstract level.

This will be done in the next section.

6.3 Bogoliubov transformation

https://arxiv.org/abs/1008.5349
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Definition. A unitary operator U on the bosonic Fock space F(H ) is called a Bo-

goliubov transformation if

• There exist bounded linear maps U : H → H and V : H ∗ → H such that for

all f ∈H :

U∗a∗(f)U = a∗(Uf) + a(V Jf), U∗a(f)U = a(Uf) + a∗(V Jf),

Ua∗(f)U∗ = a∗(U∗f)− a(J∗V ∗f), Ua(f)U∗ = a(U∗f)− a∗(J∗V ∗f).

• The states UΩ, U∗Ω has finite particle number expectation

〈UΩ,NUΩ〉 <∞, 〈U∗Ω,NU∗Ω〉 <∞.

Example (1 dimension): Consider the case dim H = 1, i.e. H = Span{f}, ‖f‖ = 1.

Then for every λ ∈ R the following mapping

Uλ = exp
[λ

2
(a∗(f)2 − a(f)2)

]
is a Bogoliubov transformation on the bosonic Fock space F(H ) and

U∗λa∗(f)Uλ = cosh(λ)a∗(f) + sinh(λ)a(f),

U∗λa(f)Uλ = cosh(λ)a(f) + sinh(λ)a∗(f).

In fact, since the operator

B =
1

2

(
a∗(f)2 − a(f)2

)
is anti-hermitian (B∗ = −B), the mapping

Uλ = eλB

is a well-defined unitary operator. Its action on the creation and annihilation operators can

be computed using the Duhamel expansion and the CCR. For example when λ > 0 using

e−λBa(f)eλB = a(f) +

∫ λ

0

d

dt

(
e−tBa(f)etB

)
dt = a(f) +

∫ λ

0

e−tB[a(f), B]etBdt
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and

[a(f), B] =
1

2

(
a(f)a∗(f)2 − a∗(f)2a(f)

)
=

1

2

(
[a(f), a∗(f)]a∗(f) + a∗(f)[a(f), a∗(f)]

)
= a∗(f)

we can write

e−λBa(f)eλB = a(f) +

∫ λ

0

e−tBa∗(f)etBdt.

By taking the adjoint, we also obtain

e−λBa∗(f)eλB = a∗(f) +

∫ λ

0

e−tBa(f)etBdt.

Using repeatedly these equalities, we have the series expansion

e−λBa(f)eλB = a(f) +

∫ λ

0

e−tBa∗(f)etBdt

= a(f) +

∫ λ

0

a∗(f)dt+

∫ λ

0

∫ λ1

0

e−tBa(f)etBdtdλ1

= a(f) +

∫ λ

0

a∗(f)dt+

∫ λ

0

∫ λ1

0

a(f)dtdλ1 +

∫ λ

0

∫ λ1

0

∫ λ2

0

e−tBa∗(f)etBdtdλ2dλ1

= a(f) +

∫ λ

0

a∗(f)dt+

∫ λ

0

∫ λ1

0

a(f)dtdλ1 +

∫ λ

0

∫ λ1

0

∫ λ2

0

a∗(f)dtdλ2dλ1

+

∫ λ

0

∫ λ1

0

∫ λ2

0

∫ λ3

0

e−tBa(f)etBdtdλ3dλ2dλ1 = ...

=
M∑
n=0

λ2n

(2n)!
a(f) +

M∑
n=0

λ2n+1

(2n+ 1)!
a∗(f) +

∫ λ

0

∫ λ1

0

...

∫ λ2M+1

0

e−tBa(f)etBdtdλ2M+1...dλ1.

Let us show that the series converges as M →∞. We have

Exercise. Let f ∈H , ‖f‖ = 1. For every λ ∈ R, define

Uλ = exp
[λ

2
(a∗(f)2 − a(f)2)

]
.
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Prove the operator inequality on the bosonic Fock space F(H )

U∗λ(a∗(f)a(f) + a(f)a∗(f))Uλ ≤ e2|λ|
(
a∗(f)a(f) + a(f)a∗(f)

)
.

Hint: You can use Grönwall’s argument.

Thus for any Ψ ∈ Q(N ) = D(a(f)) we have

‖e−tBa(f)etBΨ‖ = ‖a(f)etBΨ‖ = 〈Ψ, e−tBa∗(f)a(f)etBΨ〉1/2 ≤ e|t|
(

2‖a(f)Ψ‖2 + 1
)1/2

and hence ∥∥∥∥∫ λ

0

∫ λ1

0

...

∫ λ2M+1

0

e−tBa(f)etBdtdλ2M+1...dλ1Ψ

∥∥∥∥
≤
∫ λ

0

∫ λ1

0

...

∫ λ2M+1

0

‖e−tBa(f)etBΨ‖dtdλ2M+1...dλ1

≤ CΨ

∫ λ

0

∫ λ1

0

...

∫ λ2M+1

0

etdtdλ2M+1...dλ1

≤ CΨe
λ λ2M+2

(2M + 2)!
→ 0 as M →∞.

Thus in summary,

e−λBa(f)eλB =
∞∑
n=0

λ2n

(2n)!
a(f) +

∞∑
n=0

λ2n+1

(2n+ 1)!
a∗(f)

=
eλ + e−λ

2
a(f) +

eλ − e−λ

2
a∗(f)

= cosh(λ)a(f) + sinh(λ)a∗(f).

Thus

U∗λa(f)Uλ = cosh(λ)a(f) + sinh(λ)a∗(f), U∗λa∗(f)Uλ = cosh(λ)a∗(f) + sinh(λ)a(f)

where the second identity follows from the first one by the adjointness. Since U∗λ = U−λ, we

also have the reverse formula

Uλa(f)U∗λ = cosh(λ)a(f)− sinh(λ)a∗(f), Uλa
∗(f)U∗λ = cosh(λ)a∗(f)− sinh(λ)a(f).

Example (2 dimensions): The following example goes back to the original 1947 work of
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Bogoliubov. Consider the case dim H = 2, i.e. H = Span{f1, f2} with 〈fi, fj〉 = δi=j. For

every λ ∈ R define

Uλ = exp
[
λ(a∗1a

∗
2 − a1a2)

]
where ai = a(fi) the annihilation operator. Then Uλ is a Bogoliubov transformation on the

bosonic Fock space F(H ) and

U∗λa1Uλ = cosh(λ)a1 + sinh(λ)a∗2,U∗λa2Uλ = cosh(λ)a2 + sinh(λ)a∗1.

These identities can be proved using the Duhamel expansion and the CCR as above. For

example, when λ > 0 we can write

U∗λa1Uλ = a1 +

∫ λ

0

d

dt

(
U∗t a1Ut

)
dt

= a1 +

∫ λ

0

U∗t [a1, a
∗
1a
∗
2 − a1a2]Utdt

= a1 +

∫ λ

0

U∗t a
∗
2Utdt

= a1 +

∫ λ

0

a∗2dt+

∫ λ

0

∫ λ1

0

U∗t a1Utdtdλ1

= a1 +

∫ λ

0

a∗2dt+

∫ λ

0

∫ λ1

0

a1dtdλ1 +

∫ λ

0

∫ λ1

0

∫ λ2

0

U∗t a
∗
2Utdtdλ1dλ2 = ...

=
∞∑
n=0

λ2n

(2n)!
a1 +

∞∑
n=0

λ2n+1

(2n+ 1)!
a∗2

= cosh(λ)a1 + sinh(λ)a∗2.

Again, since U∗λ = U−λ, we have the reverse formula

Uλa1U∗λ = cosh(λ)a1 − sinh(λ)a∗2,Uλa2U∗λ = cosh(λ)a2 − sinh(λ)a∗1.

For future applications, we need to understand the Bogoliubov transformations on F(H )

with higher dimensional cases, including the case dim H = +∞. A fundamental question is

under which conditions on the linear maps U : H → H and V : H ∗ → H we can find a

Bogoliubov transformation U on F(H ) implementing them.

The necessary and sufficient conditions on U and V for the existence of a Bogoliubov

transformations are given by the following
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Theorem (Existence of Bogoliubov transformations). The bounded linear maps U :

H → H and V : H ∗ → H are implemented by a Bogoliubov transformation U on

F(H ) if and only if the following conditions hold:

• Shale condition: Tr(V V ∗) <∞.

• Symplectic condition:

UU∗ − V V ∗ = 1 = U∗U − J∗V ∗V J, U∗V J − (U∗V J)∗ = 0 = V JU∗ − (V JU∗)∗.

Remarks:

• In the following proof, we will deduce the Shale condition from the identity

Tr(V V ∗) = 〈UΩ,NUΩ〉 <∞.

In fact, even if we define Bogoliubov transformation without requiring 〈UΩ,NUΩ〉 <
∞, then the existence of Bogoliubov transformation always requires Tr(V V ∗) < ∞
(and hence implies 〈UΩ,NUΩ〉 < ∞ automatically). The proof of the latter point is

more difficult (we do not need it).

• The “symplectic condition” can be written in a compact form with symplectic block

matrices on H ⊕H ∗

V∗SV = VSV∗ = S,

where

V :=

(
U V

JV J JUJ∗

)
, S :=

(
1 0

0 −1

)
.

In particular, V is invertible. The following exercise tells us that we can deduce one

identity V JU∗ = (V JU∗)∗ from the others.

Exercise. Let U : H →H and V : H ∗ →H be bounded linear operators such that

UU∗ = 1 + V V ∗, U∗U = 1 + J∗V ∗V J, U∗V J = (U∗V J)∗.

1. Prove that V JU∗ = (V JU∗)∗. Hint: This is equivalent to V JU∗UU∗ = (V JU∗)∗UU∗.
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2. Prove that VSV∗ = V∗SV = S with

V :=

(
U V

JV J JUJ∗

)
, S :=

(
1 0

0 −1

)
.

3. Prove that if Tr(V V ∗) <∞, then V∗V−1 and VV∗−1 are Hilbert-Schmidt operators

on H ⊕H ∗.

Proof of the theorem. We prove the necessity in Steps 1,2 and the sufficiency in Steps 3,4.

Part A: Necessity. We assume that there exists a Bogoliubov transformations U associated

to U and V .

Step 1. We check the Shale condition Tr(V V ∗) < ∞. Let {fn}n≥1 be an orthonormal

basis for H . Then

〈UΩ,NUΩ〉 =
〈

Ω,U∗
∑
n

a∗(fn)a(fn)UΩ
〉

=
∑
n

〈
Ω,
(
a∗(Ufn) + a(V Jfn)

)(
a(Ufn) + a∗(V Jfn)

)
Ω
〉

=
∑
n

〈
Ω, a(V Jfn)a∗(V Jfn)Ω

〉
=
∑
n

〈
Ω,
(
a∗(V Jfn)a(V Jfn) + ‖V Jfn‖2

)
Ω
〉

=
∑
n

‖V Jfn‖2 = Tr(J∗V ∗V J) = Tr(V V ∗).

Thus Tr(V V ∗) = 〈UΩ,NUΩ〉 <∞.

Step 2. We check the symplectic condition. Let us introduce the generalized annihi-

lation and creation operators

A(f ⊕ Jg) = a(f) + a∗(g), A∗(f ⊕ Jg) = a∗(f) + a(g).

Then we can write the actions of the Bogoliubov transformation U in a compact form

U∗A(F )U = A(VF ), ∀F ∈H ⊕H ∗.

On the other hand, the CCR can be rewritten as

[A(F ), A∗(G)] = (F,SG)H ⊕H ∗ , ∀F,G ∈H ⊕H ∗.



152 CHAPTER 6. BOGOLIUBOV THEORY

Therefore,

(F,SG) = U∗[A(F ), A∗(G)]U = [A(VF ), A∗(VG)] = (VF,SVG), ∀F,G ∈H ⊕H ∗

which implies that

S = V∗SV .

By expanding(
1 0

0 −1

)
=

(
U∗ J∗V ∗J∗

V ∗ JU∗J∗

)(
1 0

0 −1

)(
U V

JV J JUJ∗

)

=

(
U∗ J∗V ∗J∗

V ∗ JU∗J∗

)(
U V

−JV J −JUJ∗

)

=

(
U∗U − J∗V ∗V J U∗V − J∗V ∗UJ∗

(U∗V − J∗V ∗UJ∗)∗ V ∗V − JU∗UJ∗

)

we see that V∗SV = S is equivalent to

U∗U = 1 + J∗V ∗V J, U∗V J = (U∗V J)∗.

Similarly, using

UA(F )U∗ = A(SV∗SF ), ∀F ∈H ⊕H ∗

we find that VSV∗ = S which is equivalent to

UU∗ = 1 + V V ∗, V JU∗ = (V JU∗)∗.

Part B: Sufficiency. Now we assume that U and V satisfy the Shale condition Tr(V V ∗) <

∞ and the symplectic condition

U∗U = 1 + J∗V ∗V J, UU∗ = 1 + V V ∗, U∗V J = (U∗V J)∗.

We prove that there exists a Bogoliubov transformations U associated to U and V .

Step 3. We prove that there exist orthonormal bases {ui}i≥1 and {fi}i≥1 for H such that

Uui = cosh(λi)fi, V Jui = sinh(λi)fi, λi ≥ 0, ∀i = 1, 2, ...

From the symplectic condition we know that the anti-linear operatorK = U∗V J is Hermitian,
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i.e. K = K∗, and it commutes with U∗U :

U∗UK = U∗UU∗V J = U∗(1 + V V ∗)V J = U∗V J + U∗V V ∗V J

= U∗V J(1 + J∗V ∗V J) = KU∗U.

Since U∗U − 1 = J∗V ∗V J is trace class (thanks to the Shale condition), U∗U has an or-

thonormal basis of eigenvectors. Moreover, since K commutes with U∗U , it leaves invariant

eigenspaces of U∗U . Since K = K∗ (anti-linear Hermitian) and K∗K = J∗V ∗UU∗V J is

linear trace class, we can diagonalize further K on each eigenspace of U∗U (see an exercise

below).

Exercise. Let K be a bounded anti-linear map on a Hilbert-space H . Assume that

K = K∗, namely

〈Ku, v〉 = 〈u,Kv〉 = 〈Kv, u〉, ∀u, v ∈H .

Moreover, assume that the operator K2 has an orthonormal eigenbasis. Prove that K

has an orthonormal eigenbasis with non-negative eigenvalues.

Hint: You can write K2 − λ2 = (K − λ)(K + λ).

Thus in summary, we can find an orthonormal basis {ui}i≥1 for H of joint eigenvectors of

U∗U and K, namely

U∗Uui = µ2
iui, Kui = ξiui, ∀i ≥ 1.

Here µi ≥ 1 because U∗U ≥ 1 and λi ≥ 0. Define {fi} by

Uui = µifi, ∀i ≥ 1.

Then we have

〈fi, fj〉 = µ−1
i µ−1

j 〈Uui, Uuj〉 = µ−1
i µ−1

j 〈ui, U∗Uuj〉 = δij.

Thus {fi} is an orthonormal family for H . Moreover, if ϕ⊥fi for all i, then

0 = 〈ϕ,Uui〉 = 〈U∗ϕ, ui〉, ∀i ≥ 1

which implies that U∗ϕ = 0, and hence ϕ = 0 since UU∗ = 1 + V V ∗ ≥ 1 has trivial kernel.

Thus {fi} is an orthonormal basis for H .
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On the other hand, since ui is also eigenfunction of K = U∗V J , we have

〈fj, V Jui〉 = µ−1
j 〈Uuj, V Jui〉 = µ−1

j 〈uj, U∗V Jui〉 = µ−1
j ξiδi=j, ∀i, j.

Since {fi} is an orthonormal basis for H , we can use Parseval’s identity

V Jui =
∑
j

〈fj, V Jui〉fj =
∑
j

µ−1
j ξiδi=jfj = νifi, νi := µ−1

i ξi ≥ 0.

Thus we have found orthonormal bases {ui}i≥1 and {fi}i≥1 for H such that

Uui = µifi, V Jui = νifi ∀i = 1, 2, ...

with µi ≥ 1 and νi ≥ 0. Moreover, µi =
√

1 + ν2
i because

µ2
i − ν2

i = ‖Uui‖2 − ‖V Jui‖2 = 〈ui, (U∗U − J∗V ∗V J)ui〉 = 〈ui, ui〉 = 1.

Since µ2
i − ν2

i = 1, we can write µi = cosh(λi) and νi = sinh(λi) for some λi ≥ 0.

Step 4. Now we want to construct a unitary operator U on F(H ) such that

U∗a(ui)U = a(Uui) + a∗(V Jui) = cosh(λi)a(fi) + sinh(λi)a
∗(fi), ∀i ≥ 1.

This looks quite similar to the one-dimensional case that we discussed before, except that

in the left side we have a(ui) instead of a(fi). More precisely, from the previous discussion

on the one-dimensional case, we know that there exists a unitary operator Ũ on F(H ) such

that

Ũ∗a(fi)Ũ = cosh(λi)a(fi) + sinh(λi)a
∗(fi), ∀i ≥ 1.

In fact, Ũ is given by the explicit formula

Ũ =
∏
i≥1

exp
(λi

2
(a∗(fi)

2 − a(fi)
2)
)

= exp
(∑
i≥1

λi
2

(a∗(fi)
2 − a(fi)

2)
)
.

Here in spite of the infinite product, or the infinite sum, the unitary operator Ũ is well-

defined. To be precise, the condition Tr(V V ∗) < ∞ is equivalent to
∑

i≥1 sinh(λi)
2 < ∞,
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which is also equivalent to
∑

i≥1 λ
2
i <∞ (why?). Consequently, if we define

B =
∑
i≥1

λi
2

(a∗(fi)
2 − a(fi)

2)

then by the Cauchy-Schwarz inequality we have the operator bound

±iB ≤ 1

2

∑
i≥1

(a∗(fi)a(fi) + λ2
i a(fi)a

∗(fi)) ≤
(

1 +
∑
i≥1

λ2
i

)
(N + 1), i2 = −1.

This ensures thatB is well-defined onD(N ) (a dense subset of F(H )) and it is anti-hermitian

(B∗ = −B). Thus Ũ = eB is a unitary operator on F(H ).

Then we can choose the desired transformation U as

U = YŨ

where Y is the unitary transformation on F(H ) such that

Y∗a(ui)Y = a(fi).

The latter unitary operator Y simply corresponds to changing from the orthonormal basis

(n1!n2!...)−1/2(a∗(u1))n1(a∗(u2))n2 ...Ω, ni = 0, 1, 2, ...

to the orthonormal basis

(n1!n2!...)−1/2(a∗(f1))n1(a∗(f2))n2 ...Ω, ni = 0, 1, 2, ...

Thus we conclude that

U∗a(ui)U = Ũ∗Y∗a(ui)YŨ = Ũ∗a(fi)Ũ

= cosh(λi)a(fi) + sinh(λi)a
∗(fi) = a(Uui) + a∗(V Jui), ∀i ≥ 1.

By the linearity, we obtain

U∗a(u)U = a(Uu) + a∗(V Ju), ∀u ∈H .

The inverse of U is also easy to compute. Using the property of the inverse of Ũ (see the



156 CHAPTER 6. BOGOLIUBOV THEORY

one-dimensional case) and the definition of Y, we find that

Ua(fi)U∗ = YŨa(fi)Ũ∗Y∗ = Y
(

cosh(λi)a(fi)− sinh(λi)
)
Y∗

= cosh(λi)a(ui)− sinh(λi)a
∗(ui).

From the choice of orthonormal bases {ui} and {fi}, we also find that

U∗fi =
U∗Uui
‖Uui‖

= ‖Uui‖ui = cosh(λi)ui,

J∗V ∗fi =
J∗V ∗Uui
‖Uui‖

=
Kui
‖Uui‖

= sinh(λi)ui.

Thus

Ua(fi)U∗ = cosh(λi)a(ui)− sinh(λi)a
∗(ui) = a(U∗fi)− a∗(J∗V ∗fi), ∀i ≥ 1

and hence by the linearity

Ua(f)U∗ = a(U∗f)− a∗(J∗V ∗f), ∀f ∈H .

Finally, it is easy to see that

〈UΩ,NUΩ〉 = Tr(V V ∗) <∞

and a similar bound holds for U∗Ω. This completes the proof of the existence of the Bogoli-

ubov transformation. q.e.d.

Let us end this section by a general remark on the one-to-one correspondence between linear

maps (U, V ) and the set of Bogolliubov transformations (two unitary operators U and zU
with z ∈ C, |z| = 1, are considered the same).

Definition. For a given Hilbert space H , consider the subset of bounded linear opera-

tors on H ⊕H ∗

G :=

V =

(
U V

JV J JUJ∗

)
, V∗SV = VSV∗ = S =

 1 0

0 − 1

 , Tr(V V ∗) <∞

 .
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Remark: Equivalently

G = {V | J VJ = V , V∗SV = VSV∗ = S, V∗V − 1 is Hilbert-Schmidt}

where

J =

(
0 J∗

J 0

)
.

Note that J is a anti-linear map on H ⊕H ∗ and

J = J ∗ = J −1, J (H ⊕ 0) = 0⊕H ∗.

Exercise. Prove that G is a subgroup of the group of isomorphisms on H ⊕H ∗, namely

• If V1,V2 ∈ G , then V1V2 ∈ G ;

• If V ∈ G , then V−1 ∈ G .

Exercise. Let UV be the Bogoliubov transformation associated to V ∈ G .

1. Prove that

UV1UV2 = UV1V2 .

In particular, U−1
V = UV−1 = USV∗S .

2. Prove that the set of Bogoliubov transformations is a subgroup of the group of unitary

operators on F(H ).

If U is a Bogoliubov transformation, then U∗Ω can be interpreted as the new vacuum

because it is annihilated by the new annihilation operators:

(U∗a(f)U)U∗Ω = U∗a(f)Ω = 0, ∀f ∈H .

The explicit form of ΩBog = U∗Ω is given as follows.

Exercise. Let {fi} be an orthonormal basis for H . Let λi ∈ R such that
∑

i≥1 λ
2
i <∞.
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Consider the state

ΩBog :=
∏
i≥1

(1− tanh(λi)
2)1/4 exp

(
− tanh(λi)

2
a∗(fi)

2
)

Ω.

Prove that ΩBog is a normalized vector in the bosonic Fock space F(H ) and

(cosh(λi)a(fi) + sinh(λi)a
∗(fi))ΩBog = 0, ∀i ≥ 1.

6.4 Diagonalization of block operators

Now we discuss the diagonalization of block-operators on H ⊕H ∗ by symplectic operators

in

G :=

V =

(
U V

JV J JUJ∗

)
, V∗SV = VSV∗ = S =

 1 0

0 − 1

 , Tr(V V ∗) <∞

 .

The main result of this section is

Theorem (Diagonalization of bosonic block operators). Let h : H → H and k :

H ∗ →H be linear operators satisfying

• h = h∗ (h can be unbounded);

• k∗ = JkJ and Tr(kk∗) <∞;

• There exists a constant ε0 > 0 such that

A =

(
h k

k∗ JhJ∗

)
≥ ε0 > 0 on H ⊕H ∗.

Then we can find an operator V ∈ G and a self-adjoint operator ξ > 0 on H such that

V∗AV =

(
ξ 0

0 JξJ∗

)
.

If dim H < ∞, the result goes back to Williamson’s Theorem (1936). The important case

of 2× 2 real matrices was solved explicitly in Bogoliubov’s 1947 paper. This 2× 2 case can

be generalized easily to:
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Example (Commutative case). Let h and k be multiplication operators on H =

L2(Ω,C), for some measure space Ω. Then J is simply complex conjugation and we can

identify H ∗ = H for simplicity. Assume that h > 0, but k is not necessarily real-valued.

Then

A :=

(
h k

k h

)
> 0 on H ⊕H ∗.

if and only if −1 < G < 1 with G := |k|h−1. In this case, if we choose

V :=

√
1

2
+

1

2
√

1−G2

(
1 −G

1+
√

1−G2

−G
1+
√

1−G2 1

)

then

V∗AV =

(
ξ 0

0 ξ

)
with ξ := h

√
1−G2 =

√
h2 − k2 > 0.

If A ≥ ε0 > 0, then h ≥ ε0 > 0. Combining with Tr(kk∗) < ∞ we obtain Tr(GG∗) < ∞,

which is equivalent to Shale’s condition for V .

Remark: As proved by N-Napiórkowski-Solovej (JFA 2016), the above theorem still holds

true if we replace the gap condition A ≥ ε0 > 0 and the Hilbert-Schmidt condition Tr(kk∗)

by the weaker/optimal conditions:

A > 0, Tr(h−1kk∗h−1) <∞.

We will follow the proof of this paper.

Our starting point is a “fermionic analogue” of the above theorem.

Lemma (Diagonalization of fermionic block operators). Let B be a self-adjoint operator

on H ⊕H ∗ such that Ker(B) = {0} and

JBJ = −B, J =

(
0 J∗

J 0

)
.

Then there exists a unitary operator U on H ⊕H ∗ such that JUJ = U and a self-

adjoint operator ξ > 0 on H such that

U∗BU =

(
ξ 0

0 −JξJ∗

)

https://arxiv.org/abs/1508.07321
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Remark:

• Note that J is a anti-linear map on H ⊕H ∗ and

J = J ∗ = J −1, J (H ⊕ 0) = 0⊕H ∗.

• Any linear operator on H ⊕H ∗ of the block form

A =

(
h k

k∗ JhJ∗

)
, k∗ = JkJ, h = h∗

commutes with J , namely JAJ = A. This corresponds to bosonic block operators.

On the other hand, in the above lemma we require that B anti-commutes with J ,

namely JBJ = −B, and this corresponds to fermionic block operators. The

difference is that bosonic block operators are diagonalized by symplectic operators,

while fermionic block operators can be diagonalized by unitary operators which is

easier to deal with.

• The result in the above lemma also holds if dim Ker(B) is either even or infinite (and

we only know ξ ≥ 0), but we will not need this extension.

Proof of the lemma. Since B is self-adjoint Ker(B) = {0}, by the Spectral Theorem we can

decompose

H ⊕H ∗ = P+ ⊕ P−

where

P+ := 1(B > 0)(H ⊕H ∗), P− := 1(B < 0)(H ⊕H ∗).

The condition JBJ = −B implies that P− = JP+. Thus we have

P+ ⊕ JP+ = H ⊕H ∗ = (H ⊕ 0)⊕ J (H ⊕ 0).

The latter equality in particular implies that H ⊕ 0 and P+ have the same dimension (finite

or +∞). Therefore, there exists a unitary operator W : H ⊕ 0 → P+. Then JWJ :

J (H ⊕ 0)→ JP+ is also a unitary operator. Consequently,

U := W ⊕ JWJ

is a unitary on H ⊕H ∗. It is also clear from the definition of U that JUJ = U .
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It remains to show that U∗BU is block-diagonal. Note that for every f ∈ H , we have

W (f ⊕ 0) ∈ P+, and hence BW (f ⊕ 0) ∈ P+, and then W ∗BW (f ⊕ 0) ∈ H ⊕ 0. Thus we

can define a linear operator ξ : H →H by

(ξf)⊕ 0 := W ∗BW (f ⊕ 0), ∀f ∈H .

Note that ξ > 0 because

〈f, ξf〉 = 〈f ⊕ 0, (ξf)⊕ 0〉 = 〈W (f ⊕ 0),BW (f ⊕ 0)〉 > 0 (6.4.1)

for all 0 6= f ∈ H . The last inequality follows from the facts that W (f ⊕ 0) ∈ P+ and that

the restriction of B on P+ is strictly positive.

We will now show that

U∗BU =

(
ξ 0

0 −JξJ∗

)
which is equivalent to

U∗BU(f ⊕ 0) = (ξf)⊕ 0,

U∗BU(0⊕ Jf) = 0⊕ (−Jξf), ∀f ∈H .

Indeed, using U(f ⊕ 0) = W (f ⊕ 0) ∈ P+, we have BU(f ⊕ 0) = BW (f ⊕ 0) ∈ P+, and hence

U∗BU(f ⊕ 0) = W ∗BW (f ⊕ 0) = (ξf)⊕ 0.

Similarly, using U(0 ⊕ Jf) = JWJ (0 ⊕ Jg) = JW (f ⊕ 0) ∈ P−, we have BU(0 ⊕ Jg) =

BJW (f ⊕ 0) ∈ P− = JP+, and hence

U∗BU(0⊕ Jf) = (JW ∗J )BJW (f ⊕ 0) = JW ∗(JBJ )W (f ⊕ 0)

= −JW ∗BW (f ⊕ 0) = −J ((ξf)⊕ 0) = −Jξf.

Here we have used JBJ = −B. This completes the proof of the lemma. q.e.d.

Proof of the theorem. Since A > 0 is self-adjoint, we can define A1/2 > 0. Let us consider

B := A1/2SA1/2.
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It is clear that B is self-adjoint and Ker(B) = {0} because Ker(S) = Ker(A) = {0}. Moreover,

JBJ = −B because JAJ = A and JSJ = −S. By applying the result for “fermionic

operators”, we can find a unitary operator U on H ⊕ H ∗ such that JUJ = U and a

self-adjoint operator ξ > 0 on H such that

U∗BU =

(
ξ 0

0 −JξJ∗

)
=: D

Now we define

V := A−1/2|B|1/2U .

This choice diagonalizes A because

V∗AV = (U∗|B|1/2A−1/2)A(A−1/2|B|1/2U) = U∗|B|U = |U∗BU| = |D| =

(
ξ 0

0 JξJ∗

)
.

Boundedness of V. Since

A =

(
h k

k∗ JhJ∗

)
≥ ε0 > 0

and

A− SAS =

(
h k

k∗ JhJ∗

)
−

(
h −k
−k∗ JhJ∗

)
= 2

(
0 k

k∗ 0

)
is bounded (because k is bounded), there exists δ > 0 such that

δA ≤ SAS ≤ δ−1A.

Therefore,

δA2 ≤ B2 = A1/2SASA1/2 ≤ δ−1A2,

and hence

δ1/2A ≤ |B| ≤ δ−1/2A.

In the last inequality, we have used that the square root is operator monotone (namely

if X ≥ Y ≥ 0, then X1/2 ≥ Y 1/2). This follows from the representation

X1/2 =
2

π

∫ ∞
0

X

t2 +X
dt
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(this formula holds for real numbers X ≥ 0, and hence it holds for self-adjoint operators

X ≥ 0 by the functional calculus) and the fact that X 7→ X/(X + t2) is operator monotone.

Exercise. Let X, Y be two self-adjoint operators on a Hilbert space. Prove that if

X ≥ Y > 0, then X−1 ≤ Y −1.

Hint: You can use the fact that Z∗Z ≤ 1 implies ZZ∗ ≤ 1.

Exercise. Prove that for any power s ∈ (0, 1), the function 0 ≤ t 7→ ts is operator

monotone, namely if X, Y are two self-adjoint operators on a Hilbert space and X ≥
Y ≥ 0, then Xs ≥ Y s.

Thus we have proved that |B| ≤ δ−1/2A, which is equivalent to (A−1/2|B|1/2)(A−1/2|B|1/2)∗ =

A−1/2|B|A−1/2 ≤ δ−1/2. Consequently, A−1/2|B|1/2 is well defined on D(|B|1/2) and can be

extended to be a bounded operator on H ⊕H ∗. Thus V = A−1/2|B|1/2U is well-defined as

a bounded operator on H ⊕H ∗.

Symplectic condition of V. Indeed, because J commutes with A, |B| and U , it also

commutes with V . Thus V has the form

V =

(
U V

JV J JUJ∗

)
.

Moreover, using

B = A1/2SA1/2 and U∗BU =

(
ξ 0

0 −JξJ∗

)
= D

we find that

V∗SV = (U∗|B|1/2A−1/2)S(A−1/2|B|1/2U)

= U∗|B|1/2(A−1/2SA−1/2)|B|1/2U

= U∗|B|1/2(B−1)|B|1/2U

= |U∗BU|1/2(U∗BU)−1|U∗BU|1/2 = |D|1/2D−1|D|1/2

=

(
ξ1/2 0

0 Jξ1/2J∗

)(
ξ−1 0

0 −Jξ−1J∗

)(
ξ1/2 0

0 Jξ1/2J∗

)
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=

(
1 0

0 −1

)
= S

and

VSV∗ = (A−1/2|B|1/2U)S(U∗|B|1/2A1/2)

= A−1/2U|U∗BU|1/2S|U∗BU|1/2U∗A−1/2

= A−1/2(U|D|1/2S|D|1/2U∗)A−1/2

= A−1/2UDU∗A−1/2 = A−1/2(UDU∗)A−1/2

= A−1/2BA−1/2 = A−1/2(A1/2SA1/2)A−1/2 = S.

Shale condition of V. Finally we prove the Shale condition Tr(V ∗V ) < ∞, which is

equivalent to

VV∗ − 1 = (A−1/2|B|1/2U)(U∗|B|1/2A−1/2)− 1

= A−1/2|B|A−1/2 − 1 = A−1/2(|B| − A)A−1/2

is a Hilbert-Schmidt operator on H ⊕H ∗. Using again the representation of the square

root

X1/2 =
2

π

∫ ∞
0

X

t2 +X
dt =

2

π

∫ ∞
0

(
1− t2

t2 +X

)
dt (6.4.2)

and the resolvent identity

1

t2 +A2
− 1

t2 + B2
=

1

t2 +A2
(B2 −A2)

1

t2 + B2

we can write

VV∗ − 1 = A−1/2(|B| − A)A−1/2

=
2

π

∫ ∞
0

A−1/2

(
1

t2 +A2
− 1

t2 + B2

)
A−1/2 t2dt

=
2

π

∫ ∞
0

A−1/2 1

t2 +A2
(B2 −A2)

1

t2 + B2
A−1/2 t2dt

=
2

π

∫ ∞
0

A−1/2 1

t2 +A2
(A1/2SASA1/2 −A2)

1

t2 + B2
A−1/2 t2dt
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=
2

π

∫ ∞
0

1

t2 +A2
(SAS −A)A1/2 1

t2 + B2
A−1/2 t2dt.

Note that

E := SAS −A = −2

(
0 k

k∗ 0

)
is a Hilbert-Schmidt operator on H ⊕H ∗. Moreover, using A ≥ ε0 > 0 we can bound in

the operator norm ∥∥∥ 1

t2 +A2

∥∥∥
op
≤ 1

t2 + ε2
0

.

Combining with δ−1A2 ≥ B2 ≥ δA2 we also have∥∥∥A1/2 1

t2 + B2
A−1/2

∥∥∥
op

=
∥∥∥A1/2|B|−1/2 1

t2 + B2
|B|1/2A−1/2

∥∥∥
op

≤ ‖A1/2|B|−1/2‖op

∥∥∥ 1

t2 + B2

∥∥∥
op
‖|B|1/2A−1/2‖op

≤ δ−1

t2 + δε2
0

.

Therefore, by the triangle inequality for the Hilbert-Schmidt norm, we find that

‖VV∗ − 1‖HS ≤
2

π

∫ ∞
0

∥∥∥ 1

t2 +A2
EA1/2 1

t2 + B2
A−1/2

∥∥∥
HS
t2dt

≤ 2

π

∫ ∞
0

∥∥∥ 1

t2 +A2

∥∥∥
op
‖E‖HS

∥∥∥A1/2 1

t2 +B2
A−1/2

∥∥∥
op
t2dt

≤ ‖E‖HS ·
2

π

∫ ∞
0

1

t2 + ε2
0

· δ−1

1 + δε2
0

t2dt <∞.

This completes the proof of the theorem. q.e.d.

6.5 Characterization of quasi-free states

Recall from the previous chapter that a (mixed) state G on a bosonic Fock space F(H ) is

a a quasi-free state if Tr(GN ) <∞ and G satisfies Wick’s Theorem, namely

Tr(a#
1 ...a

#
2m−1G) = 0, ∀m ≥ 1

and

Tr(a#
1 ...a

#
2mG) =

∑
σ∈P2m

Tr(a#
σ(1)a

#
σ(2)G)...Tr(a#

σ(2m−1)a
#
σ(2m)G), ∀m ≥ 1.
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A simple but very useful observation is that Bogoliubov transformations leaves invariant the

set of quasi-free states.

Theorem. Let G be a (mixed) quasi-free state on a bosonic Fock space F(H ). Let U
be a Bogoliubov transformation on F(H ). Then U∗GU is a quasi-free state.

Proof. Recall the definition of the generalized creation/annihilation operator

A(f ⊕ Jg) = a(f) + a∗(g), ∀f, g ∈H .

Then Wick’s Theorem can be rewritten as

Tr(A(F1)...A(F2m−1)G) = 0,

and

Tr(A(F1)...A(F2m)G) =
∑
σ∈P2m

Tr
[
A(Fσ(1))A(Fσ(2))G

]
...Tr

[
A(Fσ(2m−1))A(Fσ(2m))G

]
for all m ≥ 1, for all vectors Fi ∈H ⊕H ∗ (why?).

On the other hand, the Bogoliubov transformation U acts as

UA(F )U∗ = A(VF ), ∀F ∈H ⊕H ∗

for some bounded linear operator V on H ⊕H ∗,

V =

(
U V

JV J JUJ∗

)
, V∗SV = VSV∗ = S =

 1 0

0 − 1

 , Tr(V V ∗) <∞.

Since U is a unitary operator, we have

Tr(A(F1)...A(Fn)U∗GU) = Tr(UA(F1)...A(Fn)U∗G) = Tr(A(VF1)...A(VFn)G)

for all n ≥ 1 and for all Fi ∈ H ⊕H ∗. Thus we see immediately that U∗GU also satisfies

Wick’s theorem. Finally,

Tr(NU∗GU) = Tr(UNU∗G) ≤ Tr(C(N + 1)G) <∞.
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q.e.d.

Exercise. Let U be a Bogoliubov transformation on a bosonic Fock space F(H ). Prove

that for every k ∈ N, there exists a constant C = C(k,U) such that we have the operator

inequality on Fock space

U∗(N + 1)kU ≤ C(N + 1)k.

Next, let us consider the relation between quasi-free states and their generalized one-body

density matrices. From the definition, it is obvious that any quasi-free state G is determined

completely by its generalized one-body density matrix

ΓG :=

(
γG αG

α∗G 1 + JγGJ
∗

)
.

Recall also that ΓG ≥ 0, α∗G = JαGJ and Tr γG <∞.

Now we are able to prove the full one-to-one correspondence between quasi-free states and

its generalized one-body density matrices.

Theorem. Consider a bounded linear operator on H ⊕H ∗

Γ :=

(
γ α

α∗ 1 + JγJ∗

)
≥ 0

with α∗ = JαJ and Tr γ <∞. Then there exists a unique (mixed) quasi-free state

G on the bosonic Fock space F(H ) such that Γ = ΓG, the generalized one-body density

matrix of G.

Proof. Step 1. We will apply the previous theorem to

A := Γ +
1

2
S =

(
γ + 1

2
α

α∗ 1
2

+ JγJ∗

)
.

We have JAJ = A. Moreover, recall that the condition Γ ≥ 0 is equivalent to

γ ≥ J∗α∗(1 + γ)−1αJ on H
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which in particular implies that

Tr(αα∗) ≤ (1 + ‖γ‖op) Tr(γ) <∞.

Also, A ≥ 0 since

Γ =

(
γ α

α∗ 1 + JγJ∗

)
≥ 0, Γ + S =

(
γ + 1 α

α∗ JγJ∗

)
= J ΓJ ≥ 0.

By a refined analysis, we can show that A ≥ ε0 > 0.

Exercise. Prove that there exists a constant ε0 > 0 such that A ≥ ε0 > 0.

Hint: Ker(A) = Ker(Γ) ∩Ker(Γ + S) = {0} and A− 1
2

is Hilbert-Schmidt.

Thus we can diagonalize A by a block operator V ∈ G , namely

V∗AV =

(
ξ 0

0 JξJ∗

)

with a self-adjoint operator ξ > 0 on H and

V =

(
U V

JV J JUJ∗

)
, V∗SV = VSV∗ = S, Tr(V V ∗) <∞.

Step 2. We have

V∗ΓV = V∗AV − 1

2
V∗SV = V∗AV − 1

2
S =

(
ξ′ 0

0 1 + Jξ′J∗

)

with ξ′ = ξ − 1
2
. Since Γ ≥ 0, we find that V∗ΓV ≥ 0, and hence ξ′ ≥ 0.

Let us show that ξ′ is trace class. In principle, we can compute ξ′ directly by expanding

V∗ΓV . However, here we represent another proof which is more useful later. We observe that

ΓS(Γ + S) =

(
γ α

α∗ 1 + JγJ∗

)(
1 0

0 −1

)(
1 + γ α

α∗ JγJ∗

)

=

(
γ(γ + 1)− αα∗ γα− αJγJ∗

α∗γ − JγJ∗α∗ α∗α− Jγ(γ + 1)J∗

)



6.5. CHARACTERIZATION OF QUASI-FREE STATES 169

is a trace class operator on H ⊕H ∗. Combining with

V∗ΓV =

(
ξ′ 0

0 1 + Jξ′J∗

)
, V∗(Γ + S)V = V∗ΓV + S =

(
1 + ξ′ 0

0 Jξ′J∗

)

we find that

V∗ΓS(Γ + S)V = V∗Γ(VSV∗)(Γ + S)V = (V∗ΓV)S(V∗(Γ + S)V)

=

(
ξ′ 0

0 1 + Jξ′J∗

)(
1 0

0 −1

)(
1 + ξ′ 0

0 Jξ′J∗

)

=

(
ξ′(1 + ξ′) 0

0 −Jξ′(1 + ξ′)J∗

)

is a trace class operator on H ⊕H ∗. Consequently, ξ′(1 + ξ′) is a trace class operator on

H , and hence ξ′ is a trace class operator on H .

Step 3. Let us show that there exists a (mixed) quasi-free state G′ on F(H ) whose gener-

alized one-body density matrix is

ΓG′ =

(
ξ′ 0

0 1 + Jξ′J∗

)
= V∗ΓV .

Simple case. Let us consider the case ξ′ > 0 for simplicity. Then we can define

h := log
(

1 + (ξ′)−1
)

by Spectral Theorem, namely if

ξ′ =
∑
n

λn|un〉〈un|, {un} an orthonormal basis, λ1 ≥ λ2 ≥ ... > 0,

then

h =
∑
n

log
(

1 + λ−1
n

)
|un〉〈un|.

Note that

Tr e−h = Tr
[(

1 + (ξ′)−1
)−1]

= Tr
[ ξ′

1 + ξ′

]
≤ Tr ξ′ <∞.
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Thus we can simply take G′ the Gaussian state

G′ := Z−1
0 e−dΓ(h) = Z−1

0 exp
[
−
∑
n

log
(

1 + λ−1
n

)
a∗(un)a(un)

]
, Z0 = Tr e−dΓ(h).

Recall from the computation for Gaussian states, we know that αG′ = 0 and

γG′ =
1

eh − 1
=

1

elog(1+(ξ′)−1) − 1
=

1(
1 + (ξ′)−1

)
− 1

= ξ′.

Thus the generalized one-body density matrix of the Gaussian state G′ is exactly

ΓG′ =

(
ξ′ 0

0 1 + Jξ′J∗

)
.

General case. It remains to consider the general case ξ′ ≥ 0. Again we write

ξ′ =
∑
n

λn|un〉〈un|, {un} an orthonormal basis, λ1 ≥ λ2 ≥ ... ≥ 0.

For any M ≥ 2, define

ξ′M :=
∑
n

(λn +M−n)|un〉〈un|.

Then ξ′M > 0 is a trace class operator on H . The corresponding Gaussian state

G′M := Z−1
M exp

[
− dΓ

(
log
(
1 + (ξ′M)−1

))]
= Z−1

M exp
[
−
∑
n

log
(

1 + (λn +M−n)−1
)
a∗(un)a(un)

]
has the one-body density matrix γG′M = ξ′M . Then we can check that

G′ := lim
M→∞

G′M

exists in trace class and it is a quasi-free state with

ΓG′ = lim
M→∞

ΓG′M =

(
ξ′ 0

0 1 + Jξ′J∗

)
.
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Exercise. Consider the Gaussian states G′M as above.

1. Prove that the partition function ZM converges to a limit Z0 ∈ (0,∞) as M →∞.

2. Prove that G′M → G′ strongly in trace class.

3. Prove that G′ is a quasi-free state and

G′ = Z−1
0 exp

[
−
∑
n∈I

log
(

1 + λ−1
n

)
a∗(un)a(un)

]
Π0

where I = {n : λn > 0} and Π0 is the orthogonal projection onto Ker
(∑

n/∈I a
∗(un)a(un)

)
.

Hint: You can use Monotone Convergence.

Step 4. We have constructed a quasi-free state G′ such that ΓG′ = V∗ΓV . Now we construct

a quasi-free state G such that ΓG = Γ.

Since V ∈ G , there exists a Bogoliubov transformation U such that

U∗A(F )U = A(VF ), ∀F ∈H ⊕H ∗.

Here recall that

A(f ⊕ Jg) = a(f) + a∗(g), ∀f, g ∈H .

We choose

G := U∗G′U.

Since G′ is a quasi-free state and Bogoliubov transformations leave invariant the set of quasi-

free states, G is also a quasi-free state. It remains to show that ΓG = Γ.

We have the following general fact.

Exercise. Let G′ be an arbitrary mixed state on the bosonic Fock space F(H ) with

Tr(NG′) < ∞. Let U be a Bogoliubov transformation and V the corresponding block

operator on H ⊕H ∗, namely

U∗A(F )U = A(VF ), ∀F ∈H ⊕H ∗.

Prove that V∗ΓGV = ΓG′ with G = U∗G′U.

Hint: You can use Tr
[
A∗(F1)A(F2)G

]
= 〈F2,ΓGF1〉, ∀F1, F2 ∈H ⊕H ∗.
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Thus we deduce that, with G = U∗G′U

V∗ΓGV = ΓG′ =

(
ξ′ 0

0 1 + Jξ′J∗

)
= V∗ΓV .

This implies that ΓG = Γ since V is invertible. q.e.d.

Finally, we turn to

Theorem (Pure quasi-free states). Any pure state G = |Ψ〉〈Ψ| on the bosonic Fock space

F(H ) is a quasi-free state if and only if Ψ = UΩ with a Bogolliubov transformation

U. Moreover, any bounded linear operator on H ⊕H ∗

Γ :=

(
γ α

α∗ 1 + JγJ∗

)
≥ 0, α∗ = JαJ, Tr γ <∞

is the generalized one-body density matrix of a pure quasi-free state if and only if

ΓSΓ = −Γ.

The latter condition is equivalent to γ(γ + 1) = αα∗ and γαJ = αJγ.

Proof. Step 1. Since |Ω〉〈Ω| is a (trivial) quasi-free state and any Bogoliubov transformation

U leaves invariant the set of quasi-free states, we know that |UΩ〉〈UΩ| is also a quasi-free

state (and it is a pure state).

The reverse direction is less trivial. Recall from the proof of the previous theorem, for any

(mixed) quasi-free state G we can find a Bogoliubov transformation U such that

U∗GU = Z−1
0 exp

[
−
∑
n∈I

(
1 + λ−1

n

)
a∗(un)a(un)

]
Π0

where {un}n is an orthonormal basis for H , I = {n : λn > 0}, and Π0 the orthogonal

projection onto Ker(
∑

n/∈I a
∗(un)a(un)). In particular, if G = |Ψ〉〈Ψ| is a pure state, then

U∗GU is also a pure state. In this case

U∗GU = (U∗GU)2 = Z−2
0 exp

[
−
∑
n∈I

2
(

1 + λ−1
n

)
a∗(un)a(un)

]
Π0.
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If I 6= ∅, then clearly

Z−1
0 exp

[
−
∑
n∈I

(
1 + λ−1

n

)
a∗(un)a(un)

]
, Z−2

0 exp
[
−
∑
n∈I

2
(

1 + λ−1
n

)
a∗(un)a(un)

]
are two different Gaussian states on the sub-Fock space

F(Span(un : n ∈ I))

and hence we get a contradiction. Thus if G = |Ψ〉〈Ψ| is a pure quasi-free state, then we must

have I = ∅. Thus U∗GU = Π0 with Π0 the orthogonal projection onto
⋂
n/∈I Ker(a∗(un)a(un)) =

Ker(N ), namely

U∗|Ψ〉〈Ψ| = U∗GU = Π0 = |Ω〉〈Ω|.

Equivalently,

|Ψ〉〈Ψ| = U|Ω〉〈Ω|U∗ = |UΩ〉〈UΩ|

which means that Ψ is equal to UΩ, up to a phase factor.

Step 2. Next, let us consider the generalized one-body density matrix. Recall from the proof

of the previous theorem, any bounded linear operator on H ⊕H ∗

Γ :=

(
γ α

α∗ 1 + JγJ∗

)
≥ 0, α∗ = JαJ, Tr γ <∞

is the generalized one-body density matrix of (mixed) quasi-free state G; more precisely,

there exists a Bogoliubov transformation U and a corresponding block operator V ∈ G , i.e.

U∗A(F )U = A(VF ), ∀F ∈H ⊕H ∗,

such that G = U∗G′U and

ΓG′ = V∗ΓV =

(
ξ′ 0

0 1 + Jξ′J∗

)

where ξ′ ≥ 0 is a trace class operator on H . Recall that as we argued before, the latter

formula of V∗ΓV implies that

V∗ΓS(Γ + S)V =

(
ξ′(1 + ξ′) 0

0 −Jξ′(1 + ξ′)J∗

)
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In particular, the fact that G is a pure quasi-free state is equivalent to G′ = |Ω〉〈Ω|, which

is equivalent to ξ′ = 0, and also equivalent to ΓS(Γ + S) = 0, namely ΓSΓ = −Γ. From the

explicit computation

ΓS(Γ + S) =

(
γ(γ + 1)− αα∗ γα− αJγJ∗

α∗γ − JγJ∗α∗ α∗α− Jγ(γ + 1)J∗

)

we see that ΓS(Γ + S) = 0 means two equalities

γ(γ + 1) = αα∗, γαJ = αJγ.

q.e.d.

6.6 Diagonalization of quadratic Hamiltonians

Definition. A quadratic Hamiltonian on the bosonic Fock space F(H ) is a linear

operator which is quadratic in terms of creation and annihilation operators

H = dΓ(h) +
1

2

∑
m,n≥1

(
〈um, kJun〉a∗(um)a∗(un) + 〈um, kJun〉a(um)a(un)

)
with a self-adjoint operator h : H →H and a linear operator k : H ∗ →H satisfying

k∗ = JkJ . Here {un} is an orthonormal basis for H .

Theorem (Diagonalization of quadratic Hamiltonians). Let h be self-adjoint on H ,

k : H ∗ →H be linear such that k∗ = JkJ and Tr(kk∗) <∞. Moreover,

A :=

(
h k

k∗ JhJ∗

)
≥ ε0 > 0 on H ⊕H ∗.

Then the followings hold true for the quadratic Hamiltonian H associated to h and k:

• H is well-defined on the core domain

⋃
M≥0

( M⊕
n=0

D(h)⊗sn
)
⊂ F(H ).
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Moreover, H is bounded from below

H ≥ −1

2
Tr(k∗h−1k)

and can be extended to be a self-adjoint operator on F(H ) by Friedrichs’ method.

• There exists a Bogoliubov transformation U on F(H ) and a self-adjoint operator

ξ > 0 on H such that

U∗HU = dΓ(ξ) + inf σ(H).

• The unique ground state of H (up to a phase factor) is the pure quasi-free state

UΩ and

inf σ(H) = Tr(hγUΩ) + <Tr(k∗αUΩ).

Proof. Step 1. First we prove that the quadratic form of H can be represented in terms of

the generalized one-body density matrices. In fact, for any “reasonable” state Ψ ∈ F(H )

we have

〈Ψ,HΨ〉 = Tr(hγΨ) + <Tr(k∗αΨ).

Recall the definition of one-body density matrices

〈g, γGf〉H = 〈Ψ, a∗(f)a(g)Ψ〉, 〈g, αΨJf〉 = 〈Ψ, a(f)a(g)Ψ〉.

We have, at least formally,

〈Ψ, dΓ(h)Ψ〉 =
∑
m,n≥1

〈um, hun〉〈Ψ, a∗(um)a(un)Ψ〉

=
∑
m,n≥1

〈um, hun〉〈un, γΨum〉 =
∑
n≥1

〈
un, γΨ

∑
m

〈um, hun〉um
〉

=
∑
n≥1

〈
un, γΨhun

〉
= Tr(γΨh) = Tr(hγΨ) (= Tr(γ

1/2
Ψ hγ

1/2
Ψ ))

and 〈
Ψ,
(1

2

∑
m,n≥1

(
〈um, kJun〉a∗(um)a∗(un) + 〈um, kJun〉a(um)a(un)

)
Ψ
〉

= <
∑
m,n≥1

〈um, kJun〉〈Ψ, a(um)a(un)Ψ〉 = <
∑
m,n≥1

〈um, kJun〉〈um, αΨJun〉
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= <
∑
n≥1

〈∑
m≥1

〈um, kJun〉um, αΨJun

〉
= <

∑
n≥1

〈
kJun, αΨJun

〉
= <

∑
n≥1

〈
Jun, k

∗αΨJun

〉
= Tr(k∗αΨ).

The above calculation can be made rigorous for example if Ψ belongs to the core domain

Q :=
⋃
M≥0

( M⊕
n=0

D(h)⊗sn
)
⊂ F(H ).

Indeed, if Tr(NG) <∞, then Tr(γΨ) <∞ and Tr(αΨα
∗
Ψ) <∞, and hence Tr(k∗αΨ) is finite,

while Tr(hγΨ) is well-defined (can be +∞, but always > −∞).

Step 2. Now we prove that H is bounded from below. Recall that from ΓΨ ≥ 0 we have

γΨ ≥ αΨJ(1 + γΨ)−1J∗α∗Ψ

By the same reasoning, from A ≥ 0 we find that

h ≥ kJh−1J∗k∗ = J∗k∗h−1kJ.

Using the cyclicity of the trace and the Cauchy-Schwarz inequality we can estimate

|Tr(k∗αΨ)| = |Tr((1 + γΨ)1/2J∗k∗h−1/2 · h1/2αΨJ(1 + γΨ)−1/2)|

≤ ‖(1 + γΨ)1/2J∗k∗h−1/2‖HS · ‖h1/2αΨJ(1 + γΨ)−1/2‖HS.

Since

‖(1 + γΨ)1/2J∗k∗h−1/2‖HS =

√
Tr
(

(1 + γΨ)1/2J∗k∗h−1kJ(1 + γΨ)1/2
)

=

√
Tr(k∗h−1k) + Tr

(
J∗k∗h−1kJγΨ

)
≤
√

Tr(k∗h−1k) + Tr
(
hγΨ

)
and

‖h1/2αΨJ(1 + γΨ)−1/2‖HS =

√
Tr
(
h1/2αΨJ(1 + γΨ)−1J∗α∗Ψh

1/2
)
≤
√

Tr
(
hγΨ

)
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we find that

|Tr(k∗αΨ)| ≤
√

Tr(h1/2γΨh1/2) ·
√

Tr(kh−1k∗) + Tr(h1/2γΨh1/2)

≤ Tr(h1/2γΨh
1/2) +

1

2
Tr(kh−1k∗).

Here in the last estimate we have used the elementary inequality

√
x(x+ y) =

√
(x+ y/2)2 − y2/4 ≤ x+ y/2, ∀x, y ∈ [0,∞).

Combining with Step 1, we conclude that for any Ψ ∈ Q,

〈Ψ,HΨ〉 = Tr(hγΨ) + <Tr(k∗αΨ) ≥ −1

2
Tr(kh−1k∗).

Thus H is bounded from below and it can be extended to be a self-adjoint operator by

Friedrichs’ method. The extension, still denoted by H, satisfies

H ≥ −1

2
Tr(kh−1k∗).

Step 3. Finally we prove that H can be diagonalized by a Bogoliubov transformation.

Finite dimensional case. To make the argument transparent, let us first consider the case

when H is finite dimensional. Using the calculation in Step 1, we can connect the quadratic

Hamiltonian H on F(H ) and the block operator A on H ⊕H ∗ as follows:

〈Ψ,HΨ〉 = Tr(hγΨ) + <Tr(k∗αΨ) =
1

2
Tr

[(
h k

k∗ JhJ∗

)(
γΨ αΨ

α∗Ψ JγΨJ
∗

)]

=
1

2
Tr(AΓΨ)− 1

2
Trh.

By the assumptions on A, we know that there exists a block operator V ∈ G which diago-

nalizes A, namely

VAV∗ =

(
ξ 0

0 JξJ∗

)
for some self-adjoint operator ξ > 0 on H . Now let U be the corresponding Bogoliubov

transformation, namely

U∗A(F )U = A(VF ), ∀F ∈H ⊕H ∗.
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Then recall from a previous exercise that

ΓUΨ = V∗ΓΨV .

Thus for any pure state Ψ ∈ F(H ) we have

〈Ψ,U∗HUΨ〉 = 〈UΨ,HUΨ〉 =
1

2
Tr(AΓUΨ)− 1

2
Trh

=
1

2
Tr(AV∗ΓΨV)− 1

2
Trh =

1

2
Tr(VAV∗ΓΨ)− 1

2
Trh

=
1

2
Tr

[(
ξ 0

0 JξJ∗

)(
γΨ αΨ

α∗Ψ 1 + JγΨJ
∗

)]
− 1

2
Trh

= Tr(ξγΨ) +
1

2
Tr(ξ)− 1

2
Tr(h)

= 〈Ψ, dΓ(ξ)Ψ〉+
1

2
Tr(ξ − h).

This means that U diagonalizes H, namely

U∗HU = dΓ(ξ) +
1

2
Tr(ξ − h).

Note that dΓ(ξ) ≥ 0, with 0 is the lowest eigenvalue with Ω the unique eigenvector. Therefore,

H has the unique ground state UΩ, with the ground state energy inf σ(H) = 1
2

Tr(ξ − h).

General case. The proof in the general case follows a similar strategy, except that we

cannot write Tr(ξ)− Tr(h) since ξ and h can be not trace class separately.

As in above, let V ∈ G be the block operator diagonalizing A:

VAV∗ =

(
ξ 0

0 JξJ∗

)

for some self-adjoint operator ξ > 0 on H . To proceed in the infinite dimensional case, we

need

Lemma. If V ∈ G and VAV∗ is block diagonal, then

V∗
(

0 0

0 1

)
V =

(
X Y

Y ∗ 1 + JXJ∗

)
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where X ≥ 0 with X1/2hX1/2 a trace class operator on H and Tr(Y Y ∗) <∞.

Let U be the corresponding Bogoliubov transformation, namely

U∗A(F )U = A(VF ), ∀F ∈H ⊕H .

Then for any state Ψ ∈ F(H ) we can write

ΓUΨ = V∗ΓΨV = V∗
(
γΨ αΨ

α∗Ψ 1 + JγΨJ
∗

)
V = V∗

(
γΨ αΨ

α∗Ψ JγΨJ
∗

)
V +

(
X Y

Y ∗ 1 + JXJ∗

)
.

Consequently,(
γUΨ αUΨ

α∗UΨ JγUΨJ
∗

)
= V∗

(
γΨ α∗Ψ

αΨ JγΨJ
∗

)
V +

(
X Y

Y ∗ JXJ∗

)
.

Therefore, combining with the computation in Step 1, we have

〈Ψ,U∗HUΨ〉 = 〈UΨ,HUΨ〉 = Tr(hγUΨ) + <Tr(k∗αUΨ) =
1

2
Tr

[
A

(
γUΨ αUΨ

α∗UΨ JγUΨJ
∗

)]

=
1

2
Tr

[
AV∗

(
γΨ αΨ

α∗Ψ JγΨJ
∗

)
V

]
+

1

2
Tr

[
A

(
X Y

Y ∗ JXJ∗

)]

=
1

2
Tr

[(
ξ 0

0 JξJ∗

)(
γΨ αΨ

α∗Ψ JγΨJ
∗

)]
+

1

2
Tr

[(
h k

k∗ JhJ∗

)(
X Y

Y ∗ JXJ∗

)]
= Tr(ξγΨ) + Tr(hX) + <Tr(k∗Y )

= 〈Ψ, dΓ(ξ)Ψ〉+ Tr(hX) + <Tr(k∗Y ).

Thus

U∗HU = dΓ(ξ) + Tr(hX) + <Tr(k∗Y ).

Here note that γUΩ = X and αUΩ = Y . Thus we obtain the desired conclusion. q.e.d.

It remains to prove the above technical lemma.

Proof of the lemma. Let U : H →H and V : H ∗ →H be the block components of V .

Then we can write

V∗
(

0 0

0 1

)
V =

(
U∗ J∗V ∗J∗

V ∗ JU∗J∗

)(
0 0

0 1

)(
U V

JV J JUJ∗

)
=

(
X Y

Y ∗ 1 + JXJ∗

)
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where

X = J∗V ∗V J ≥ 0, Y = J∗V ∗UJ∗.

Thanks to Shale’s condition Tr(V V ∗) <∞ we obtain immediately

Tr(X) <∞, Tr(Y Y ∗) <∞.

Now we prove that Tr(X1/2hX1/2) <∞, using the additional information that VAV∗ is block

diagonal. By a straightforward computation of the off-diagonal term of

VAV∗ =

(
U V

JV J JUJ∗

)(
h k

k∗ JhJ∗

)(
U∗ J∗V ∗J∗

V ∗ JU∗J∗

)

we find that

UhJ∗V ∗ + UkJU∗ + V k∗J∗V ∗ + V JhU∗ = 0.

Recall from the proof of the existence of Bogoliubov transformations, we can find orthonormal

bases {ui}i≥1, {fi}i≥1 for H and λi ≥ 0 such that

U∗ui = cosh(λi)fi, J∗V ∗ui = sinh(λi)fi, ∀i ≥ 1.

(If we change V 7→ V∗, then (U, V J) 7→ (U∗, J∗V ∗)). Consequently,

0 = 〈ui, (UhJ∗V ∗ + UkJU∗ + V k∗J∗V ∗ + V JhU∗)ui〉

= 2 cosh(λi) sinh(λi)〈fi, hfi〉+ cosh(λi)
2〈fi, kJfi〉+ sinh(λi)

2〈fi, J∗k∗fi〉

and hence

2 cosh(λi) sinh(λi)〈fi, hfi〉 = −(cosh(λi)
2 + sinh(λi)

2)〈fi, kJfi〉, ∀i ≥ 1.

On the other hand, since {ui} are eigenfunctions of UU∗, {fi} are eigenfunctions of U∗U :

U∗Ufi =
U∗UU∗fi
‖U∗ui‖

=
U∗ui‖U∗ui‖2

‖U∗ui‖
= fi‖U∗ui‖2 = cosh(λi)

2fi, ∀i ≥ 1.

Combining with U∗U = 1 + J∗V ∗V J = 1 +X we find that

Xfi = (cosh(λi)
2 − 1)fi = sinh(λi)

2fi, ∀i ≥ 1.
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Consequently, from the above computations and the Cauchy-Schwarz inequality we have

Tr(X1/2hX1/2) =
∑
i≥1

〈fi, X1/2hX1/2fi〉 =
∑
i≥1

sinh(λi)
2〈fi, hfi〉

= −
∑
i≥1

sinh(λi)

2 cosh(λi)
(cosh(λi)

2 + sinh(λi)
2)〈fi, kJfi〉

≤
[∑
i≥1

( sinh(λi)

2 cosh(λi)
(cosh(λi)

2 + sinh(λi)
2)
)2]1/2[∑

i≥1

|〈fi, kJfi〉|2
]1/2

≤
[∑
i≥1

sinh(λi)
2 sup

j
(1 + 2 sinh(λj)

2)2
]1/2[∑

i≥1

‖kJfi‖2
]1/2

≤
[

Tr(V V ∗)(1 + 2 Tr(V V ∗))2
]1/2[

Tr(kk∗)
]1/2

<∞.

Thus X1/2hX1/2 is trace class. This completes the proof of the lemma. q.e.d.



Chapter 7

Validity of Bogoliubov approximation

In this chapter we will rigorously justify Bogoliubov’s approximation for weakly interacting

Bose gases. We focus on the mean-field regime where the system contains N identical

bosons in Rd, described by the Hamilttonian

HN =
N∑
i=1

(−∆xi + V (xi)) +
1

N − 1

∑
1≤i<j≤N

w(xi − xj)

acting on L2(Rd)⊗sN . Let us think of the simple situation with

• Trapping potential: V ∈ L∞loc(Rd,R), lim|x|→∞ V (x) = +∞;

• Positive-type bounded interaction: 0 ≤ ŵ ∈ L1(Rd).

(More general conditions will be discussed later.) Then we know that there exists a unique

Hartree minimizer u0 ≥ 0 and there is the complete Bose-Einstein condensation, namely

• The ground state energy of HN is given by the Hartree energy to the leading order

EN = NeH +O(1)

where

eH := inf
‖u‖

L2(Rd)=1

(∫
|∇u(x)|2dx+

∫
V (x)|u(x)|2dx+

1

2

∫∫
|u(x)|2|u(y)|2w(x−y)dxdy

)
.

• The approximate ground states 〈ΨN , HNΨN ≤ NeH +O(1) safisfies

〈u0, γ
(1)
ΨN
u0〉 = N +O(1).

182
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In this chapter, we will prove that

EN = NeH + eBog + o(1)

where eBog is the ground state energy of a quadratic Hamiltonian HBog on Fock space

which is predicted by Bogoliubov’s approximation. More generally, we will show that the

n-th eigenvalue of HN is

µn(HN) = NeH + µn(HBog) + o(1), ∀n = 1, 2, ...

We also obtain the convergence of the eigenstates for HN in terms of the Hartree minimizer

u0 (the condensate) and the eigenstates of HBog (excited particles).

These results were first proved by Seiringer (2010) for the homogeneous gas and by Grech-

Seiringer (2013) for trapped gases (the setting we consider here). We will follow the approach

by Lewin-N-Serfaty-Solovej (CPAM 2015), with some simplifications.

7.1 Bogoliubov Hamiltonian

Bogoliubov’s theory suggests that the excited particles (particles outside of the condensation)

are described by the quadratic Hamiltonian

HBog =
∑
m,n≥1

〈um, (h+K)un〉a∗man +
1

2

∑
m,n≥1

(
〈um, KJun〉a∗ma∗n + h.c.

)
where

• {un}∞n=0 is an orthonormal basis for H = L2(Rd); given u0 ≥ 0 we can take all un’s of

real-valued functions;

• h is the mean-field operator associated to the Hartree equation

h = −∆ + V + |u0|2 ∗ w − µ, hu0 = 0;

Recall that h ≥ 0 and u0 is the unique ground state for h on H . Moreover, the condition

V (x)→ +∞ as |x| → ∞ ensures that h has compact resolvent. In particular, we have

the spectral gap

h ≥ ε0 > 0 on H+ := {u0}⊥.

https://arxiv.org/abs/1211.2778
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• K : H →H is a linear operator with kernel

K(x, y) = u0(x)u0(y)w(x− y).

The condition ŵ ≥ 0 implies that K is a positive operator on H (why?).

Note that we will think of HBog as an operator on the excited Fock space

F(H+) = C⊕H+ ⊕H ⊗s2
+ ⊕ ..., H+ = {u0}⊥ = QH , Q = 1− |u0〉〈u0|.

Theorem. The Bogoliubov Hamiltonian HBog on the excited Fock space F(H+) is a

self-adjoint operator with the same quadratic form domain of dΓ(h)|F(H+). Moreover,

• There exist a Bogoliubov transformation U on F(H+) and a self-adjoint operator

ξ > 0 on H+ with compact resolvent such that

U∗HBogU = dΓ(ξ) + eBog.

• The ground state energy is finite

eBog := inf σ(HBog) ∈ (−∞, 0].

Moreover, HBog has a unique ground state UΩ (up to a complex phase). This

ground state is a pure quasi-free state on F(H+).

• HBog has compact resolvent and its spectrum is

σ(HBog) =
{
eBog +

∞∑
i=1

niei | ei ∈ σ(ξ), ni = 0, 1, 2, ...
}
.

Remark: The ground state energy eBog is always negative (< 0) except the non-interacting

case (w = 0).

Proof. First, let us rewrite the Bogoliubov Hamiltonian in a form compatible to the previous

chapter. It is convenient to restrict the relevant operators h,K to the subspace H+. Since

hu0 = 0, h leaves invariant H+ and we will still denote by h the restriction to H+. Recall

that

inf σ(h|H+) > 0,
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Moreover, using Q = 1− |u0〉〈u0| we define K1 : H+ →H+ and K2 : H ∗
+ →H+ by

K1 := QKQ, K2 = QKJQJ∗.

HBog =
∑
m,n≥1

〈um, (h+K1)un〉a∗man +
1

2

∑
m,n≥1

(
〈um, K2Jun〉a∗ma∗n + h.c.

)
Then K∗1 = K1, K∗2 = JK2J

∗ and both K1, K2 are Hilbert-Schmidt operators. Using the

positivity of ŵ, we can deduce that K1 ≥ 0, and hence h + K1 > 0. Moreover, we have the

positivity of the block operator on H+ ⊕H ∗
+ .

Exercise. Prove the operator inequality on H+ ⊕H ∗
+

A :=

(
h+K1 K2

K∗2 J(h+K1)J∗

)
≥ inf σ(h) > 0.

Thus by the results in the previous chapter, we can find a block operator V ∈ G and a

self-adjoint operator ξ on H+ such that

VAV∗ =

(
ξ 0

0 JξJ∗

)
.

Moreover, the corresponding Bogoliubov transformation U diagonalizes HBog on F(H+):

U∗HU = dΓ(ξ) + eBog.

In particular, HBog can be defined as a self-adjoint operator on F(H+) and it is bounded

from below:

eBog = inf σ(HBog) ≥ −1

2
TrH+(K∗2(h+K1)−1K2) > −∞.

Since h has compact resolvent, ξ also has compact resolvent. So it has eigenvalues 0 < e1 ≤
e2 ≤ ... and limn→∞ en = +∞. The spectrum of HBog is

σ(HBog) = eBog + σ(dΓ(ξ)) =
{
eBog +

∑
i

niei |ni = 0, 1, 2, ...
}
.

q.e.d.
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7.2 Unitary implementing c-number substitution

Heuristically, the Bogoliubov approximation can be interpreted as

HN −NeH ≈ HBog.

However, this formulation is a bit formal since the operators HN − EN and HBog live in

different Hilbert space. This incompatibility comes from the c-number substitution which

replace a0, a
∗
0 (which does not preserve the particle number) by

√
N0 (which preserves the

particle number).

To resolve this problem, we an operator UN from the N-body Hilbert space H ⊗sN to the

excited Fock space F(H+). We start with a useful observation

F(H ) = F(PH ⊕QH ) ∼= F(PH )⊗F(QH ).

with P = |u0〉〈u0|, Q = 1 − P . Consequently, for any wave function Ψ ∈ H ⊗sN , we can

write uniquely as

Ψ := ϕ0 u
⊗N
0 + u

⊗(N−1)
0 ⊗s ϕ1 + u

⊗(N−2)
0 ⊗s ϕ2 + · · ·+ ϕN

where ϕk ∈H ⊗ks
+ . To be precise, we have

Definition. Let u0 be a normalized vector in a Hilbert space H . Let H+ = {u0}⊥ ⊂H

and a0 = a(u0). We define the operator UN = UN(u0),

UN : H ⊗sN → F≤N(H+) = C⊕H+ ⊕H ⊗s2
+ ⊕ · · · ⊕H ⊗sN

+

by

UNΨ =
N⊕
j=0

Q⊗j
( aN−j0√

(N − j)!
Ψ
)
.
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Theorem. The operator UN : H ⊗sN → F≤N(H+) is a unitary operator with

U∗N : F≤N(H+)→H ⊗sN , U∗N

( N⊕
j=0

ϕj

)
=

N∑
j=0

(a∗0)N−j√
(N − j)!

ϕj

Moreover, we have the operator identities on F≤N(H+) for all m,n 6= 0

UNa
∗
0a0U

∗
N = N −N+, UNa

∗
manU

∗
N = a∗man,

UNa
∗
0anU

∗
N =

√
N −N+ an, UNa

∗
na0U

∗
N = a∗n

√
N −N+

where an = a(un) and um, un ∈H+ when m,n 6= 0.

Remarks:

• The number operator N+ on F(H+) = F(QH+) is equal to N|F(H+), the restriction

of the number operator N = dΓ(1) on F(H ) to the subspace F(H+) ⊂ F(H ). We

have the operator identities on F(H ):

N+ = dΓ(Q) = N − a∗(u0)a(u0).

For any wave function ΨN ∈H ⊗sN , we have

〈u0, γ
(1)
ΨN
u0〉 = 〈ΨN , a

∗(u0)a(u0)ΨN〉 = N − 〈ΨN ,N+ΨN〉.

Therefore, the Bose-Einstein condensation 〈u0, γ
(1)
ΨN
u0〉 = N + o(N) is equivalent to

〈ΨN ,N+ΨN〉 � N.

• Roughly speaking, the transformation UN(·)U∗N replaces a(u0), a∗(u0) by
√
N −N+.

Thanks to the Bose-Einstein condensation, we can think of the operator
√
N −N+

as the scalar number
√
N . Thus the unitary operator UN provides a rigorous way to

formulate the c-number substitution in Bogoliubov’s argument.

• Recall that the Weyl operator

W := W (
√
Nu0) = exp

(√
N(a∗0 − a0)

)



188 CHAPTER 7. VALIDITY OF BOGOLIUBOV APPROXIMATION

satisfies

W ∗a0W = a0 +
√
N, W ∗a∗0W = a∗0 +

√
N, W ∗anW = an, n 6= 0.

Thus UN looks similar to the Weyl operator. However, while the Weyl operator is de-

fined on the full Fock space F(H ), the operator UN is more appropriate to work on the

N-particle space H ⊗sN . Unlike the Weyl operator, we can only write UNa
∗(f)a(g)U∗N

but it suffices for applications (UNa(f)U∗N makes no sense).

• By definition U∗N : F≤N(H+)→H ⊗sN . However, we can extend U∗N to the full excited

Fock space F≤N(H+) by setting 0 outside F≤N(H+). This extension makes UN a

partial isometry from H ⊗sN to F≤N(H+).

Proof of the theorem. Part I. We will prove that

U∗N : F≤N(H+)→H ⊗sN , U∗N

( N⊕
j=0

ϕj

)
=

N∑
j=0

(a∗0)N−j√
(N − j)!

ϕj

is a unitary operator with the inverse equal to UN .

Step 1. We prove that U∗N is a surjection, namely U∗NF≤N(H+) = H ⊗sN . Let {un}∞n=0 be

an orthonormal basis for H and denote an = a(un). Recall that F(H ) has an orthonormal

basis

(n0!n1!...)−1/2(a∗0)n0(a∗1)n1 ...Ω, ni = 0, 1, 2, ...

In particular, H ⊗sN has an orthonormal basis

(n0!n1!...)−1/2(a∗0)n0(a∗1)n1 ...Ω, ni = 0, 1, 2, ...,
∞∑
i=0

ni = N.

By the definition, U∗NF≤N(H+) contains all these basis vectors, so U∗NF≤N(H+) = H ⊗sN .

Step 2. We prove that ‖U∗NΦ‖ = ‖Φ‖ for any Φ = (ϕn)∞n=0 ∈ F≤N(H+). By the definition,

Ψ := U∗NΦ =
N∑
j=0

(a∗0)N−j√
(N − j)!

ϕj.

Since ϕj ∈ H ⊗sj
+ ⊂ H ⊗sj, the vector (a∗0)N−jϕj belongs to H ⊗sN . Thus Ψ ∈ H ⊗sN .
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Moreover, note that a0ϕj = 0, and hence

am0 (a∗0)nϕj = 0, if m > n.

Thus the vectors {(a∗0)N−jϕj}Nj=0 are orthogonal. Moreover,

‖(a∗0)nϕj‖2 = 〈(a∗0)n−1ϕj, (a0a
∗
0)(a∗0)n−1ϕj〉

= 〈(a∗0)n−1ϕj, (1 + a∗0a0)(a∗0)n−1ϕj〉

= 〈(a∗0)n−1ϕj, n(a∗0)n−1ϕj〉

= n‖(a∗0)n−1ϕj‖2 = ... = n!‖ϕj‖2.

Consequently,

‖Ψ‖2 =
N∑
j=0

∥∥∥∥∥ (a∗0)N−j√
(N − j)!

ϕj

∥∥∥∥∥
2

=
N∑
j=0

‖ϕj‖2.

Thus ‖U∗NΦ‖ = ‖Φ‖ for any Φ ∈ F≤N(H+). Thus U∗N is a unitary operator from F≤N(H+)

to H ⊗sN

Step 3. We prove that the inverse of U∗N is exactly equal to UN , namely if

Ψ := U∗NΦ =
N∑
j=0

(a∗0)N−j√
(N − j)!

ϕj

then

Q⊗i
( aN−i0√

(N − i)!
Ψ
)

= ϕi, ∀i = 0, 1, 2, ..., N.

We have

Q⊗i
( aN−i0√

(N − i)!
Ψ
)

=
N∑
j=0

Q⊗i√
(N − i)!

√
(N − j)!

aN−i0 (a∗0)N−jϕj.

If i < j, then N − i > N − j, then aN−i0 (a∗0)N−jϕj = 0 because a0ϕj = 0. If i > j, then

N−i < N−j, then aN−i0 (a∗0)N−jϕj is proportional to (a∗0)i−jϕj ∈H ⊗si, but Q⊗i(a∗0)i−jϕj = 0

because Qu0 = 0. Thus

Q⊗i
( aN−i0√

(N − i)!
Ψ
)

=
Q⊗i

(N − i)!
aN−i0 (a∗0)N−iϕi = ϕi.

Thus UN : H ⊗sN → F≤N(H ) defined before is the inverse of U∗N .
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Part II. Now we consider the action of UN(·)U∗N . Let Φ = (ϕj)
∞
j=0 ∈ F≤N(H+). Note that

for any f, g ∈ H+, a∗(f)a(g) does not change the total particle number, and more precisely

it does not change the particle number in u0 mode as well as the particle number in H+.

Therefore,〈
Φ, UNa

∗(f)a(g)U∗NΦ
〉

=
〈
U∗NΦ, a∗(f)a(g)U∗NΦ

〉
=

〈
N∑
i=0

(a∗0)N−i√
(N − i)!

ϕi, a
∗(f)a(g)

N∑
j=0

(a∗0)N−j√
(N − j)!

ϕj

〉

=
N∑
j=0

〈
(a∗0)N−j√
(N − j)!

ϕj, a
∗(f)a(g)

(a∗0)N−j√
(N − j)!

ϕj

〉

=
N∑
j=0

〈
ϕj, a

∗(f)a(g)
aN−j0 (a∗0)N−j

(N − j)!
ϕj

〉

=
N∑
j=0

〈ϕj, a∗(f)a(g)ϕj〉 =
〈

Φ, a∗(f)a(g)Φ
〉
.

By a similar computation, we also get〈
Φ′, UNa

∗(f)a(g)U∗NΦ
〉

=
〈

Φ′, a∗(f)a(g)Φ
〉
, ∀Φ,Φ′ ∈ F≤N(H+).

Thus we have the operator identity in F≤N(H+)

UNa
∗(f)a(g)U∗N = a∗(f)a(g), ∀f, g ∈H+.

Consequently, if we take an orthonormal basis {un}∞n=0 for H and denote an = a(un), then

UNN+U
∗
N = UN

( ∞∑
n≥1

a∗nan

)
U∗N = N+

which is equivalent to

UNa
∗
0a0U

∗
N = UN(N −N+)U∗N = N −N+.

The remaining identity is left as an exercise. q.e.d.
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Exercise. Prove that for any f ∈H+ we have the operator identity on F≤N(H+)

UNa
∗
0a(f)U∗N =

√
N −N+a(f).

7.3 Transformed operator

Given the operator UN , we can replace the heuristic approximation

HN −NeH ≈ HBog.

by a better one

UN(HN −NeH)U∗N ≈ HBog

with two operators living in the same Hilbert space F(H+).

Let {un}∞n=0 be an orthonormal basis for H and denote an = a(un). We have the second

quantization form

HN =
∑
m,n≥0

Tmna
∗
man +

1

2(N − 1)

∑
m,n,p,q≥0

Wmnpqa
∗
ma
∗
napaq

where

Tmn = 〈um, (−∆ + V )un〉, Wmnpq =

∫∫
um(x)un(y)w(x− y)up(x)uq(y)dxdy.

Then from the above action of UN , it is straightforward to compute UN(HN −NeH)U∗N

Lemma (Transformed Hamiltonian). We have the operator identity on the truncated

Fock space F≤N(H+)

UN(HN −NeH)U∗N =
4∑
j=0

Aj

where

A0 =
1

2
W0000

N+(N+ − 1)

N − 1
,
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A1 =
∑
n≥1

(
T0n +W000n

N −N+ − 1

N − 1

)√
N −N+an + h.c.,

A2 =
∑
m,n≥1

〈um, (h+K)un〉 a∗man +
∑
m,n≥1

〈
um,

(
|u0|2 ∗ w +K

)
un
〉
a∗man

1−N+

N − 1

+
1

2

∑
m,n≥1

(
〈um, KJun〉a∗na∗m

√
(N −N+)(N −N+ − 1)

N − 1
+ h.c.

)
,

A3 =
1

N − 1

∑
m,n,p≥1

Wmnp0a
∗
ma
∗
nap
√
N −N+ + h.c.,

A4 =
1

2(N − 1)

∑
m,n,p,q≥1

Wmnpqa
∗
ma
∗
napaq.

This looks complicated, but if we formally take N → ∞, then we see immediately that all

A0, A1, A3, A4 are small (o(1)), while A2 converges to the Bogoliubov transformation HBog.

This will be justified rigorously later.

Proof of the theorem. The computation is tedious but straightforward, using the second

quantization form and the action of UN in the previous theorem.

For the kinetic terms:

• T00UNa
∗
0a0U

∗
N = T00(N −N+). The constant T00N is part of the Hartree energy NeH.

Recall that

eH = 〈u0, (−∆ + V )u0〉+
1

2

∫∫
|u0(x)|2w(x− y)|u0(y)|2dxdy = T00 +

1

2
W0000.

The other part −T00N+ contributes to −µN+ in the first term the first term dΓ(h) of

A2. Recall that

h = −∆ + V + |u0|2 ∗ w − µ

with

µ = 〈u0, (−∆ + V )u0〉+

∫∫
|u0(x)|2w(x− y)|u0(y)|2dxdy = T00 +W0000.

• T0nUNa
∗
0anU

∗
N = T0n

√
N −N+an with n ≥ 1. This term and its adjoint are part of A1.

• TmnUNa
∗
manU

∗
N = Tmna

∗
man with m,n ≥ 1. This contributes to dΓ(h) of A2.
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For the interaction terms we have to use the CCR to rearrange creation/annihilation operators

before applying the action of UN (as we can only make sense for UNa
∗(f)a(g)U∗N . Note that

we always have the factor (2(N − 1))−1Wmnpq.

• UNa
∗
0a
∗
0a0a0U

∗
N = UNa

∗
0a0(a∗0a0 − 1)U∗N = (N −N+)(N − 1−N+). The constant

1

2(N − 1)
W0000N(N − 1) =

N

2
W0000

is part of the Hartree energy NeH. The term

1

2(N − 1)
W0000(−2N − 2)N+ = −W0000N+

contributes to −µN+ in the first term dΓ(h) of A2. The rest is A0.

• UNa
∗
0a
∗
0a0anU

∗
N = UNa

∗
0(a0a

∗
0 − 1)anU

∗
N = (N − N+)

√
N −N+an −

√
N −N+an =

(N − N+ − 1)
√
N −N+an with n ≥ 1. Combining with the same contribution from

UNa
∗
0a
∗
0ana0U

∗
N , we obtain

2× 1

2(N − 1)

∑
n≥1

W000n(N −N+ − 1)
√
N −N+an.

This term and its adjoints are part of A1.

• UNa
∗
0a
∗
ma0anU

∗
N = UNa

∗
0a0a

∗
manU

∗
N = (N − N+)a∗man with m,n ≥ 1. Combining with

the same contribution from UNa
∗
ma
∗
0ana0U

∗
N we obtain

2× 1

2(N − 1)

∑
m,n≥1

W0m0n(N −N+)a∗man =
∑
m,n≥1

〈um, (|u0|2 ∗ w)un〉
N −N+

N − 1
a∗man

which is part of A2.

• UNa
∗
0a
∗
mana0U

∗
N and UNa

∗
ma
∗
0a0anU

∗
N are also equal to (N − N+)a∗man with m,n ≥ 1,

but they give

2× 1

2(N − 1)

∑
m,n≥1

W0mn0(N −N+)a∗man =
∑
m,n≥1

〈um, Kun〉
N −N+

N − 1
a∗man

which is another part of A2.

• UNa
∗
ma
∗
na0a0U

∗
N = UN(a∗ma0)(a∗na0)U∗N = a∗m

√
N −N+a

∗
n

√
N −N+
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= a∗ma
∗
n

√
N −N+

√
N −N+ − 1 with m,n ≥ 1. This gives

1

2(N − 1)

∑
m,n≥1

Wmn00a
∗
ma
∗
n

√
N −N+

√
N −N+ − 1

=
∑
m,n≥1

1

2
〈um, KJun〉a∗ma∗n

√
(N −N+)(N −N+ − 1)

N − 1
.

This term and its adjoint give us the last part of A2.

• UNa
∗
ma
∗
napa0U

∗
N = UNa

∗
m(apa

∗
n − δn=p)a0U

∗
N = UNa

∗
mapa

∗
na0U

∗
N − δn=pUNa

∗
ma0U

∗
N =

a∗mapa
∗
n

√
N −N+−δn=pa

∗
m

√
N −N+ = a∗ma

∗
nap
√
N −N+ with m,n, p ≥ 1. Combining

with the same contribution from UNa
∗
ma
∗
na0apU

∗
N we obtain

2× 1

2(N − 1)

∑
m,n,p≥1

Wmnp0a
∗
ma
∗
nap
√
N −N+.

This term and its adjoint give us A3.

• UNa
∗
ma
∗
napaqU

∗
N = UNa

∗
m(apa

∗
n − δn=p)aqU

∗
N = UNa

∗
mapa

∗
naqU

∗
N − δn=pUNa

∗
maqU

∗
N =

a∗mapa
∗
naq − δn=pa

∗
maq = a∗ma

∗
napaq with m,n, p, q ≥ 1. We obtain

1

2(N − 1)

∑
m,n,p,q≥1

Wmnpqa
∗
ma
∗
napaq

which gives us A4.

This completes the computation of UN(HN −NeH)U∗N . q.e.d.

7.4 Operator bounds on truncated Fock space

Now we compare the transformed operator UN(HN −NeH)U∗N and the Bogoliubov Hamilto-

nian HBog.

Lemma. Let 1≤N := 1(N+ ≤ N). Then

±1≤N
(
UN(HN −NeH)U∗N −HBog

)
1≤N ≤ C(N−1/2N 2

+ +N−1).

Note that HBog acts on F(H+), so the particle number cut-off 1≤N := 1(N+ ≤ N). is

necessary to project it to the truncated Fock space F≤N(H+). Putting differently, the bound
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in the lemma is equivalent to

〈Φ,
(
UN(HN −NeH)U∗N −HBog

)
Φ〉 ≤ C〈Φ, (N−1/2N 2

+ +N−1)Φ〉, ∀Φ ∈ F≤N(H+).

Proof. For simplicity of notation we will often not write the projection 1≤N and think of

quadratic form estimates on F≤N(H+) instead. From the previous computation, we have

UN(HN −NeH)U∗N =
4∑
j=0

Aj.

We will estimate term by term.

Estimate A0. We have

0 ≤ A0 =
1

2
W0000

N+(N+ − 1)

N − 1
≤ C
N 2

+

N
.

Estimate A1. Using Hartree equation hu0 = 0 we have

0 = 〈hu0, un〉 = 〈u0, (−∆ + V + |u0|2 ∗ w − µ)un〉 = T0n +W000n.

Therefore,

A1 =
∑
n≥1

(
T0n +W000n

N −N+ − 1

N − 1

)√
N −N+an + h.c.

= −
∑
n≥1

W000n
N+

N − 1

√
N −N+an + h.c.

By the Cauchy-Schwarz inequality,

± A1 ≤
∑
n≥1

(
ε−1|W000n|2

( N+

N − 1

)
(N −N+)

( N+

N − 1

)
+ εa∗nan

)
≤ Cε−1N 2

+(N −N+)

(N − 1)2
+ εN+ ≤ Cε−1N 2

+

N
+ εN+, ∀ε > 0.

Here we have used

∑
n≥1

|W000n|2 =
∑
n≥1

|〈u0, Kun〉|2 ≤ ‖K‖2
HS <∞.
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Choosing ε = N−1/2 we obtain

±A1 ≤ CN−1/2N 2
+.

Estimate A2. We have

A2 =
∑
m,n≥1

〈um, (h+K)un〉 a∗man +
∑
m,n≥1

〈
um,

(
|u0|2 ∗ w +K

)
un
〉
a∗man

1−N+

N − 1

+
1

2

∑
m,n≥1

(
〈um, KJun〉a∗ma∗n

√
(N −N+)(N −N+ − 1)

N − 1
+ h.c.

)
= HBog +

∑
m,n≥1

〈
um,

(
|u0|2 ∗ w +K

)
un
〉
a∗man

1−N+

N − 1
+

1

2
(B∗X +XB)

where

B∗ :=
∑
m,n≥1

〈um, KJun〉a∗ma∗n, X :=

√
(N −N+)(N −N+ − 1)

N − 1
− 1.

We have

±
∑
m,n≥1

〈
um,

(
|u0|2 ∗ w +K

)
un
〉
a∗man = ±dΓ(Q(|u0|2 ∗ w +K)Q) ≤ dΓ(QCQ) = CN+.

Moreover, the relevant operator commutes with N+. Therefore,

±
∑
m,n≥1

〈
um,

(
|u0|2 ∗ w +K

)
un
〉
a∗man

1−N+

N − 1
≤ C
N 2

+

N
.

On the other hand, by the Cauchy-Schwarz inequality

±1

2
(B∗X +XB) ≤ 1

2
(εB∗B + ε−1X2), ∀ε > 0.

It is straightforward to see that

X2 =

∣∣∣∣∣
√

(N −N+)(N −N+ − 1)

N − 1
− 1

∣∣∣∣∣
2

=

∣∣∣∣∣
√(

1− N+ − 1

N − 1

)(
1− N+

N − 1

)
− 1

∣∣∣∣∣
2

≤
∣∣∣∣(1− N+ − 1

N − 1

)(
1− N+

N − 1

)
− 1

∣∣∣∣2 ≤ C(N+ + 1)2

N2
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Exercise. Let K be a Hilbert-Schmidt operator on a Hilbert space H . Let {un}n≥1 be

an orthonormal family of H . Consider

B∗ :=
∑
m,n≥1

〈um, KJun〉a∗ma∗n.

Prove that

B∗B ≤ ‖K‖2
HSN 2.

Thus

±1

2
(B∗X +XB) ≤ 1

2
(εB∗B + ε−1X2) ≤ CεN 2

+ + C−1
ε

C(N+ + 1)2

N2
.

By choosing ε = N−1 we conclude that

±1

2
(B∗X +XB) ≤ C

(N+ + 1)2

N

Thus in summary,

±(A2 −HBog) ≤ C
(N+ + 1)2

N
.

Estimate A4. Consider

A4 =
1

2(N − 1)

∑
m,n,p,q≥1

Wmnpqa
∗
ma
∗
napaq

=
1

2(N − 1)

∑
m,n,p,q≥0

〈um ⊗ un, (Q⊗QwQ⊗Q)up ⊗ uq〉a∗ma∗napaq

Thus A4 is the second quantization of the two-body operator (N − 1)−1Q⊗QwQ⊗Q (here

w = w(x− y) is the multiplication operator). Since w is bounded, we have

±Q⊗QwQ⊗Q ≤ ‖w‖L∞Q⊗Q.

Therefore, in the second quantization form we have

±A4 ≤
‖w‖L∞

2(N − 1)
N+(N+ − 1) ≤

CN 2
+

N
.



198 CHAPTER 7. VALIDITY OF BOGOLIUBOV APPROXIMATION

Estimate A3. Finally, we consider

A3 =
1

N − 1

∑
m,n,p≥1

Wmnp0a
∗
ma
∗
nap
√
N −N+ + h.c.

=
1

N − 1
UN

( ∑
m,n,p≥1

Wmnp0a
∗
ma
∗
napa0 + h.c.

)
U∗N

=
1

N − 1
UN

( ∑
m,n,p,q≥0

〈um ⊗ un, (Q⊗QwQ⊗ P )up ⊗ uq〉a∗ma∗napaq + h.c.
)
U∗N

Thus up to a transformation by UN , A3 is the second quantization of the two-body operator

(N − 1)−1
(
Q⊗QwQ⊗ P +Q⊗QwP ⊗Q+ h.c.

)
.

By the Cauchy-Schwarz inequality, we have the two-body inequalities

±
(
Q⊗QwQ⊗ P +Q⊗QwP ⊗Q+ h.c.

)
≤ 2ε−1Q⊗Q|w|Q⊗Q+ εQ⊗ P |w|Q⊗ P + εP ⊗Q|w|P ⊗Q,

≤ ‖w‖L∞
(

2ε−1Q⊗Q+ εP ⊗Q+ εQ⊗ P
)
, ∀ε > 0.

In the second quantization form, we obtain

±
∑

m,n,p,q≥0

〈um ⊗ un, (Q⊗QwQ⊗ P )up ⊗ uq〉a∗ma∗napaq + h.c. ≤ C(ε−1N 2
+ + ε(N −N+)N+).

Thus

±A3 ≤
C

N − 1
UN

(
ε−1N 2

+ + εNN+

)
U∗N ≤ C

(
ε−1N 2

+

N
+ εN+

)
.

Choosing ε = N−1/2 we get

±A3 ≤ CN−1/2N 2
+.

Thus in summary, we have prove that

±
(
UN(HN −NeH)U∗N −HBog

)
≤ CN−1/2N 2

+ + CN−1

as a quadratic form estimate on F≤N(H+). This completes the proof of the lemma. q.e.d.
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7.5 Improved condensation

Recall that under the condition 0 ≤ ŵ ∈ L1(Rd) for any wave function Ψ ∈H ⊗sN satisfying

〈Ψ, HNΨ〉 ≤ NeH +O(1) we have the complete BEC on the Hartree minimizer u0:

〈Ψ,N+Ψ〉 ≤ O(1)

where N+ = dΓ(Q) with Q = 1 − |u0〉〈u0|. Since UNN+U
∗
N = N+, the same bound holds if

Ψ replaced by UNΨ.

From the previous section, to control the error of UN(HN −NeH)U∗N −HBog, it is desirable to

have an upper bound on 〈ΨN ,N 2
+ΨN〉. This improved condensation is proved in this section.

Lemma. Assume that 0 ≤ ŵ ∈ L1(Rd). Let Ψ ∈ H ⊗sN be an eigenfunction of HN

with an eigenvalue µn(HN) = NeH +O(1). Then

〈Ψ,N 2
+Ψ〉 ≤ O(1).

Actually, the proof below can be extended to show that 〈Ψ,N k
+Ψ〉 ≤ Ok(1) for all k ≥ 1.

However, the case k = 2 is sufficient for our application.

Proof. Step 1. From the Schrödinger equation HNΨ = µnΨ we have

0 = 〈Ψ,
[
N 2

+(HN − µn) + (HN − µn)N 2
+

]
Ψ〉

= 2〈Ψ,N+(HN − µn)N+Ψ〉+ 〈Ψ, [[HN ,N+],N+]Ψ〉.

Here we used the formula of “double commutator” (for any operators A,X)

[[A,X], X] = (AX −XA)X −X(AX −XA) = AX2 +X2A− 2XAX.

From the proof of the complete BEC, we have

HN − µn ≥ HN −NeH − C ≥ c0N+ − C

for some constants c0 > 0. Therefore,

2N+(HN − EN)N+ ≥ 2c0N 3
+ − CN 2

+ ≥ c0N 3
+ − C.
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Thus

2〈Ψ,N+(HN − EN)N+Ψ〉 ≥ c0〈Ψ,N 3
+Ψ〉 − C.

It remains to bound the double commutator 〈Ψ, [[HN ,N+],N+]Ψ〉.

Step 2. We compute [HN ,N+]. We use

N+ =
∑
n≥1

a∗nan

and the second quantization form

HN =
∑
m,n≥0

Tmna
∗
man +

1

2(N − 1)

∑
m,n,p,q≥0

Wmnpqa
∗
ma
∗
napaq

where

Tmn = 〈um, (−∆ + V )un〉, Wmnpq =

∫∫
um(x)un(y)w(x− y)up(x)uq(y)dxdy.

Since

[a∗m, a
∗
`a`] = a∗` [a

∗
m, a`] = −δm=`a

∗
m, [an, a

∗
`a`] = δn=`an.

we can compute

[a∗man, a
∗
`a`] = [a∗m, a

∗
`a`]an + a∗m[an, a

∗
`a`] = (δn=` − δm=`)a

∗
man.

Therefore,

∑
m,n≥0

Tmn[a∗man,N+] =
∑
m,n≥0

∑
`≥1

Tmn[a∗man, a
∗
`a`]

=
∑
m,n≥0

∑
`≥1

(δn=` − δm=`)Tmna
∗
man

=
∑
n≥1

(T0na
∗
0an − h.c.).

Here we have used the simplification

∑
`≥1

(δn=` − δm=`) =
∑
`≥1

δn=` −
∑
`≥1

δm=` = 1(n ≥ 1)− 1(m ≥ 1)
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=


0 if m = n = 0 or m,n ≥ 1

1 if n 6= m = 0

−1 if m 6= n = 0.

Similarly,

[a∗ma
∗
napaq, a

∗
`a`] = [a∗m, a

∗
`a`]a

∗
napaq + a∗m[a∗n, a

∗
`a`]apaq + a∗ma

∗
n[ap, a

∗
`a`]aq + a∗ma

∗
nap[aq, a

∗
`a`]

=
(
δp=` + δq=` − δm=` − δn=`

)
a∗ma

∗
napaq

Thus

1

2(N − 1)

∑
m,n,p,q≥0

Wm,n,p,q[a
∗
ma
∗
napaq,N+]

=
1

2(N − 1)

∑
m,n,p,q≥0

Wm,n,p,q

∑
`≥1

[a∗ma
∗
napaq, a

∗
`a`]

=
1

2(N − 1)

∑
m,n,p,q≥0

∑
`≥1

(
δp=` + δq=` − δm=` − δn=`

)
Wmnpqa

∗
ma
∗
napaq

=
1

2(N − 1)

∑
m,n,p,q≥0

(
1(p ≥ 1) + 1(q ≥ 1)− 1(m ≥ 1)− 1(n ≥ 1)

)
Wmnpqa

∗
ma
∗
napaq

=
1

N − 1

∑
n≥1

(W000na
∗
0a
∗
0a0an − h.c.)

+
1

N − 1

∑
m,n≥1

(W00mna
∗
0a
∗
0aman − h.c.)

+
1

N − 1

∑
m,n,p≥1

(W0mnpa
∗
0a
∗
manap − h.c.).

In summary,

[HN ,N+] =
∑
n≥1

(T0na
∗
0an − h.c.).+

1

N − 1

∑
n≥1

(W000na
∗
0a
∗
0a0an − h.c.)

+
1

N − 1

∑
m,n≥1

(W00mna
∗
0a
∗
0aman − h.c.) +

1

N − 1

∑
m,n,p≥1

(W0mnpa
∗
0a
∗
manap − h.c.).

Recall that by Hartree equation

T0n +W000n = 〈u0, (−∆ + V + |u0|2 ∗ w)un〉 = 〈u0, (h+ µ)un〉 = 0, ∀n ≥ 1.
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Therefore,

∑
n≥1

T0na
∗
0an +

1

N − 1

∑
n≥1

W000na
∗
0a
∗
0a0an

=
1

N − 1

∑
n≥1

W000n(−(N − 1)a∗0an + a∗0an(N −N+))

= − 1

N − 1

∑
n≥1

W000n(a∗0an(N+ − 1)) = − 1

N − 1

∑
n≥1

W000n(a∗0N+an)

Thus

[HN ,N+] = − 1

N − 1

∑
n≥1

(W000na
∗
0N+an − h.c.)

+
1

N − 1

∑
m,n≥1

(W00mna
∗
0a
∗
0aman − h.c.) +

1

N − 1

∑
m,n,p≥1

(W0mnpa
∗
0a
∗
manap − h.c.).

Step 3. We compute [[HN ,N+],N+]. Note that

[A− A∗,N+] = [A,N+]− [A∗,N+] = [A,N+] + h.c.

Therefore,

[[HN ,N+],N+] = − 1

N − 1

∑
n≥1

(W000n[a∗0N+an,N+] + h.c.)

+
1

N − 1

∑
m,n≥1

(W00mn[a∗0a
∗
0aman,N+] + h.c.)

+
1

N − 1

∑
m,n,p≥1

(W0mnp[a
∗
0a
∗
manap,N+] + h.c.).

Using

[an,N+] = anN+ −N+an = (N+ + 1)an −N+an = an, ∀n ≥ 1,

[aman,N+] = amanN+ −N+aman = 2aman, ∀m,n ≥ 1,

[a∗manap,N+] = a∗manapN+ −N+a
∗
manap = a∗manap, ∀m,n, p ≥ 1
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we obtain

[[HN ,N+],N+] = − 1

N − 1

∑
n≥1

(W000na
∗
0N+an + h.c.)

+
2

N − 1

∑
m,n≥1

(W00mna
∗
0a
∗
0aman + h.c.)

+
1

N − 1

∑
m,n,p≥1

(W0mnpa
∗
0a
∗
manap + h.c.).

Step 4. Now we estimate 〈Ψ, [[HN ,N+]N+]Ψ〉. From the above computation we have

〈Ψ, [[HN ,N+],N+]Ψ〉 = I1 + I2 + I3

where

I1 = −2< 1

N − 1

∑
n≥1

W000n〈Ψ, a∗0N+anΨ〉,

I2 = 4< 1

N − 1

∑
m,n≥1

W00mn〈Ψ, a∗0a∗0amanΨ〉,

I3 = 2< 1

N − 1

∑
m,n,p≥1

W0mnp〈Ψ, a∗0a∗manapΨ〉.

We bound term by term.

Estimate I1. By the Cauchy-Schwarz inequality, we have

|I1| ≤ 2
1

N − 1

∑
n≥1

|W000n||〈Ψ, a∗0N+anΨ〉|

≤ C

N

∑
n≥1

|W000n|‖N+a0Ψ‖‖anΨ‖

≤ C

N
‖N+a0Ψ‖

√∑
n≥1

|W000n|2
√∑

n≥1

‖anΨ‖2

≤ C

N

√
〈Ψ, a∗0N 2

+a0Ψ〉
√∑

n≥1

〈Ψ, a∗nanΨ〉

≤ C

N

√
〈Ψ,N 2

+NΨ〉
√
〈Ψ,N+Ψ〉

≤ C√
N
〈Ψ,N 2

+Ψ〉.
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Here recall that W000n = 〈u0, Kun〉 with K(x, y) = u0(x)w(x− y)u0(y).

Estimate I2. By the Cauchy-Schwarz inequality, we have

|I2| ≤ 4
1

N − 1

∑
m,n≥1

|W00mn||〈Ψ, a∗0a∗0amanΨ〉|

≤ C

N

∑
m,n≥1

|W00mn|‖a0a0Ψ‖‖amanΨ‖

≤ C

N
‖a0a0Ψ‖

√∑
m,n≥1

|W00mn|2
√∑

m,n≥1

‖amanΨ‖2

≤ C

N

√
〈Ψ, a∗0a∗0a0a0Ψ〉

√∑
m,n≥1

〈Ψ, a∗ma∗namanΨ〉

≤ C

N

√
〈Ψ, N2Ψ〉

√
〈Ψ,N 2

+Ψ〉 = C〈Ψ, (N+ + 1)2Ψ〉.

Here recall that W00mn = 〈um, KJun〉 with K(x, y) = u0(x)w(x− y)u0(y).

Estimate I3. Recall that from the analysis of A3 in the previous section, we have the

quadratic form estimate

± 1

N − 1

( ∑
m,n,p≥1

(W0mnpa
∗
0a
∗
manap + h.c.)

= ± 1

N − 1

( ∑
m,n,p,q≥0

〈um ⊗ un, (P ⊗QwQ⊗Q)up ⊗ uq〉a∗ma∗napaq + h.c.
)

≤ C

N

(
ε−1N 2

+ + εNN+

)
≤ C√

N
N 2

+.

(Here we took ε = N−1/2.) Thus

±I3 ≤
C√
N
〈Ψ,N 2

+Ψ〉.

In summary, we have

±〈Ψ, [[HN ,N+],N+]Ψ〉 = ±(I1 + I2 + I3) ≤ C〈Ψ, (N+ + 1)2Ψ〉

Step 5: Conclusion. We have

0 = 2〈Ψ,N+(HN − EN)N+Ψ〉+ 〈Ψ, [[HN ,N+],N+]Ψ〉

≥ c0〈Ψ,N 3
+Ψ〉 − C − C〈Ψ, (N+ + 1)2Ψ〉.
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This implies that

〈Ψ,N 3
+Ψ〉 ≤ C.

Consequently,

〈Ψ,N 2
+Ψ〉 ≤ C.

q.e.d.

We can prove 〈Φ,N 2
+Φ〉 <∞ for eigenfunctions of the Bogoliubov Hamiltonian, using either

the above strategy or the fact that HBog can be diagonalized by a Bogoliubov transformation.

More gerenaly, we have

Exercise. Let Φ ∈ F(H+) be an eigenfunction of the Bogoliubov Hamiltonian HBog.

Prove that

〈Φ,N k
+Φ〉 <∞, ∀k ≥ 1.

7.6 Derivation of Bogoliubov excitation spectrum

Now we are able to rigorously justify Bogoliubov approximation. Recall that we are consid-

ering the Hamiltonian

HN =
N∑
i=1

(−∆xi + V (xi)) +
1

N − 1

∑
1≤i<j≤N

w(xi − xj)

acting on H ⊗sN , H = L2(Rd). The condensate is described by Hartree minimizer u0. The

result below says that the particles outside the condensation is effectively described by the

Bogoliubov Hamiltonian

HBog =
∑
m,n≥1

〈um, (h+K)un〉a∗man +
1

2

∑
m,n≥1

(
〈um, KJun〉a∗ma∗n + h.c.

)
on the excited Fock space F(H+) where

h = −∆ + V + |u0|2 ∗ w − µ, K(x, y) = u0(x)w(x− y)u0(y).
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Theorem. Assume that

• Trapping potential: V ∈ L∞loc(Rd,R), lim|x|→∞ V (x) = +∞;

• Positive-type bounded interaction: 0 ≤ ŵ ∈ L1(Rd).

Then the following statements hold true.

• Convergence of eigenvalues. For any i = 1, 2, ..., the i-th eigenvalue of HN

satisfies

lim
N→∞

(
µi(HN)−NeH − µi(HBog)

)
= 0.

• Convergence of eigenstates. Let Ψ
(i)
N be an eigenfunction of HN with the i-th

eigenvalue µi(HN). Then up to a subsequence as N →∞, we have

lim
N→∞

UNΨ
(i)
N = Φ(i)

strongly in F(H+), where Φ(i) is an eigenfunction of HBog with the i-th eigenvalue

µi(HBog).

Remark: When n = 1, the ground state Φ(1) of HBog is unique (up to a phase), and hence,

up to a correct choice of the phase, we have the convergence for the whole sequence N →∞.

More precisely, we can find a sequence of complex numbers {zN} , |zN | = 1 such that

lim
N→∞

zNUNΨ
(1)
N = Φ(1).

Proof. To make the idea transparent, let us consider the ground state first, and then explain

the extension for higher eigenvalues.

Step 1: Ground state energy - lower bound. Let Ψ
(1)
N ∈ H ⊗sN be a ground state for

HN . By the validity of Hartree theory we know that

〈Ψ(1)
N , HNΨ

(1)
N 〉 = µ1(HN) = EN = NeH +O(1).

Therefore, we have the (improved) condensation

〈Ψ(1)
N ,N 2

+Ψ
(1)
N 〉 = 〈UNΨ

(1)
N ,N 2

+UNΨ
(1)
N 〉 = O(1).
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On the other hand, we have the operator bound on F≤N(H+)

±1≤N
(
UN(HN −NeH)U∗N −HBog

)
1≤N ≤ CN−1/2(N 2

+ + 1).

Here recall that 1≤N = 1(N+ ≤ N) is the projection on the truncated Fock space F≤N(H+).

Taking the expectation against UNΨ
(1)
N we find that

〈Ψ(1)
N , HNΨ

(1)
N 〉 = NeH + 〈UNΨ

(1)
N ,HBogUNΨ

(1)
N 〉+O(N−1/2).

By the variational principle,

〈UNΨ
(1)
N ,HBogUNΨ

(1)
N 〉 ≥ µ1(HBog)

we conclude the lower bound

µ1(HN) ≥ NeH + µ1(HBog) +O(N−1/2).

Step 2: Ground state energy - upper bound. Let Φ(1) ∈ F(H+) be the ground state

for HBog. We know that Φ(1) is a quasi-free state, and in particular

〈Φ(1),N 2
+Φ(1)〉 ≤ C <∞.

We can restrict Φ to the truncated Fock space F≤N(H+) without changing the energy too

much.

Exercise. Let Φ ∈ F(H+) be an eigenfunction for HBog. Define

ΦN :=
1≤NΦ

‖1≤NΦ‖
∈ F≤N(H+).

Prove that ‖1≤NΦ‖ → 1 and

lim
N→∞

〈ΦN ,HBogΦN〉 = 〈Φ,HBogΦ〉.

By applying the above operator bound on UN(HN −NeH)U∗N −HBog for

Φ̃
(1)
N :=

1≤NΦ(1)

‖1≤NΦ(1)‖
∈ F≤N(H+)
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and using the variational principle for HN we obtain the upper bound

µ1(HN) ≤ 〈U∗N Φ̃
(1)
N , HNU

∗
N Φ̃

(1)
N 〉 = NeH + 〈Φ̃(1)

N ,HBogΦ̃
(1)
N 〉+O(N−1/2)

= NeH + µ1(HBog) + o(1)N→∞.

Combining with the lower bound in Step 1, we conclcude the convergence of the ground state

energy

µ1(HN) = NeH + µ1(HBog) + o(1)N→∞.

Step 3: Convergence of ground state. Let Ψ
(1)
N be a ground state of HN . From Step 1

and Step 2 we know that

µ1(HN) = 〈Ψ(1)
N , HNΨ

(1)
N 〉 = NeH + 〈UNΨ

(1)
N ,HBogUNΨ

(1)
N 〉+ o(1)

and

µ1(HN) = NeH + µ1(HBog) + o(1)N→∞.

Therefore,

lim
N→∞

〈UNΨ
(1)
N ,HBogUNΨ

(1)
N 〉 = µ1(HBog).

On the other hand, we know that HBog has a unique ground state Φ(1) ∈ F(H+) (up to a

phase) and there is the spectral gap

µ2(HBog) > µ1(HBog).

The convergence UNΨ
(1)
N → Φ(1) (up to a correct choice of the phase) thus follows from a

standard variational technique.

Exercise. Let A be a self-adjoint operator on a Hilbert space with the min-max values

satisfying µ1(A) < µ2(A). In particular, A has a unique ground state u0 (up to a phase).

Prove that for any sequence {xn}n≥1 ⊂ Q(A) satisfying

‖xn‖ = 1, 〈xn, Axn〉 → µ1(A)

we can find a sequence of complex numbers {zn}, |zn| = 1 such that znxn → u0 strongly.

Step 4: Higher eigenvalues - lower bound. Now we consider the lower bound for the
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eigenvalue µL(HN). By the min-max principle, we have

µL(HN) = max
Ψ∈X,‖Ψ‖=1

〈Ψ, HNΨ〉

where X ⊂ D(HN) ⊂ H ⊗sN is a subspace spanned by the first L eigenfunctions Ψ
(1)
N , ... ,

Ψ
(L)
N of HN . Denote

Φ
(i)
N := UNΨ

(i)
N , Y = Span{Φ(i)

N : i = 1, 2, ..., L} = UNX ⊂ F≤N(H+).

Then we have

dimY = dimX = L

because UN is a unitary operator from H ⊗sN to F+≤N(H+). Moreover, for any i = 1, 2, ..., L

we have

〈Φ(i)
N ,N

2
+Φ

(i)
N 〉 = 〈Ψ(i)

N ,N
2
+Ψ

(i)
N 〉 = O(1).

Therefore,

max
Φ∈Y,‖Φ‖=1

〈Φ,N 2
+Φ〉 = O(1).

Using the operator bound

±1≤N
(
UN(HN −NeH)U∗N −HBog

)
1≤N ≤ CN−1/2(N 2

+ + 1).

we obtain

max
Φ∈Y,‖Ψ‖=1

∣∣∣〈Φ, UNHNU
∗
N〉 −NeH − 〈Φ,HBogΦ〉

∣∣∣ ≤ O(N−1/2).

Consequently, by the min-max principle we conclude that

µL(HBog) ≤ max
Φ∈Y,‖Ψ‖=1

〈Φ,HBogΦ〉 ≤ max
Φ∈Y,‖Ψ‖=1

〈Φ, UNHNU
∗
NΦ〉 −NeH +O(N−1/2)

≤ max
Ψ∈X,‖Ψ‖=1

〈Ψ, HNΨ〉 −NeH +O(N−1/2)

= µL(HN)−NeH +O(N−1/2).

Thus we obtain the desired lower bound

µL(HN) ≥ NeH + µL(HBog) +O(N−1/2).

Step 5: Higher eigenvalues - upper bound. We use the min-max principle again. Let
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Φ(1), ... , Φ(L) be the first L eigenfunctions of HBog. Define

Φ̃
(j)
N :=

1≤NΦ(j)

‖1≤NΦ(j)‖
, j = 1, 2, ..., L.

Then by an extension of a previous exercise we know that for all i, j ∈ {1, 2, ..., L},

lim
N→∞

〈Φ̃(i)
N , Φ̃

(j)
N 〉 = 〈Φ(i),Φ(j)〉 = δi=j

and

lim
N→∞

〈Φ̃(i)
N ,HBogΦ̃

(j)
N 〉 = 〈Φ(i),HBogΦ(j)〉 = δi=jµi(HBog).

Consequently, the space

Ỹ := Span{Φ̃(i)
N , i = 1, 2, ..., L} ⊂ F≤N(H+)

satisfies

dim Ỹ = L, lim
N→∞

max
Φ∈Ỹ ,‖Φ‖=1

〈Φ,HBogΦ〉 = µL(HBog).

Since for any i = 1, 2, ..., L

〈Φ̃(i)
N ,N

2
+Φ̃

(i)
N 〉 ≤ 〈Ψ

(i),N 2
+Ψ(i)〉 = O(1), ∀i = 1, 2, ..., L

we have

max
Φ∈Ỹ ,‖Φ‖=1

〈Φ,N 2
+Φ〉 = O(1).

Thus from the operator bound

±1≤N
(
UN(HN −NeH)U∗N −HBog

)
1≤N ≤ CN−1/2(N 2

+ + 1).

we obtain

max
Φ∈Ỹ ,‖Ψ‖=1

∣∣∣〈Φ, UNHNU
∗
N〉 −NeH − 〈Φ,HBogΦ〉

∣∣∣ ≤ O(N−1/2).

By the min-max principle we conclude that

µL(HBog) = max
Φ∈Ỹ ,‖Ψ‖=1

〈Φ,HBogΦ〉 ≥ max
Φ∈Ỹ ,‖Ψ‖=1

〈Φ, UNHNU
∗
NΦ〉 −NeH +O(N−1/2)

≥ µL(HN)−NeH +O(N−1/2)
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which is equivalent to the upper bound

µL(HN) ≤ NeH + µL(HBog)O(N−1/2).

Combining with the lower bound in Step 4, we obtain the convergence of eigenvalues

µL(HN) = NeH + µL(HBog) +OL(N−1/2).

Step 6: Convergence of eigenfunctions. In Step 4 we have proved that if Ψ
(1)
N , ... , Ψ

(L)
N

are the first L eigenfunctions of HN , then the vectors

Φ
(i)
N := UNΨ

(i)
N ∈ F

≤N(H+)

satisfies

〈Φ(i)
N ,Φ

(j)
N 〉 = δi=j, lim

N→∞
〈Φ(i)

N ,HBogΦ
(i)
N 〉 = µi(HBog), ∀i, j ∈ {1, 2, ..., L}.

This implies that up to a subsequence as N →∞, the sequence {Φ(L)
N }N converges strongly

to an eigenfunction of HBog with eigenvalue µL(HBog), thanks to the following abstract result

(recall that HBog has compact resolvent). This completes the proof of the theorem. q.e.d.

Exercise. Let A be a self-adjoint operator on a Hilbert space. Assume that A is bounded

from below and that the first L min-max values satisfy

µ1 ≤ µ2 ≤ ... ≤ µL < inf σess(A).

Consider the vectors {xjn}
1≤j≤L
n≥1 satisfying

lim
n→∞
〈xin, xjn〉 = δi=j, lim

n→∞
〈xjn, Axjn〉 = µj, ∀i, j ∈ {1, 2, ..., L}.

Prove that up to a subsequence as n→∞, the sequence {xLn}n converges strongly to an

eigenfunction of A with eigenvalue µL.
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7.7 Extension to singular interaction potentials

In this section, let us quickly explain how to adapt the previous strategy to justify Bogoli-

ubov’s approximation for singular interaction potentials. We consider the Hamiltonian

HN =
N∑
i=1

(−∆xi + V (xi)) +
1

N − 1

∑
1≤i<j≤N

w(xi − xj)

acting on H ⊗sN , H = L2(Rd).

Assumptions. In this section we make the following assumptions.

• w, V− ∈ Lp(Rd) + L∞(Rd), V+ ∈ Lploc(Rd) for some p > max(d/2, 2).

• The Hartree minimizer u0 ≥ 0 is unique (up to a phase) and non-degenerate:(
h+K1 K2

K∗2 J(h+K1)J∗

)
≥ ε0 > 0 on H+ ⊕H ∗

+ .

Recall that h = −∆ + V + |u0|2 ∗ w − µ, K1 := QKQ : H+ → H+, K2 = QKJQJ∗ :

H ∗
+ →H+ with K the operator on H with kernel K(x, y) = u0(x)w(x− y)u0(y).

• Any minimizing sequence of the Hartree functional has a subsequence converging to u0

(up to a phase) strongly in L2(Rd).

Remarks:

• The first condition on the potentials ensures that HN is a self-adjoint operator in

the same domain of the non-interacting Hamiltonian, by Kato-Rellich theorem. In

particular, Coulomb potential w(x) = 1/|x| with x ∈ R3 is allowed.

• The second condition means that the Hessian of the Hartree functional at the minimizer

u0 is non-degenerate. This ensures that the Bogoliubov Hamiltonian is well defined (see

below).

• The third condition ensures that we have the complete BEC: for 〈ΨN , HNΨN〉 = NeH +

o(N),

lim
N→∞

〈u0, γ
(1)
ΨN
u0〉

N
= 1.
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Recall the Bogoliubov Hamiltonian

HBog =
∑
m,n≥1

〈um, (h+K)un〉a∗man +
1

2

∑
m,n≥1

(
〈um, KJun〉a∗ma∗n + h.c.

)
on the excited Fock space F(H+), where an = a(un) with {un}∞n=0 an orthonormal basis for

H = L2(Rd).

Theorem. Under the above assumptions, the Bogoliubov Hamiltonian HBog on the ex-

cited Fock space F(H+) is a self-adjoint operator with the same quadratic form domain

of dΓ(h)|F(H+). Moreover,

• There exist a Bogoliubov transformation U on F(H+) and a self-adjoint operator

ξ > 0 on H+ such that

U∗HBogU = dΓ(ξ) + µ1(HBog).

Moreover, inf σ(ξ) > 0 and σess(ξ) = σess(h|H+).

• HBog has a unique ground state UΩ (up to a complex phase). Moreover, it has the

spectral gap between the second and the first min-max values

µ2(HBog)− µ1(HBog) = inf σ(ξ) > 0.

• We have the operator lower bound

HBog ≥
1

C
dΓ(Q(−∆ + V+ + 1)Q)− C.

Proof. Step 1. From the condition w ∈ Lp(Rd) + L∞(Rd) and u0 ∈ H1(Rd) we find that K

is a Hilbert-Schmidt operator

‖K‖2
HS =

∫∫
Rd×Rd

|K(x, y)|2dxdy =

∫∫
Rd×Rd

|u0(x)|2|w(x− y)|2|u0(y)|2dxdy <∞.

To see the the latter bound we can use Sobolev embedding H1(Rd) ⊂ Lq(Rd) for 2 ≤ q < 2∗

(recall 2∗ = +∞ if d ≤ 2 and 2∗ = 2d/(d − 2) if d ≥ 3) and Young’s inequality. More
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precisely, by linearity we can assume w ∈ Lr(Rd) with max(d/2, 2) < r ≤ ∞ and estimate∫∫
Rd×Rd

|u0(x)|2|w(x− y)|2|u0(y)|2dxdy ≤ ‖u0‖2
Lq(Rd)‖w‖

2
Lr(Rd)‖u0‖2

Lq(Rd)

with

q, r ≥ 2,
1

q
+

1

r
+

1

q
= 1.

The condition r > max(d/2, 2) allows us to take q < 2∗ .

Step 2. Since K is Hilbert-Schmidt, K1 and K2 are also Hilbert-Schmidt operators. Thanks

to the non-degeneracy of the Hessian

A :=

(
h+K1 K2

K∗2 J(h+K1)J∗

)
≥ ε0 > 0 on H+ ⊕H ∗

+ ,

we can apply the diagonalization procedure discussed in the previous chapter to

HBog =
∑
m,n≥1

〈um, (h+K1)un〉a∗man +
1

2

∑
m,n≥1

(
〈um, K2Jun〉a∗ma∗n + h.c.

)

Thus there exist a Bogoliubov transformation U on F(H+) and a self-adjoint operator ξ > 0

on H+ such that

U∗HBogU = dΓ(ξ) + µ1(HBog)

Here the ground state energy µ1(HBog) is finite. Let us prove that

σess(ξ) = σess(h̃), h̃ := h+K1.

In fact, from the diagonalization procedure we also know that there exists a block operator

V =

(
U V

JV J JUJ∗

)
∈ G

(which is associated to U) such that(
ξ 0

0 JξJ∗

)
= VAV∗ =

(
U V

JV J JUJ∗

)(
h̃ K2

K∗2 Jh̃J∗

)(
U∗ J∗V ∗J∗

V ∗ JU∗J∗

)
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A direct computation shows that

ξ = Uh̃U∗ + UK2V
∗ + V K∗2U

∗ + V Jh̃J∗V ∗.

Since U is bounded and V,K2 are Hilbert-Schmidt, UK2V
∗ and V K∗2U

∗ are trace class.

Moreover, by a lemma from the proof of the diagonalization of quadratic Hamiltonians, we

know that

Tr(X1/2h̃X1/2) <∞, X := J∗V ∗V J.

The latter implies that

‖h̃1/2J∗V ∗‖2
HS = Tr(h̃1/2J∗V ∗V Jh̃1/2) = Tr(h̃1/2Xh̃1/2) <∞

and similarly ‖V Jh̃1/2‖HS <∞. Thus V Jh̃J∗V ∗ is trace class. In summary, we have proved

that ξ − Uh̃U∗ is a trace class operator, therefore

σess(ξ) = σess(Uh̃U
∗).

Since UU∗ − 1 and U∗U − 1 are trace class (thanks to Shale’s condition), we deduce that

σess(ξ) = σess(Uh̃U
∗) = σess(h̃).

Exercise. Let B be a self-adjoint operator on a Hilbert space. Let U be a bounded

operator such that U−1 is bounded and UU∗ − 1 is a compact operator. Prove that

σess(UBU
∗) = σess(B).

Hint: You can write UBU∗ − λ = U(B − λ)U∗ + λ(UU∗ − 1) for all λ ∈ R.

Step 3. We have proved that

σess(ξ) = σess(h̃) = σess(h+K1).

Since K1 is a Hilbert-Schmidt operator, we also obtain

σess(ξ) = σess(h+K1) = σess(h).
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Moreover, from the non-degeneracy condition on the Hessian A ≥ ε0, we have

h+K1 ≥ ε0 > 0.

Consequently,

inf σess(ξ) = inf σess(h+K1) ≥ ε0 > 0.

Since ξ > 0, we deduce that

inf σ(ξ) > 0.

In fact, if inf σ(ξ) = inf σess(ξ), then obviously inf σ(ξ) ≥ ε0 > 0. On the other hand, if

inf σ(ξ) < inf σess(ξ), then by the min-max principle, inf σ(ξ) is an eigenvalue of ξ, which

must be strictly positive since ξ > 0 as an operator.

Step 4. Using

U∗HBogU = dΓ(ξ) + µ1(HBog)

and inf σ(ξ) > 0, we find that HBog has a unique ground state UΩ (up to a phase). Moreover,

it satisfies the spectral gap

µ2(HBog)− µ1(HBog) = µ2(dΓ(ξ))− µ1(dΓ(ξ)) = inf σ(ξ) > 0.

Step 5. Now we prove the operator lower bound for HBog − µ1(HBog). Since inf σ(ξ) > 0,

we have

U∗HBogU− µ1(HBog) = dΓ(ξ) ≥ inf σ(ξ)N+ ≥
1

C
U∗(N+)U− C.

In the second inequality, we have used

U∗N+U ≤ C(N+ + 1).

Thus we have proved that

HBog ≥
1

C
N+ − C.

Next, let us consider the Bogoliubov Hamiltonian in more detail.

HBog =
∑
m,n≥1

〈um, (h+K)un〉a∗man +
1

2

∑
m,n≥1

(
〈um, KJun〉a∗ma∗n + h.c.

)
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Since K is a Hilbert-Schmidt operator, we have

±1

2

∑
m,n≥1

(
〈um, KJun〉a∗ma∗n + h.c.

)
≤ C(N+ + 1).

Moreover, the condition V−, w ∈ Lp(Rd) + L∞(Rd) with p > max(d/2, 2) ensures that

|V−|+ |u0|2 ∗ |w| ≤
1

2
(−∆) + C.

Thus

h+K = −∆ + V + |u0|2 ∗ w − µ+K ≥ 1

2
(−∆ + V+ + 1)− C.

In the second quantization, we find that

dΓ(h+K) ≥ 1

2
dΓ(−∆ + V+ + 1)− CN+.

Thus we conclude that

HBog ≥
1

2
dΓ(−∆ + V+ + 1)− C(N+ + 1) ≥ 1

2
dΓ(−∆ + V+ + 1)− C(HBog + C)

which is equivalent to

HBog ≥
1

C
dΓ(−∆ + V+ + 1)− C.

This completes the analysis of the Bogoliubov Hamiltonian. q.e.d.

Theorem. Under the assumptions in the beginning of this section, the following state-

ments hold true.

• Convergence of min-max values. For any i = 1, 2, ..., the i-th min-max value

of HN satisfies

lim
N→∞

(
µi(HN)−NeH − µi(HBog)

)
= 0.

• Convergence of eigenstates. Assume that µL(HBog) < inf σess(HBog) for some

L ≥ 1. Then µL(HBog) is an eigenvalue for HBog and for N large, µL(HN) is an

eigenvalue of HN . Moreover, if Ψ
(L)
N is an eigenfunction of HN with eigenvalue
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µL(HN), then up to a subsequence as N →∞, we have

lim
N→∞

UNΨ
(L)
N = Φ(L)

strongly in F(H+), where Φ(L) is an eigenfunction of HBog with eigenvalue µL(HBog).

The proof of this theorem follows the general strategy we discuss before, namely we will

compare UN(HN − NeH)U∗N with HBog. However, since the interaction potential w may be

unbounded, the analysis is more complicated in several places. Here is a quick explanation

of necessary modifications:

• We need to modify the operator bound on truncated Fock space. For example, we

cannot use |w| ≤ ‖w‖L∞ anymore, and hence we cannot simply bound

A := UN(HN −NeH)U∗N −HBog

in terms of N+. We have to use some kinetic part to control the error, resulting the

following bound on F≤M(H+) with 1�M ≤ N

±1≤MA1≤M ≤ C

√
M

N
(HBog + C).

• In order to put the previous bound to good use, we need a new tool to localize the

particle number on Fock space. More precisely, we will write

A ≈ fMAfM + gMAgM ,

where fM ≈ 1(N+ ≤ M) and gM ≈ 1(N+ > M). This is an analogue of the IMS

localization formula, but now the local functions ϕj(x) with x ∈ Rd are replaced by

functions of number operator N+. The part fMAfM can be controlled by the above

operator bound, provided that M � N . The part gMAgM is bounded by the variational

principle

gMAgM ≥ µ1(A)g2
M ≥ µ1(A)

N+

M
.

Thanks to the condensation 〈Φ,N+Φ〉 � N , if we choose

〈Φ,N+Φ〉 �M � N,

then the contribution from gMAgM can be controlled.
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Now let us come to the details.

Lemma (Operator bound on truncated Fock space). Take 1 ≤ M ≤ N and denote

1≤M := 1(N+ ≤M). Then we have the operator bound on F≤M(H+):

±1≤M
(
UN(HN −NeH)U∗N −HBog

)
1≤M ≤ C

√
M

N
1≤M(HBog + C)1≤M .

Proof. Recall that

UN(HN −NeH)U∗N =
4∑
j=0

Aj

where

A0 =
1

2
W0000

N+(N+ − 1)

N − 1
,

A1 =
∑
n≥1

(
T0n +W000n

N −N+ − 1

N − 1

)√
N −N+an + h.c.,

A2 =
∑
m,n≥1

〈um, (h+K)un〉 a∗man +
∑
m,n≥1

〈
um,

(
|u0|2 ∗ w +K

)
un
〉
a∗man

1−N+

N − 1

+
1

2

∑
m,n≥1

(
〈um, KJun〉a∗na∗m

√
(N −N+)(N −N+ − 1)

N − 1
+ h.c.

)
,

A3 =
1

N − 1

∑
m,n,p≥1

Wmnp0a
∗
ma
∗
nap
√
N −N+ + h.c.,

A4 =
1

2(N − 1)

∑
m,n,p,q≥1

Wmnpqa
∗
ma
∗
napaq.

We will estimate term by term.

Estimate A0. We have

0 ≤ A0 ≤ C
N 2

+

N
.

When restricting to the subspace F≤M(H+), we can use N+ ≤M to get

0 ≤ 1≤MA01
≤M ≤ C

M

N
1≤MN+1

≤M ≤ C

√
M

N
1≤M(HBog + C)1≤M .

Estimate A1. We have proved that

± A1 ≤ Cε−1N 2
+

N
+ εN+, ∀ε > 0.
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Restricting to the subspace F≤M(H+) and taking ε =
√
M/N and , we have

± 1≤MA11
≤M ≤ C1≤M

(
ε−1M

N
N+ + εN+

)
≤ C

√
M

N
1≤M(HBog + C)1≤M .

Estimate A2. We have proved that

±(A2 −HBog) ≤ C
(N+ + 1)2

N

as a quadratic form estimate on F≤N(H+). When restricting to the subspace F≤M(H+), we

have

±1≤M(A2 −HBog)1≤M ≤ C
M

N
1≤M(N+ + 1) ≤ C

√
M

N
1≤M(HBog + C)1≤M .

Estimate A4. We can interpret

A4 =
1

2(N − 1)

∑
m,n,p,q≥1

Wmnpqa
∗
ma
∗
napaq

=
1

2(N − 1)

∑
m,n,p,q≥0

〈um ⊗ un, (Q⊗QwQ⊗Q)up ⊗ uq〉a∗ma∗napaq

as the second quantization of the two-body operator (N − 1)−1Q ⊗ QwQ ⊗ Q (here w =

w(x − y) is the multiplication operator). From the assumption w ∈ Lp(Rd) + L∞(Rd) with

p > max(d/2, 2) and Sobolev’s embedding theorem we obtain the two-body inequality

|w(x− y)| ≤ C(−∆x −∆y + 1).

Therefore,

±Q⊗QwQ⊗Q ≤ C((Q(−∆ + 1)Q)⊗Q+Q⊗ (Q(−∆ + 1)Q)).

Taking the second quantization we obtain

±A4 ≤
C

N
dΓ(Q(−∆ + 1)Q)N+

Projecting on the subspace F≤M(H+), we get

±1≤MA41
≤M ≤ C

M

N
1≤MdΓ(Q(−∆ + 1)Q) ≤ C

√
M

N
1≤M(HBog + C)1≤M .
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Estimate A3. Finally, we consider

A3 =
1

N − 1

∑
m,n,p≥1

Wmnp0a
∗
ma
∗
nap
√
N −N+ + h.c.

=
1

N − 1
UN

( ∑
m,n,p,q≥0

〈um ⊗ un, (Q⊗QwQ⊗ P )up ⊗ uq〉a∗ma∗napaq + h.c.
)
U∗N

Thus up to a transformation by UN , A3 is the second quantization of the two-body operator

(N − 1)−1
(
Q⊗QwQ⊗ P +Q⊗QwP ⊗Q+ h.c.

)
.

From the assumption w ∈ Lp(Rd) + L∞(Rd) with p > max(d/2, 2) and Sobolev’s embedding

theorem we obtain the two-body inequality

±
(
Q⊗QwQ⊗ P +Q⊗QwP ⊗Q+ h.c.

)
≤ 2ε−1Q⊗Q|w|Q⊗Q+ ε

(
Q⊗ P |w|Q⊗ P + P ⊗Q|w|P ⊗Q

)
,

≤ Cε−1
(

(Q(−∆ + 1)Q)⊗Q+Q⊗ (Q(−∆ + 1)Q)
)

+ Cε
(

(Q(−∆ + 1)Q)⊗ P + P ⊗ (Q(−∆ + 1)Q)
)
, ∀ε > 0.

In the second quantization form, we obtain

±A3 ≤
C

N

(
ε−1N+ + εN

)
dΓ(Q(−∆ + 1)Q).

Restricting to F≤M(H+) and choosing ε =
√
M/N we get

±1≤MA31
≤M ≤ C

N

(
ε−1M + εN

)
1≤MdΓ(Q(−∆ + 1)Q) ≤ C

√
M

N
1≤M(HBog + C)1≤M .

Thus in summary, we have prove that

±1≤M
(
UN(HN −NeH)U∗N −HBog

)
1≤M ≤ C

√
M

N
1≤M(HBog + C)1≤M .

This completes the proof of the lemma. q.e.d.

Lemma (IMS formula on Fock space). Let A be a non–negative operator on a bosonic

Fock space F(H ) such that PiD(A) ⊂ D(A) and PiAPj = 0 if |i − j| > `, where
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Pi = 1(N = i). Let f, g : R → [0, 1] be smooth functions such that f 2 + g2 = 1,

f(x) = 1 for x ≤ 1/2 and f(x) = 0 for x ≥ 1. For any M ≥ 1 define

fM := f(N /M) , gM := g(N /M) .

Then

±
(
A− fMAfM − gMAgM

)
≤ (‖f ′‖2

L∞ + ‖g′‖2
L∞)

`3

M2
[A]diag

with the “diagonal part”

[A]diag :=
∞∑
i=0

PiAPi.

Proof. We start from the ”IMS-identity”

A− fMAfM − gMAgM =
1

2
([[A, fM ], fM ]] + [[A, gM ], gM ]])

which follows from the “double commutator identities”

[[A, fM ], fM ] = f 2
MA+ Af 2

M − 2fMAfM ,

[[A, gM ], gM ] = g2
MA+ Ag2

M − 2gMAgM .

By decomposing further

1F(H ) =
∞∑
i=0

Pi

we find that

[[A, fM ], fM ]] =
∞∑

i,j=0

Pi[[A, fM ], fM ]]Pj =
∞∑

i,j=0

(
f 2
M(i) + f 2

M(j)− 2fM(i)fM(j)
)
PiAPj

=
∞∑

i,j=0

(
fM(i)− fM(j)

)2

PiAPj =
∞∑

1≤|i−j|≤`

(
f(i/M)− f(j/M)

)2

PiAPj.

In the last equality we have used the assumption that PiAPj = 0 if |i − j| > `. Combining

with a similar formula for gM , we arrive at

A− fMAfM − gMAgM =
1

2

∞∑
1≤|i−j|≤`

[
(f(i/M)− f(j/M))2 + (g(i/M)− g(j/M))2

]
PiAPj.
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Since f, g are smooth, we have the uniform bound for all |i− j| ≤ `:

(f(i/M)− f(j/M))2 + (g(i/M)− g(j/M))2 ≤ (‖f ′‖2
L∞ + ‖g′‖2

L∞)
`2

M2
.

On the other hand, since A ≥ 0 we have the Cauchy-Schwarz inequality

±(PiAPj + h.c.) ≤ PiAPi + PjAPj.

Thus we conclude that

±
(
A− fMAfM − gMAgM

)
= ±1

4

∞∑
1≤|i−j|≤`

[
(f(i/M)− f(j/M))2 + (g(i/M)− g(j/M))2

]
(PiAPj + PjAPi)

≤ 1

4
(‖f ′‖2

L∞ + ‖g′‖2
L∞)

`2

M2

∞∑
1≤|i−j|≤`

(PiAPi + PjAPj)

≤ (‖f ′‖2
L∞ + ‖g′‖2

L∞)
`3

M2

∞∑
i=0

PiAPi.

This completes the proof of the lemma. q.e.d.

Exercise. Prove that

[HBog]diag ≤ C(HBog + C)

and

[UNHNU
∗
N ]diag ≤ C(UNHNU

∗
N + CN).

Hint: For the second bound you can use HN ≥ (1− ε)
∑N

i=1(−∆ + V )i − CεN .

Now we are ready to provide

Proof of the theorem. Step 1. Ground state energy - lower bound. Denote

H̃N = UN(HN −NeH)U∗N .

Let us prove that

µ1(H̃N) ≥ µ1(HBog) + o(1)N→∞.
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By applying the localization formula for A = H̃N − µ1(H̃N), with ` = 2 and 1 � M � N

we have the operator inequality

H̃N ≥ fMH̃NfM + gMH̃NgM −
C

M2
[H̃N − µ1(H̃N)]diag.

The main part fMH̃NfM satisfies the operator bound on truncated Fock space

±fM(H̃N −HBog

)
fM ≤ C

√
M

N
fM(HBog + C)fM

which implies that

fMH̃NfM ≥
(

1− C
√
M

N

)
fMHBogfM − C

√
M

N
f 2
M .

Using the variational principle HBog ≥ µ1(HBog) > −∞ we find that

fMH̃NfM ≥
(

1− C
√
M

N

)
µ1(HBog)f 2

M − C
√
M

N
f 2
M

≥
[
µ1(HBog)− C

√
M

N

]
f 2
M .

The part gMH̃NgM can be bounded from below by the variational principle

gMH̃NgM ≥ µ1(H̃N)g2
M = µ1(H̃N)(1− f 2

M).

The localization error is controlled by the rough estimate

[UNHNU
∗
N ]diag ≤ C(UNHNU

∗
N + CN)

which implies

[H̃N ]diag ≤ C(H̃N + CN), |µ1(H̃N)| ≤ CN.

In summary, we have the operator inequality on F≤N(H+)

H̃N ≥ fMH̃NfM + gMH̃NgM −
C

M2
[H̃N − µ1(H̃N)]diag

≥
[
µ1(HBog)− C

√
M

N

]
f 2
M + µ1(H̃N)(1− f 2

M)− C

M2
(H̃N) + CN)



7.7. EXTENSION TO SINGULAR INTERACTION POTENTIALS 225

which is equivalent to

(1 + CM−2)H̃N ≥
[
µ1(HBog)− C

√
M

N

]
f 2
M + µ1(H̃N)(1− f 2

M)− CN

M2
.

By the assumption on the condensation, we can take a wave function ΨN ∈H P⊗N such that

〈ΨN , HNΨN〉 ≤ µ1(HN) +N−1, εN :=
〈ΨN ,N+ΨN〉

N
= o(1)N→∞.

Equivalently, the vector UNΨN ∈ F≤N(H+) satisfies

〈ΦN , H̃NΦN〉 ≤ µ1(H̃N) +N−1, 〈ΦN ,N+ΦN〉 = εNN = o(N)N→∞.

In particular, if we choose

max{εNN,N1/2} �M � N

then

0 ≤ 〈ΦN , g
2
MΦN〉 ≤ 〈ΦN , (N+/M)ΦN〉 = o(1)N→∞

and hence

〈ΦN , f
2
MΦN〉 = 1− 〈ΦN , g

2
MΦN〉 = 1 + o(1)N→∞.

The choice N1/2 �M ensures that N/M2 � 1. Thus from the above operator inequality for

H̃N and the choice of ΦN we obtain

(1 + CM−2)(µ1(H̃N) +N−1) ≥ (1 + CM−2)〈ΦN , H̃NΦN〉

≥
[
µ1(HBog)− C

√
M

N

]
〈ΦN , f

2
MΦN〉+ µ1(H̃N)(1− 〈ΦN , f

2
MΦN〉)−

CN

M2

=
[
µ1(HBog)− C

√
M

N

]
(1 + o(1)N→∞) + µ1(H̃N)o(1)N→∞ −

CN

M2
.

Using the rough information

|µ1(HBog)| = O(1), |µ1(H̃N)| = O(N)

we conclude that

µ1(H̃N) ≥ µ1(HBog) + o(1)N→∞.

This is equivalent to

µ1(HN) ≥ NeH + µ1(HBog) + o(1)N→∞.
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Step 2. Ground state energy - upper bound. We use the localization formula for the

Bogoliubov Hamiltonian

HBog ≥ fMHBogfM + gMHBoggM −
C

M2

(
[HBog]diag + µ1(HBog)

)
≥ fMHBogfM + gMHBoggM −

C

M2

(
HBog + C

)
.

Using again

±fM
(
H̃N −HBog

)
fM ≤ C

√
M

N
fM(HBog + C)fM

we have

fMHBogfM ≥
(

1 + C

√
M

N

)−1

fMH̃NfM − C
√
M

N
.

Combining with the variational principle

fMH̃NfM ≥ f 2
Mµ1(H̃N), gMHBoggM ≥ g2

Mµ1(HBog)

we have the operator bound on Fock space F(H+)

HBog ≥ fMHBogfM + gMHBoggM −
C

M2

(
HBog + C

)
≥
(

1 + C

√
M

N

)−1

f 2
Mµ1(H̃N) + g2

Mµ1(HBog)− C

M2
HBog − C

√
M

N

≥

which can be rewritten as

(
1 + CM−2

)
HBog ≥

(
1 + C

√
M

N

)−1

f 2
Mµ1(H̃N) + g2

Mµ1(HBog)− C
√
M

N

Now take Φ(1) be the ground state for HBog. Then

〈Φ(1),N+Φ(1)〉 ≤ C <∞.

By choosing

1�M � N

we obtain

〈Φ(1), g2
MΦ(1)〉 ≤ 〈Φ(1), (N+/M)Φ(1)〉 = o(1), 〈Φ(1), f 2

MΦ(1)〉 = 1 + o(1).
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Thus (
1 + CM−2

)
µ1(HBog) =

(
1 + CM−2

)
〈Φ(1),HBogΦ(1)〉

≥
(

1 + C

√
M

N

)−1

〈Φ(1), f 2
MΦ(1)〉µ1(H̃N) + 〈Φ(1), g2

MΦ(1)〉µ1(HBog)− C
√
M

N

= (1 + o(1))µ1(H̃N) + o(1)µ1(HBog) + o(1).

Using the rough estimate

µ1(HBog) = O(1), µ1(H̃N) = O(1)

we conclude that

µ1(HBog) ≥ µ1(H̃N) + o(1).

This is equivalent to

µ1(HN) ≤ NeH + µ1(HBog) + o(1)N→∞.

Combining with the lower bound in Step 1, we conclude the convergence of the ground state

energy

µ1(HN) = NeH + µ1(HBog) + o(1)N→∞.

Step 3: Convergence of ground state. Take any wave function ΨN ∈H ⊗sN such that

〈ΨN , HNΨN〉 ≤ µ1(HN) +N−1, εN :=
〈ΨN ,N+ΨN〉

N
= o(1)N→∞.

From Step 1 and Step 2, we obtain that the vector ΦN = UNΨN satisfies

〈fMΦN ,HBogfMΦN〉
‖fMΦN‖2

→ µ1(HBog).

Thanks to the spectral gap µ1(HBog) < µ2(HBog) we conclude that up to correct choice of

the phase factor,
fMΦN

‖fMΦN‖
→ Φ(1)

strongly in Fock space F(H+), where Φ(1) is the unique ground state for HBog. Since

‖gMΦ‖ → 0, ‖fMΦN‖ → 1

we find that fMΦN → Φ(1), and hence ΦN → Φ(1) strongly in Fock space F(H+).
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Step 4: Convergence of min-max values and higher eigenstates. By the same

analysis in Step 1 and Step 2, plus the min-max principle, we also obtain the convergence of

all min-max values

µi(HN) = NeH + µi(HBog) + o(1)N→∞, ∀i = 1, 2, ...

In particular, this implies that for N large, HN also have the spectral gap

µ2(HN)− µ1(HN) = µ2(HBog)− µ1(HBog) + o(1)N→∞ > 0.

Consequently, HN has a unique ground state (up to a phase).

More generally, if µ1(HBog) ≤ ... ≤ µL(HBog) < inf σess(HBog), then for N large, we have

µ1(HN) ≤ ... ≤ µL(HN) < inf σess(HN).

Consequently, HN has at eigenvalues µ1(HN), ..., µL(HN). If Ψ
(i)
N are the corresponding

eigenfunctions, then the vectors

Ψ̃
(i)
N :=

fMΨ
(i)
N

‖Ψ(i)
N ‖

satisfy

lim
N→∞

〈Ψ̃(i)
N , Ψ̃

(j)
N 〉 = δi=j, lim

N→∞
〈Ψ̃(i)

N ,HBogΨ
(i)
N 〉 = µi(HBog).

By a previous exercise, this implies that up to a subsequence as N → ∞, the vector Ψ̃
(i)
N

converges strongly to an eigenvector Φ(i) of HBog with eigenvalue µi(HBog). Thanks to the

condensation, we have

‖gMΨ
(i)
N ‖ → 0, ‖fMΨ

(i)
N ‖ → 1.

Thus up to a subsequence as N → ∞, the vector Ψ
(i)
N converges strongly to an eigenvector

Φ(i) of HBog with eigenvalue µi(HBog), for all 1 ≤ i ≤ N . This completes the proof of the

theorem. q.e.d.
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