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Chapter 1

Hilbert Spaces & Operators

é Y
Definition 1.1 (Hilbert Space). A space s is a Hilbert space iff

e J7 is a complex vector space.

e it is equipped with an inner product (-, -), where we shall assume that it is linear

in the second argument and anti-linear in the first.
e it is complete w.r.t. the norm ||z|| = \/(x,z), i.e. (J,] -||) is a Banach space.

O

\ J
( Proposition 1.2 (Cauchy-Schwarz Inequality). For all x,y € H )
[z 9y | < llzllllyll
N U Y
( Corollary 1.3 (Triangle Inequality). For all x,y € )
2+ yll < =]l + llyll
A U y
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4 N
Theorem 1.4 (Pythagorean Theorem). For all z,y € 5 with (z,y) =0

Iz + l1* = ll=1* + [ly]I*.

é N
Theorem 1.5 (Orthogonal Projection). If V' is a closed subspace of €, then there
exists an orthogonal subspace V* such that € =V @ VL, ie. for all x €  there
exists a unique decomposition ¥ =y + z withy € V and z € VL such that {y, z) = 0.

Indeed inf, = = — Y- U
| Indeed infocy |z —al = [z —yl| y

Remark (Notation). We call y = Py (z), 2 = Pyi(x) the projections of x unto the

respective subspaces. ]

é Y
Definition 1.6 (Orthonormal Family). A set (x,,), C 2 is called an ONF iff for all n

o (z,,x,) =0 for n #m,

o [lzal = 1.
\ U J
é N
Theorem 1.7. If (x,),,cy s an ONF then for all x € J€ one can write
o
Z Ty, T xn +x
n=1
where <xL,xn> =0 for all n. Consequently
]|” = ZI T, ) | 4[|l ]|,
N U Y




é Y
Definition 1.8. (z,), .y is called an orthonormal basis (ONB) if for all x € I,
one can write -

T = Z (T, x) Tp
n=1
In this case
lz))* = Z | (&, ) . (Parseval Identity)
n=1
A L v

Definition 1.9 (Separable Hilbert Space). A Hilbert space S is called separable if
there exists a countable ONB. 0

Remark 1.10. All Hilbert spaces considered in this course will be separable.

All infinite dimensional separable Hilbert spaces are unitarily equivalent. [l

é Y
Definition 1.11 (Weak Convergence). We say that a sequence (z,), convergence

weakly to x., iff
Vy € It (T, y) > (Too, Y)

and we write

n—oo
n xOO‘

Remark 1.12. Norm convergence implies weak convergence but the reverse is not true

in infinite dimensions. O

Theorem 1.13 (Banach-Alaoglu). If (z,,),, is bounded in a Hilbert space 7€, then there

exists a subsequence (z,, ), that converges weakly. 0

Proof. Because . is separable there exists an orthonormal basis (u;), of . Consider

the sequence ((xn,u1)),, which is a bounded sequence in R and thus contains a convergent
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subsequence <<x%1),u1>) . One now repeats this argument with uy and (x%”) to get a

2%} and so forth. Thus we may define the sequence y, = 2" for which

subsequence (
(Y, u;) converges for all i € N by Cantor’s diagonal argument.

We need to prove that y, converges weakly. For any u € J# we have to consider to (y,,u).
We can prove that (y,,u) converges as n — oo.

Define the linear operator . : 7 — C by Z(u) = lim,, 0 (Yn,u) for all u € 7. Then ¥

is linear and bounded since
|2 (u)| < limsup | (Yn, v) | < (limsup [y, [])[|ul < Mu.

and thus (y,), converges weakly to the adjoint of .Z provided by the Riesz representation

theorem. g.e.d.

é N
Theorem 1.14 (Riesz Representation Theorem). For all y € J there exists exactly

one £ € FC* such that for all u € F

(Y, u) = 2L (u).

é Y
Definition 1.15 (Unbounded Operator). We shall consider linear operator A : D(A) —
€, with D(A) = 7.

If B: D(B) — ¢ and D(A) C D(B) and B‘D(A) = A, then we write A C B and say

L that B is an extension of A. O

y

As in the finite dimensional case we want to consider how to define for a linear operator A

the adjoint operator A* such that

(z, Ay) = (A", y)

Definition 1.16 (Adjoint Operator). Take A : D(A) — J. Define A* : D(A*) —
to be the following



D(A*) =Kz e | sup |(z,Ay)| < ooy,
yED(A)
llyll<t

i.e. we want y — (z, Ay) to be a bounded linear functional on .# for = to be in

D(A%).

e By the Riesz representation theorem, there exists then a unique z such that
(x, Ay) = (z,y) for all y € D(A). Define A*z = 2.

A\ L y
é Y
Definition 1.17 (Symmetric Operator). A linear operator A : D(A) — J¢ is symmet-

ric iff
Vz,y € D(A) : (z, Ay) = (Az,y).
A - y
é Y
Proposition 1.18. The following are equivalent
(i) A: D(A) — J is symmetric.
(1)) A C A*.
(i1i) (x, Az) € R for all x € D(A).
N L y
4 Y

Example 1.19. Consider the Hilbert space 57 = L? (]Rd) with the standard inner
product. Consider A = —A with D(A) = €2(R?), then Au € 5 for all u € D(A), i.e.
A is well-defined.

We can check that A is symmetric by noting that

(u, Au) = /E(—Au)d:z; - / Vul?dz > 0

However, one can prove that A cannot be extended to a bounded operator.
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s

. bounded operator. 0

~
Definition 1.20 (Bounded Operator). If A: D(A) — 4 has domain D(A) = ¢ and

if there exists an M > 0 such that ||Au|| < M||ul| for all u € FZ, then A is called a

J

7

. operator on F€ . O

\
Theorem 1.21 (B.L.T. Theorem). If A : D(A) — S and if there exists an M > 0

such that || Aul| < M||u|| for allu € D(A) then A can be uniquely extended to a bounded

Z

[

Theorem 1.22 (Banach-Steinhaus). If (x,), converges weakly, then (x,), is bounded.]
U

7

. strongly as k — oo. 0

\
Definition 1.23 (Compact Operator). A bounded operator A on 7 is a called a

compact operator iff A(Bl(O)) is pre-compact in . Namely, if (z,,), is a bounded

sequence in J¢, then there exists a subsequence (z,,), such that (Az,, ), converges

J

r

A\

1
Proposition 1.24. Let A be a bounded operator on 7. Then the following are equiv-
alent

(i) A is a compact operator.

(ii) for all weakly convergent sequences (x,),, (Axy), converges strongly.

Proof.

(ii)=(i) Assume that A maps weak convergence to strong convergence. If (z,), is bounded,

then by [Theorem 1.13] we can choose a subsequence that converges weakly, which we

shall call again (z,), and z,, = z. Then Az, — Az. Thus A is a compact operator.

(i)=(ii) Assume that A is compact and that z,, = = weakly. Then (z,), is bounded. Since A

is compact there exists a subsequence (zy, ), such that Az, converges strongly. The

limit is Az because for all y €

(z,y) «— (Azp,y) = (20, A'y) — (1, A"y) = (Ax,y).
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We shall now prove that if z, — x, then Az, — x for the whole sequence by the
“Argument of subsequences of subsequence”. Assume by contradiction that Az, A Az

stronlgy. Then there exists a subsequence z,, such that
lim inf|| Az, — Az|| > 0.
l—00

On the other hand, by applying the above proof to the sequence z,,, we know that
T, — x which implies that there exists a subsequence x,, such that Az, — Ax

strongly. We get the contradiction

0 = liminf||Az,, — Az|| > lilm inf|| Az, — Az| > 0.
— 00

m—r0o0

qg.e.d.

é N
Theorem 1.25 (Spectral Theorem for Compact, Symmetric Operators). Let A be a
compact, symmetric operator on €. Then there exists a sequence (\,), C R, A, LA

0 and an ONB (z,), of 7 such that Ax, = \,x, for all n. In particular

Ax = Z Ao (Tp, ) Tp
=l

Proof.

Step 1 Define
a = sup |(u, Au) |.
ucH
flull=1
We prove that this there exists uy € 7, ||ui|| = 1 such that a = | (uy, Huy) |. Because
A is bounded, we know that a is a finite, non-negative number and we can find a
sequence of unit vectors (x,), C J¢ such that |(z,, Az,)| — a. Since the sequence

(z,,), is bounded, we can go to a subsequence and assume that z, — u; weakly by

[Theorem 1.13] Because A is a compact operator Ax,, — Auy strongly.

Using the fact that if z,, — z,y,, — vy, then (z,,, y,,) — (z,y), we find that (z,, Az,) —
(u1, Auq) and thus a = | (uq, Auy) |
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We only have to prove that [Jui|| = 1. Using the lower semicontinuity of the norm
we find that [ju;]] < 1. For the converse assume that ||u;]| < 1 then we can define
vy = 72 if uy # 0. Then

o

| (uy, Auy) | a

laal® ]

| (v1, Avy) | = > a

if @ > 0 which is a contradiction. If uy = 0 or @ = 0, then @ = 0. This means
that (u, Au) = 0 for all w € 5. Consider the function (u + tv, A(u + tv)) = 0 for all
u,v € # and t € R. Then

0 = (u, Au) + 2t R (u, Av) +* (v, Av) = 2t R (u, Av)

thus R (u, Av) = 0 for all u,v € J. Replacing v by iv we get analogously S (u, Av) =
0. This implies (u, Av) = 0 for all u,v € S which in turn implies that A = 0 in which

case the spectral theorem is trivial.

We have already proven that there exists a unit vector w; such that |(uy, Auy)| >
| (u, Au) | for all u € . We shall now prove that u; is an eigenvector with eigenvalue
(ug, Aug) =: A\ € R.

We know that

Yu € A (uy, Auy) = (u, Au) , it \y >0
Vu € A (uy, Aug) < (u, Au) , if \y <0

Take an arbitrary ¢ € 4 and define for ¢ € R and small enough such that u; +cp # 0

(uy + ep,us + €p)
|ur + epl|?

fe) =

then either A\; > 0 and f(¢) < f(0) or \; < 0 and f(e) > 0 for € small enough. In

both cases we conclude that p
— p— O

e=0
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i.e.

d {u1, Auy) +2e R (p, Aur) +€° (p, Ap)
0= — =2NR (o, Auy) — 2R (uy, A uy) =
A P+ 2eR{pu)+2ol2 | {p, Au) (u, Auy) (i, ua)

= 2% <(p, AUI — )\1U1>

for all ¢ € 5. Replacing ¢ by ip we get the imaginary part as above and therefore
we can conclude that for all p € J7

<(,0, Au1 — /\1U1> = O,

1.e.

Au1 = )\1U1.

Step 3 Let V; := span(u;). Then we can decompose . = V; @ Vi5. We want to prove that
A Vit — Vi Indeed, take u € Vit and we need to verify Au € Vi which follows

from

(ur, Au) = (Aug,u) = (Mug,u) = A\ (ug,u)y =0

We can apply the results from Step 1 and Step 2 to A‘v .. More precisely we can find
1
Ao, us € V- such that Aus = Ayuy and

A2 = sup (u, Au)
ueVﬁ
[lull=1

Step 4 (Induction) For any n € N, assume that we already have uy, ..., u, ONF and Ay,... ;A\,
such that Au; = \u; and |\ > | (u, Au) | for all u € {uy,...,u;_1}+. Define V,, =
span(uy, ..., u,) and write S = V, & V.-. We can show that A : V,, — V,, and
AVt — V24 oasin Step 3 and by applying Step 1 and 2 to A|VnL we can find w, 1

and \,.; satisfying the required properties.

Step 5 (Conclusion) Consider 2 cases. First assume that A\, = 0 for some n € N (note that
|An| is a decreasing sequence in n). Then we have Au; = \u; for alli =1,...,n and
A‘VL = 0 as in Step 1. Then we only need to choose {1, ...} to be an ONB for V..
An(;lL we have Au; = \ju; for all ¢ € N with \; = 0 for ¢ > 0.

For the second case assume that X, # 0 for all n € N. We will prove that (u,), .y
satisfies 7 =V @ ker A with V' = span((u,),,).
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Take u € S and assume that (u,u,) = 0 for all n € N, and prove Au = 0. Recall
that |\,| = | (o, Ap) | for all unit vectors ¢ € V.:-. Then |\,| = (u, Au) for all n € N
and thus lim |\,| > | (u, Au) |. We have to prove that A, — 0. This is easy because
An = (Up, Au,) — 0 because (u,),, is bounded and Au,, — 0 strongly.

This follows from the fact that if (z,), is an ONF and A is a compact operator, then

Ax, — 0 strongly as n — oc.

Thus (u, Au) = 0 for all u € V+. Repeating this argument in Step 1, we get Au = 0
for all u € V. Choosing (¢m),,en t0 be an ONB of V=, then (u,),, oy U (#m),ney forms
an ONB of eigenvector of A for 7.

g.e.d.

4 N
Definition 1.26 (Schatten Spaces). Consider a compact, symmetric operator A. We

know that A = 3", \; |u,) (u,|, where Au,, = \,u,. We say that A is in the Schatten
space Sy, with 1 < p < 00 if (A\y),,cy € P(N), ie. if

oo
D Il <00
n=1

and denote [|Alls, = (3074 |/\n]p)l/”. In particular we call
e p = 1 the trace class operators
e p = 2 the Hilbert-Schmidt operators

e p = oo the compact operators (formally)

Remark 1.27. S, C S, if p < ¢ (because 7 C (7). And thus

Trace class C Hilbert-Schmidt C compact C bounded.
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Theorem 1.28 (Trace Class Operators). Let A be a compact and symmetric operator.

Then the following are equivalent

(i) A is trace class

(ii) For all ONB (¢y,),,

(e.o]

Z | {¢n, Apn) | < 0.

n=1

In this case Tr(A) =3 > (pn, Apn) is independent of the choice of ONB (gy,),,.

O

G

N\

Z

Proof. Assume that Ap = Y2 |\, (un, p) u, for all p € J, where (\,),, (uy), are eigen-

values and eigenfunctions of A. Then

o0

(0, Ap) = (0, A (An, ) tin) ZA | (ttn, )

(ii) Take ONB (¢n),

Z)\ | (Oms Un)

n=1

Zl meaAQOm | - Z
m=1

m=1

m=1n=1

Fl< Y0 alllemun) P =D Il D Homs un) I
n=1 m=1

= ] <00

(ii)=(i) Choosing ¢, = u, the eigenvectors of A then

oo > Z | {¢n, Apn) | = Z | Anl
n=1 n=1

and thus A is trace class.

~
=llun|?=1

The last statement follows as in (i)=-(ii) directly Fubini’s theorem as the double sum is

absolutely convergent

Z (Pm, Apm) = Z ZAH (fms un) |* = Z/\n Z | (s un) [* = Z)\n

m=1 m=1n=1

~
=[lun|*=1
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qg.e.d.
Remark 1.29 (Singular Value Decomposition). If A is a compact operator (not nec-
essarily symmetric then we find ONBs (u,),,, (v,),, and real numbers A\, — 0 such that
foralln e N
Au, = AU,
le. -
Ay = Z An (U, w) vy
n=1
for all uw € J2. O
4 Y
Definition 1.30. In this general case, we say that A € S, if
D P < oo
n=1
and we define y
[Alls, = (ZWI”) :
n=1
A L v
[ Y

Theorem 1.31 (Hilbert-Schmidt Operator). The following are equivalent
(i) A is a Hilbert-Schmidt operator, i.e. A € S,

(i) 00 |Apnll? < oo for all ONBs (), . Moreover,

o0 /2
[Alls, = (Z ||A90n||2>
n=1

(independent of (), ).

Moreover, if 2 = L*(Q), then A is a Hilbert-Schmidt iff there exits a function K (x,y) €
L*(Q2 x Q) such that

(Af)(x) = / K (2,9 (4)dy
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for all f € L*(Q). In this case, K(x,y) is called the kernel of A and

|Alls, = | K|l2@x0)

L 0

Proof.

(i)=-(ii) Since A is Hilbert-Schmidt, it is compact with decomposition

Au = Z A (U, w) vy,
n=1

for some ONBs (u,,),,, (vy),,, for real numbers A, — 0. Thus for all v € J#

Al > IAnl?] (i, ) 2
n=1

(by Parseval’s identity as (v,,),, is an ONB). Thus by Fubini’s theorem

Do Aenll? =D 03 Il ) P =Y Al (Z | (tn; om) \2> =D Il <o

n

since A is Hilbert-Schmidt

(ii)=-(i) Same as above.
Now let us assume that 2 = L*(Q2). Assume that K(z,y) € L*(Q x ) and assume that
(Af)(@) = [ K(z,y)f(y)dy.
Take (¢,,),, to be an ONB for L?(£2). We have

2

Y Aeal® =D Hpm Apa) P =Y
n=1 m,n m,n
=2

/ Om (1) K (2, y)0n(y)drdy

2

(em(@)2u®), K (2,1)

>L2(Q,Q)

by Parseval’s identity again. Here we used the fact (npm(x)gon (y))
0) = L*(Q) @ L*().
This means that if K € L*(Q x ), then A is Hilbert-Schmidt.

is an ONB for L?(§ x

m,
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Conversely if A is Hilbert-Schmidt, then K € L?, where the kernel is defined as follows.
Using the singular value decomposition of A we find for all u € L?(Q)

(Au)(x) = fj i) 0a(2) = 30 [ty Jonto) = | (fj Anvn@)m)u(y)dy

K(z,y) = Z )‘nvn<x)m

This belongs to L*(2 x Q) (why?). g.e.d.

Remark 1.32. Au =) A, (un,u) v, thus in Braket notation we have
A=Ay [vn) (|

from which we can “directly” read off the kernel

Z AnOn () un ().



Chapter 2

Self-Adjointness

Recall that for a densely defined unbounded operator A : D(A) —  we can define A* :
D(A*) — o by

DA ) =(ze | sup |(z,Ay)| <o0p =
yeD(A)
lyll<1

={reH|32 e A Wy e D(A) (x,Ay) = (2.9)}

(by the Riesz representation theorem) and for all x € D(A*) we then define A*x = z, i.e. for
all y € D(A) and xz € D(A")
{2, Ay) = (A", y) .

é N
Definition 2.1 (Self-Adjointness). A is a self-adjoint operator iff

A= A"

Remark 2.2. A is self-adjoint implies that A is symmetric, however, the converse does
not hold. n

19
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é Y
Example 2.3 (Multiplication Operator). Consider s = L?*(Q), take f : Q@ — R

measurable. Define

"N D(A) — 2
(Au)(z) = f(x)ulz)
We can define

. D(A) ={ue L*| fue L?}

Why is self-adjointness relevant?

(Maths) We have the “spectral theorem” for self-adjoint operators.
Self-Adjoint Operator DI Multiplication Operator on some L?()

In particular, we can study spectra and actions of self-adjoint operators. E.g. if Ay is

a multiplication operator associated with a function f : {2 — R then
o(A) =ran(f) = {f(z) |z € Q}
and for all g real-valued function, we can define
g(A) = multiplication operator associated with g(f)

le.
for all w € D(g(A)).

(Physics) In quantum mechanics, a particle is described by a wave function ¢ € L?*(R?), with

the interpretation
|v)(z)|* = probability density of the particle
le.

/ )(z)|*dx = probability of particle belonging to (2.
Q
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For this quantum particle, we can consider a Hamiltonian
A:D(A) — o = L*(RY),
where the

(1, Ay = the expected value of the the energy of the state

0(A) = possible energy levels of the particle
and the excited state/ground state solves the Schrédinger equation
Ay = M.
The evolution of a state ¥(0) is governed by the time dependent Schrodinger equation
0ub(t) = —1 Au(t)

with limg_,o 1(£) = ¥(0).

Theorem. The time dependent Schrodinger equation has a unique solution ¥ (t) for all
initial states 1(0) € L2(RY) satisfying ||v(t)]|? = ||v(0)]|? = 1 iff A is self-adjoint. [

Remark. “Finding a self-adjoint extension of a symmetric operator is tricky.” 0

4 N
Example 2.4. Let 2 = L?(0,1) and consider the operator A = i% with

D(A) =¢€10,1).

Then A is symmetric because for g, f € D(A)

1 1 1

wAn = [gir =i [71= [ = ag.5)

0 0 0
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But A is not self-adjoint. We have

1

[ i =i(str) - 5050) + [t

0

for general functions f, g.
We need to define Ay of A such that for all f,g € D(A)

9(1)f(1) = 9(0)£(0) =0

There are two possibilities.

D(Ag) = {f € H'(0,1)| f(0) =0= f(1)}
Aof =if

D(Ay) = {f e H'(0,1)| f(0) = f(1)}
A f =if

where we define

HY0,1):={feL?|f el

which is a Hilbert space.
Ag is a self-adjoint extension of A whereas A; is not.

Aj; has the eigenvalues 27n with eigenfunctions 1, (x) = €"*™* for n € Z but Ay has no

eigenvalue.

L S

é Y
Example 2.5. Consider H = L*(0,1), A = —A = —d? with D(A) = €%(0,1). Then

A is symmetric but not self-adjoint. There are three self-adjoint extensions of A.
(1) (Dirichlet Laplacian) D(Aq) = {f € H*(0,1)| f(0) = f(1) =0}, Aof = —Af.
(2) (Neumann Laplacian) D(A;) = {f € H*(0,1)| f/(0) = f'(1) = 0}

(3) (Periodic Laplacian) D(As) = {f € H*(0,1) | f(0) = f(1), f'(0) = f'(1)}

What is the “right” extension. For our purpose, we will focus on the Friedrich’s




extension.

An easy definition of a good extension would be to require

inf (u,Au) = inf (v, Av)
u€D(A) veED(Ap)
flull=1 loll=1

L where > is trivial but the reverse is not.

23

write A > 0 if
(u, Au) >0

for all u € D(A). Similarly, we write A > Bif A— B > 0. If A > —C1T for some

é Y
Definition 2.6 (Non-Negative Operator). We say that A is non-negative/positive and

. constant C' then A is called bounded from below. O )

there exists a unique self-adjoint extension Ay such that

inf (u,Au) = inf (v, Av)
weD() vl
lull= vll=

G

é Y
Theorem 2.7 (Friedrich’s Extension). If A : D(A) — S is bounded from below, then

Proof.

Step 1 W.l.o.g. we can assume that A > I (because we can replace A by A+const if necessary).

Define the quadratic form
Q(u,v) = (u, Av)
for all u,v € D(A). Thus (u,v) — Q(u,v) is an inner product, i.e.
e ()(u,v) is linear in v and anti-linear in w.

e Qu,v) =Q(v,u)
o Q(u,u) = ||ul|* for all u € D(A).

Define [Jullg = \/Q(u,u) = \/(u, Au) for all u € D(A). This is a norm on D(A). We

define the quadratic form domain

Q(A) = mll-\\@
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as the completion of D(A) with respect to || - |lg. Q(A) is a Hilbert space with the

inner product Q(u,v).
In fact due to the inequality ||ullq = ||u/|
D(A) Cc Q(A) c

and D(A) is dense in either space with the respective norms.

Step 2 (Definition of Friedrich’s Extension Ag) Let

D(Ag) = € Q(A)| sup [Q(z,y)] < o0
D
y ~

We claim that

D(Ao) = {z € Q(A)| 32 € # : Wy € Q(A) : Q(a,y) = (2,1}

The reason for this is the Riesz representation theorem as for all + € Q(A) we can

define
Qa) — C

L.
y— Q(z,y)
Then %, is a linear functional, and

sup | Z.(y)| < o0 <= &, is continuous <= Jz € A :Vy € Q(A): Z.(y) = (z,v)

yEQ(A)
lyll<1

as Q(A) is dense in 7. Thus we can define for x € D(Ay)

Aoz = 2

We now prove that Aj is a self-adjoint operator. First, we can show that Ag is sym-

metric. In fact for all z,y € D(Ay),

<:U7A0y> = Q($7y) = Q(yax) = (y,A0x> = <A01’,y>
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Thus Ay C Aj. It remains to prove that D(A5) C D(Ap). In fact

r € D(A)) < sup |[(z,Ap)| <00 < sup |Q(z,y)] < oo <= z € D(A)
yeD(Ap) yE€D(Ao)
lyll<1 llyll<1

Why is x € Q(A) (exercise using Q(A) = D(A)MQ)?

q.e.d.
rExample 2.8. Let us consider # = L?(0,1), A= —A = —d? and )
D(A) = {€*(0,1) | w(0) = u(1) = 0}.

Then A is symmetric and A > 0, but A is not self-adjoint.
The quadratic form of A is
Qu,v) = (u, Av) = /E(—v”) = /ﬂ'v'
the quadratic form domain thus is
Q(A) = DA = HJ(0.1) = {f € L*(0.1)| f' € L*(0,1), J(0) = J(1) = 0}
Land the Friedrich’s extension is Ag = —A with D(4,) = HZ(0,1). )

é Y
Theorem 2.9 (Min-Max-Principle). Let A : D(A) — S be bounded from below and let

Ag be the Friedrich extension of A. Forn =1,2,..., we can define the min — max-value

o(A)= inf sup (u, Au

a ( ) McCD(A) ue]\g < >
dim M=n ||u||=1

and we define

poo(A) = lim pn(A)  (finite or +o00)

If 1n(A) < poo(A), then wy, ...,y are the lowest eigenvalues of Ag. In this case oo is

called the bottom of the essential spectrum. U
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Remark 2.10. All of the min — max-values are well-defined by A, and there is no need

to consider Ag, but the when we talk about the eigenvalues, then A should appear. [

Proof. We shall prove the following for the case A = Ay. The general assertion then follows
from the fact that

Hn (A) = HUn (AO)

for all n € N which is left as an exercise.

Step 1 Assume that p; < oo, then there exists a m € N such that 3 = o = -+ = iy < oo
(since (py,), is increasing in m). In this case, we prove that py = --- = p,, are

eigenvalues of A (i.e. this is an eigenvalue of multiplicity m).

We claim that there exists a u € Q(A), such that

Qu) = %ig(f " Q(p)
lell=1

To prove this note that since p; = --- = p,,, we can find a sequence of subspaces Mj,
such that

e dim M, =m

e Forall ke N
max (i, Ap) < +27".

pEMy,
llell=1

We prove that there exist u, € My, for all £ € N such that |lug| = 1, ||ug — ugy1]] <
C\/éfk (with C independent of k). We find (uy), by induction. First, u; can be chosen
freely, (u; € My, ||uz|| = 1). Assume that we can already chose u,. Now we want to
find ug1 € My, ||ugsrl = 1, Jup — ugprq|| < C’\/§_k. If up, € M1, then upyq = uy.
If up ¢ My, then span(Myiq U {ux}) has (m + 1)-dimensions. By the definition of

M1 We know

max ’A 2 - >
WESpanﬁ]\JHk_FllU{uk}) <90 90> Hm41 M1
e

Thus there exists a ¢ € span(My 1 U {u}) such that (o, Ap) > pme1. Let us write
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¢ =a+ b with a € span{us} and b € Mj,,. We have

g1 < Q@) = Q(a+b) = 2Q(a) +2Q(b) — Q(a —b) <
< 2(p1 +279)|all® + 20 4+ 27FFN) 012 — pulla — b])> < 2-27F|a]]? + 2 27 FD)b)2 +

where we used that |la — b||? = 2||al|* + 2||b||* — ||a + b||* and ||a + b|| = 1. This yields

_ Hm+1 — M1
por = g1 <275 ((lalP (10l oo (lal® + (lol* > +T2k

Noting that for a,b € 5, a,b # 0

2]ja + b||
max{||al, [|b[f}

a n b H<
lall — oll]] =

Thus

L_‘_ng 2 < 22 < 2v/2 _C\/i—k:
lall  1[olH] ~ max{{lall, 16}~ \/fall + [[o]]2 \/mm;ul%

1

Since a € span{uy}, i.e. a = Auy, for some A € C, then we can choose uy1 € span{b}

such that

a b —k
lup — upia | = ‘ —+—H < CV2
llall — |]]

Using this, wee see that (uy), is a Cauchy sequence in J#, and hence there exists a

limup = w in 2. In particular ||u]| = 1. It remains to prove that u € Q(A) and
Q(u) < .

We know that u, € My C Q(A), |lugll = 1 and Q(ug) < py + 27F for all k. In the
Hilbert space (Q(A), | - |lg), ux is a bounded sequence, and by [Theorem 1.13| there

exists a subsequence that converges weakly to some v € Q(A). Since uy — u in J2,

we can conclude that v = v. And by lower semi-continuity

Q) = Jully < liminf [lug]}3 = lim Quy) < pu

Concluding ||u|| = 1 and Q(u) = p1. Take any p € Q(A), then

f(e) = Qu+ep) — pulle +¢]* > 0= f(0)
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Step 2
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Thus f'(0) = 0 which yields

RQ(u, p) = R (u, )

for all ¢ € Q(A) and replacing ¢ by ip we get the same equality for the imaginary
part, i.e.

Qu, ) = p1 (u, ) . sup Q(u,p) < pualul]

llell<t

Thus u € D(A), hence Q(u, p) = (Au, p) for all ¢ € Q(A). Thus we have Au = uyu.

Define V,, to be the eigenspace of A with eigenvalues y; = -+ = u,, and define
A, = A‘VlmD(A)' Then fi,(Am) = fman(A) for all n € N.

By the definition:

tn(Ap) = inf sup (u, Apu) < inf sup  (u, Au)
MCV:END(A) weM MCVEND(A) ue M@V,
dimM=n |lul|=1 dim M=n [Jul|=1

We claim that for M C V. then

sup (u, Auy = sup (u, Au).

ueM uEM®Vn,

fJull=1 flull=1
In fact (<) is trivial; to prove the converse we use that Agv = p1(A)v for all v € V,,,.
Indeed, for every u € M &V, we can write u = ¢ +v with p € VX and v € V,,. Then

we have

(1, A = {4+ v, Al +v) = (2, Ag) + 1 (A)o]]? w<@,/ﬁ> FlolPan(A)

Then for ¢ := |i

Tl
sup  (u, Au) = sup ({1, Ap1) + [[v]°pi(4)) <
UEMBVin PEMCV,
ull=1 Vi
el lv2=1

S(T=lol?)| sup (o1, Apr) | +[olPpa(A) < sup (1, Apr)
@1€M@Vm ‘PIEM@Vm
le1]|=1 lle1]|=1

because p1(A) < (p1, Apy).
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By the claim,
pn(Ap) = inf sup  (u, Au)

MCVy €MV,
dim M=n ler|=1

Defining N = M & V,,, we have dim N = n + m, and

pn(Ay) = inf  sup (u, Au) >  inf sup (u, Au) = fyin(A)
MCV}: weN  NiCH yen
dim M=n |lu]=1 dim Ny=n+m ||| =1

The other inequality is similar and uses the fact that if N C 5, with dim N = m +n,
then dim(N NV;}) > n. For this reason

pomn(A) Z pin(Ap)-

q.e.d.

4 Y
Theorem 2.11 (Max-Min Theorem). Let A : D(A) — F bounded from below. Then

m(A) = su inf u, Au
b (4) dimNEn—1“J-NCD(A)< )
flull=1

\ DJ

The problem with the Friedrich’s extension is that we do not know the domain of D(A,)

D(Ag) =gz € Q(A)| sup |Q(z,y)| < oo
yl\ezﬁljg)

and Q(z,y) = (Aoz,y) for all y € Q(A).

4 Y
Theorem 2.12 (Kato-Rellich). Assume that A : D(A) — S is self-adjoint and B :
D(B) — A is symmetric and D(A) C D(B), and e >0

[Bz|| < (1 = e)||Az[| + Cc[|«]

for all x € D(A). Then A+ B is a self-adjoint operator on the domain D(A + B) =
D(A). O
D)

.
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Lemma 2.13. Let A: D(A) — S be symmetric. Then the following are equivalent )
(i) A is self-adjoint.
(i1) both ran(A £1i) = .
o - Wy

Proof.

(i)=(ii) We prove that ran(A =+ i) is closed, i.e. if z, € D(A), then Az, + iz, — vy, then
y € ran(A + 7). We have
|4z + iz || = || Az|* + ||=]*

for all z € D(A). Thus [[(A+ i) (2m — )| = |A(xm — 20)||* + |2m — za||*. Since
(A + i)z, is a Cauchy sequence, Az, and x, are Cauchy sequences, i.e. Az, — a
and x, — b. But we know that A is closed, i.e. a = Ab and b € D(A). Thus
Az, + iz, — Ab+ ib = y which implies that y € ran(A + 7).

We now prove that ran(A + i) = 5. If ran(A + i) C 5, then there exists a z € 7
such that z ¢ ran(A + ¢) and
(z,(A+1)z)y =0

for all x € D(A) (by closedness of the range). Thus (z, Az) = —i(z,x). This in turn
implies that z € D(A*) = D(A) by Cauchy Schwartz, thus
0= <Z, (A + Z>$> = <(A - i)Z, ilf>
for all x € D(A), hence (A — i)z =0, Az = iz which implies
(z, Az) =i||z|* . 2=0
——
R
which is a contradiction.
(il)=(i) We need to prove D(A*) C D(A). Take z € D(A*). Since ran(A + i) = ), there

exists a € D(A) such that
(A+i)a = A"x —ix
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Thus
(A+i)a,y) = (A —iz,y) = (z, (A —i)y)

and because A is symmetric ((A + i)a,y) = (a, (A — i)y) and therefore for all y € D(A)

however as ran A — i = JZ it follows that x = a € D(A).

Proof of [Theorem 2.12. Note that

A+ B+in= (I+B(A+in)"")(A+m)

ran(A +in) = #, ran(I+ B(A+in)™') = 2 is | B(A+in)~!|| < 1 for n large enough and
ran(A+ B +in) = 2. g.e.d.

Lemma 2.14. Let B be a bounded operator and |B|| < 1, then (I— B)™! is a bounded
operator (in particular T — B is bijective) and ||(I — B)7!|| < (1 —||B||)~". O

Proof. Per the assumption we have that

Ry
n=0

converges in the operator topology (why?). Consequently

I1=B) <D 1B <D IBIM =1 =Bl
n=0 n=0

q.e.d.

Proof of [Theorem 2.13, First, it is obvious that A+ B : D(A) — ¢ is symmetric. Thus we
need to prove ran(A + B £ in) = S for some n € N,

Let us consider
A+ B+in= (I+B(A+in)"")(A+in)

because ran(A + in) = 5 because of the Lemma (and A = A*).



32 CHAPTER 2. SELF-ADJOINTNESS

So it suffices to show that ran(I + B(A + in)~') = J#. By the lemma it suffices to verify
that
|B(A+in)™!| < 1.

Take x € 7, we have per the assumption of the theorem that
|1B(A+in) x| < (1 —¢e)||A(A+in) 2| + C.||[(A +in) x|
—_——
eD(A)CD(B)

and for all y € D(A)
I(A +in)yl|* = [[Ay* +n*y* - [[(A+in)yll = nllyll.
Choose y = (A +in) 'z for all x € #
]l = [ (A +in)~ 2]

thus

N C.
Cel|(A+in) "l < =[]

and therefore
JA(A +in)~ 2| < [|z]

as for all a € R, {afm’ < 1. Thus

- C: Ce
1B +in) el < (1= 2ol + el = (1= + 5 Y ol < el

for n large enough, hence also ||B(A + in)™!|| < 1.
q.e.d.



Chapter 3

Spectrum

é Y
Definition 3.1. For an operator A : D(A) — 5. We define the Resolvent Set

p(A) :={z € C|(A—2)"" is bounded}

and the Spectrum
o(A) = T\ p(A).

Example 3.2. If Au = \u for some u # 0 then A € o(A). But in general the spectrum

is much larger than the set of eigenvalues.

é Y
Definition 3.3. e Discrete Spectrum
oais(A) := {Isolated eigenvalues of A with finite multiplicity}
o Essential Spectrum
Oess(A) := 0(A) \ 04is(A)
A L v
(Theorem 3.4. 0(A) is always a closed set. D)

33
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Proof. We show that p(A) is open. Take z € p(A). We prove that if |2/ — z| < € small
enough
A—d =A—z2+z2—2=(A-2)0+(:z—-2)(A-2).

Since (A — z)~! is bounded, we can conclude that (A — 2’)~! bounded iff
(1+(z—2)(A-2)"H
is bounded. This holds because
I(z =) (A=2) [ <ell(A-2)" <1

if £ > 0 small enough. The conclusion follows from qg.e.d.

é Y
Theorem 3.5 (Self-Adjointness vs. Spectrum). Let D(A) — J be symmetric. Then

A is self-adjoint <= o(A) C R

\ DJ

Proof. (=) Assume that A is self-adjoint. Take z = a+ b for a,b € R and b # 0. We prove
that z € p(A). Consider

A—z:A—a—%:b(A;a—Q.

A—a
b

Because A is self-adjoint, B = is also self-adjoint and ran(B — i) = . Moreover

(B = i)z|* = [|Bz|* + [l]|* > ||«

hence (B —1)~! is a bounded operator and ||(B —4)~!|| < 1. Thus (A—2)~! is bounded
with
1
A-2) <=
4= 27 < 5 = o
(<) Assume that 0(A) C R. Then +i € p(A) hence (A 4 4)~! is bounded and therefore
ran(A + i) = J hence A is self-adjoint.

g.e.d.
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4 N
Theorem 3.6 (Semi-Boundedness of Operators & its Spectrum). Let A be self-adjoint.
Then

inf Azx) =info(A).
L (z, Az) = inf o(A)
[|=]]=1
G U V.

Proof. Assume that (r, Ar) > E||z||* for all x € D(A). Then we have to prove o(A) > FE.
This will tell us that

inf Az < o(A).
xuel%l( N (z, Ar) < o(A)
z||=1

We know that o(A) C R. To prove that inf o(A) > E we need to show that for all € > 0
E —¢c € p(A).
Consider for all x € D(A) with ||z|| =1
I(A = E+e)zl| = (2, (A= E+e)z) > e

hence (A — F +¢)! is bounded and ||[(A — E +¢)7!|| < é < 00.
Now we prove that

inf (z, Az) > info(A
znel?( " (z, Az) > inf o (A)
z||=1

Assuming that inf o(A) > E we shall prove that A > E. Since E — ¢ € p(A) for £ > 0 we

have

f©) = {z. (A~ E+ o))

for some = € . We will prove that f(e) > 0 for all £ > 0. If this is true, then for all ¢ > 0
(A-E+e)'20 = (A-E+¢)>20 = A-E>0
For ||z|| = 1, and € > 0 we have (why?)
f'e)=—(2, (A= E+e) %) = —|[(A= E+e)al’ < = (2, (A= E+2)7")" = —f(e)’

- (f(1€)>, > ! )

hence
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hence for a > b > 0
1 1

fla)  f(b)
We assume that f(b) < 0 for some b > 0. From we have f' < 0 thus f is decreasing and
therefore f(a) < f(b) < 0 for a > b. From (px)

>a—0» (%)

%—1< (a—0)f(b) = 0< % <1+ (a—10)f(b)
for a > b, i.e.
0<1+(a—0)f(b)
which yields a contradiction for a large. qg.e.d.

~
Example 3.7 (Multiplication Operators). Take f to be a measurable function on

(Q, ). Define Ay on H = L*(Q, u) by
(Apu)(z) = f(z)u(z)
for u € L*(Q, ). Ay is a self-adjoint operator on
D(Ay) :={ue L*| fue L*}.

Take z € C. Then .
((Ay = 2)7hu) (z) = mu(fﬂ)

is well-defined if f(x) # z for a.e. x € Q. Moreover (A; — 2z)~! is bounded iff for all
u € L%

[l@==

This requires that z ¢ essran(f), where

dule) < € [ futa)Pante) =

esstan(f) = {z € C|Ve > 0: u({z € Q||f(z) — 2| <e}) > 0}

Thus o(A;) = essran(f). In particular, if there exists z € C such that u(f~*(z)) > 0

then z is an eigenvalue Ay with the eigenfunction u(x) = 1-1(,)(x).




Going back to the discrete spectrum and essential spectrum
Ay is self-adjoint <= f is real-valued
with the discrete spectrum being
oais(As) == {X € R| u(f~"(N)) > 0 and the eigenvalue has finite multiplicity }
and the essential spectrum is

Oess(Af) i= {)\ €o(A) | eigenvalues with infinite multiplicity or there exists
(An)p Co(A), Ay XA = A}

Similar things hold true for general self-adjoint operators but we need Spectral theorem
for this.

L

37
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Chapter 4

Spectral Theorem

Remark 4.1 (Motivation: Functional Calculus). For an operator A we want to define
f(A), where f is a given function. In the case, f(t) = t?, f(A) = A% but in general
f(A) is not triviall If A : D(A) — S, then A? : D(A?) — S but it is not obvious
that D(A?) is dense. O

1
Theorem 4.2 (Spectral Theorem for Unbounded Self-Adjoint Operators). Let A :

D(A) — S be self-adjoint operator. Then there exists a Borel subset Q@ C R™ for some
d € N, a Borel measure p on §2 which is locally bounded, and a function a : Q@ — R

which is locally bounded an p-measurable, such that
UAU* = M,
where M, is the multiplication operator associated with a, i.e.
D(M,) = {u e L*|au € L*}
and M, (u)(z) = a(z)u(x).

Here U is a unitary transformation L*(Q, p) — S and UD(M,) = D(A).
. In fact, we can choose Q = d(A) x N C R? and a(\,n) = . O

Remark 4.3. e Cauchy 1826 (matrices), Stone, von Neumann 1930s (motivated by
QM)

39
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e For A= —Ain 5 = L? (Rd). Under the Fourier transform we have

—

AF(k) = [k[* (k)
Thus A is self adjoint on the space
D(A) = H*(RY) = { f € 12| [k]*f(k) € L*}

e For a compact operator

A=\ [ (un]
n=1

with o(A) = (\,), C R and (uy,),, C 2 ONB. Then

0, if A\ o(A)
multiplicity of A, if A € o(A)

a(A,n) =\, pu(A,n) = {

O

é Y
Theorem 4.4 (Spectral Theorem, Functional Calculus Form). Let A : D(A) — S be

self-adjoint. Then there exists a unique linear map
B(R,C) — B()
f— f(A)
where B(R,C) are the bounded Borel (measurable) functions on R and B(H) such that
1) f(A)g(4) = (fg)(4)
2) f(4) = (f(4)
3) A (AN = [1£ | oe(oay
4) f(A) =0 iff f is supported outside of o(A).
5) o(f(A)) = f(o(A)). Consequently if f >0 then f(A) > 0.

6) If fu 1 f then || fu(A)u — f(A)ul| — 0.
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{ o)

4 Y
Theorem 4.5 (Spectral Theorem, Projection-Valued Form). Let A : D(A) — 5 be

self-adjoint. Then there exist a unique family of projection valued measures Py such
that

A= / AdPA(N)

o(A)

Here P is a family of projection-valued measures if
o P(0) = P(N)?
e P(R)=P(c(4)) =1
o IfQ=J 2, Q, where Q, are disjoint, then
N

> P(Q)u— P(Q)u

n=1

n—oo

— 0.

Remark 4.6 (Explanation). Assume the “multiplication version”. Thus we may as-

sume that A = M, on L*(Q, 1). Then we can define the functional calculus via

f(A) == M.

And for the “projection-valued measure version”

PA(B) == 15(A)
/ AdPA(N).

o(A)

U

Our strategy will be to prove the theorem first for bounded operators, then for unbounded
operators (whose resolvent is bounded), e.g. A > 1 ~ A~! is bounded, if A is not bounded
from below then (A +4)~! is bounded.
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4.1 Step 1 (Continuous Functional Calculus for Bounded
Self-Adjoint Operators)

Theorem 4.7. Let A = A* be bounded. Then there exists a unique linear mapping )
@, ¢ (R) — B()
fr— f(4)
such that
o ifft) =27 0= a;t? is a polynomial then f(A) = D e a; Al
e f(A)g(A) = (f9)(4)
o [[F(AI = NI flloo-
A\ L y

Proof. We define f(A) = > a; A7 if f is a polynomial. Now we want to extend this definition
to € (R). Since A is bounded, o(A) is a compact set, so € (R) can be reduced to € (c(A)).

Now we prove that if f is a polynomial, then

For every A € C we can write
f&y=x=cJe-x)
J

then
f(A) = x=C]J(A-t).

J

and
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(f(A) —X)! is bounded

(A —t;)"" is bounded for all j

t; ¢ o(A) for all j

(t —t;)"" is bounded for all j on o(A)
(f(t) — A) 7! is bounded ono(A)

A ¢ o(f(A))

rrroroe

pS
A
=
Q
=

Further we have

1S (A = sup o (f(A)] = sup [f(a(A)] = [|f]lo-

Now we have defined an operator .Z from the set of polynomials into the bounded operators

which satisfies

Z(NZ(g9) = [(A)g(A) = (f9)(A) = Z([g)
1L (O = 1A = [1f [l

This means that .Z is an isometry of a dense subset the C*-algebra ¢ (c(A)). Thus by

continuity we can extend it to the whole space.

q.e.d.

4.2 Step 2 (Spectral Measure for Bounded Self-Adjoint
Operators)

4 N
Theorem 4.8. Let A = A* be bounded in €. For every v € J, there exists a unique

Borel measure 1, on o(A) such that

(v, f(Ay) = / £ () du(t)

. for every function f € €(c(A)). d
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Proof. Using the linear map £ from the previous section we can define

G(o(4) — R
. F s o) = (o, f(A))

Then ¢ is linear and it is positive, i.e. f > 0 implies that ¢(f) > 0. Indeed, if f > 0 then
f = ¢? hence

= (v, (A)v) = (v, (9(A))*0) = [lg(A)v|* > 0

We can apply the Riesz-Markov theorem for functionals on the continuous functions which

gives us a unique measure i, such that

Mﬁz/ﬂMW)

o(A)

for all f € €(c(A)) g.e.d.

4.3 Step 3 (Spectral Theorem for Bounded Self-Adjoint
Operators)

Observe that for f € €(0(A))

1F (Aol = (v, f(A / 1o

o(A)

hence our mapping f +— f(A)v is isometric and therefore we may extend it to all of

L?*(o(A), p) as the continuous functions are dense, i.e. we may define

. L¥(0(A), py) — S, C H
' f— f(A)

If #, = {f(A)v| f € L*(0(A), u,)} = A then we are done, because we now have

=/fW%@
o(A)

for all f € L*(0(A), u,). We can define p = u,. But in general 5, C .



4.3. STEP 3 (SPECTRAL THEOREM FOR BOUNDED SELF-ADJOINT OPERATORS)45

~
Lemma 4.9. There ezists a family (v,), (at most countable) such that
-G
n=1
d{H, th l. 0
| an {H,,} orthogona )

Proof. Noting that A : H, — H, one can either use induction or Zorn’s Lemma.
Consider the set of I = (v;), such that

H =PH,

with H,, being orthogonal. Then Zorn’s lemma provides us with an [ such that X; is
maximal w.r.t. 7C”. Thus H; = S, because if Hy C J#, then Hi # {0} and since A is
self-adjoint A : Hy, — Hy,, A : Hi — Hji thus there exists vy € Hi such that Hy, C H;.

Then I' := I U{vo} has H; = H; @ H,, 2 H; which is a contradiction. g.e.d.
é Y
Proposition 4.10. Then
2(o(A), ) — L*(a(A), 1t
gy PO(A) ) — L), m)
f(@) — zf(x)
. L y

Proof. We check that A: H, — H,
UTTAUf = U TAf(Aw = U tg(A)
Here if f € L?, then g = zf(x) € L? because o(A) is bonded and
(o) = [ 1) = 2(1) = o] < o
Here A : H, — H, because if f(A)v € H, then
Af(A) = g(A)v € H,.

q.e.d.
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Remark 4.11. If H, = 5, then v is called cyclical. O

To conclude the proof. Let 5 = &, H,, with A : H,, — H,,.
Ai7 Az = A
such that there exists an isometry U : L?(o(A), p.,) — H,, and

So we can write A = @

el i, Now for every i € I there exists a p,, on o(A)

UiilAiUi = Mx on LQ(O'(A),/VLUJ
Now define 2 = 0(A) x N and p on), via
w(B;n) = 1, (B)

for some Borel set B and n € N. Then we can define U : L*(Q,u) — 5 by U = @, U;
where L*(Q, ) = @, L*(0(A), fty;). Then U AU = M, on L*(Q, ) with a(A,n) = \.

4.4 Step 4 (Spectral Theorem for Unbounded Self-Adjoint
Operators)

Let A: D(A) — S be self-adjoint. Then ran(A 4+ i) = # and (A £14)~! is bounded.

Lemma 4.12. S = (A+ 1), Then S* = (A — i)' and S*S = SS* (ie. S is

normal). O
Proof. Let x1 := Sz = (A+i)"'z € D(A) and y; := (A — i)'y € D(A), then
(S2.9) = (o, (A ) = (A ) n) = (A = ) = () = (. (A~ i) 1)
q.e.d.

Now define By := 3(S + 5*), By := 5-(S — 5*), then

. S+ S . S-S
B = 5 = By, By = — T = B,

So S = B; + 1By with B; and By being self-adjoint and bounded, and B; By = By B;.
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By the spectral theorem for bounded (normal) operators, there exists a unitary U : L*(o(S), u) —
¢ and a function f € L? such that

U™'SU = M; on L*(o(9),p)

We want to prove that U AU = M,. What is g7 Since S = (A +4)~! we might guess that
g = % — 1.

To prove that g is well-defined, we have to check that f # 0 a.e. Assume that f = 0 on
a set O with u(O) > 0. Then 0 # 1o € ker(M;) and since U~'SU = My it follows that
ker S # {0} which is a contradiction. Since Sz = 0 implies

Vye A (Sx,y)y =0 . (x,S"yy=0 .. Vze DA (x,2)=0

since S* : # :— D(A), hence x = 0.
Thus f # 0 a.e. and therefore we can define g = % — 4. Consider M4y = My =U'SU,
then

-1

Myyi = (M) =(UTSU) ' =U'STWU=UA+i)U . M,=U"AU

We also have D(M,) = U~*(D(A)) (which is easy to check).

4.5 Applications of the Spectral Theorem

4.5.1 Schrodinger Equation

Given A : D(A) —  self-adjoint then we are interested in the solutions of

10 (t) = A(t), fort e R
¥(0) =ty

Theorem 4.13. For all g € F, then there exists a unique solution to the Schrodinger
equation

¢ (t) _ 6—itA¢0
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L for all t € R with e~ "4 being bounded and unitary. 0 J

Proof. By the spectral theorem, up to a unitary transformation we have ¢ = L*(), ) and
A = M,. Then the equation becomes

10(t) = a(x)Y(t, z), fort € R
(0, ) = tho(x)

and this has the unique solution

U(t,x) = e "y ()

4.5.2 Spectrum of Self-Adjoint Operators

Let A: D(A) — . be self-adjoint. Then

o(A) ={X e C|(A—X)""is not bounded}
Oaise(A) = {N € 0(A) | Hy = {u| Au = Au} = ker(A — X) # {0} and dim H, < oo}

Theorem 4.14. If X is an isolated point in o(A), then X is an eigenvalue of o(A), i.e.
there exists an € > 0 such that (A —e, A +¢e)No(A) = {\}. O

Proof. By the spectral theorem H = L*(Q,u) and A = M,. Then o(A) = o(M,) =
essran(a) and A is an isolated point of o(A) iff A is an isolated point of essran(a). Recall

that A € essran(a) iff for every € > 0
pla ' A —e, A +¢)) >0
When & > 0 is small enough then a™'(A — &, A +¢) = a~'()\) per the assumption, i.e.
pa=(A) >0

Then define f := 1,-1) € L*(Q,p). Then f # 0 and af = \f thus f is an eigenvalue of
M,. q.e.d.
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4.5.3 Another Proof of min — max-Principle
Let A : D(A) — S be self-adjoint and bounded from below then

A)= inf .
1n(A) ynf | max (u, Au)
dim M=n [lull=1

The Min-Max-principle asserts that if p,, < pioo = limg_,o0 g, then pu, is an eigenvalue.

Let us prove that puy = o = - -+ = g < pigs1, then py = --- = py are eigenvalues. We know

that py = inf o(A) (exercise!).

There are two possiblities

e If 4y is an isolated point of o(A) or a='(p;) has positive measure then j; is an eigen-

value.

e If yy is not an isolated point and has zero measure then for for all € > 0

(1 —e,pa+e)Na(A) 2 {m}

Up to a unitary transformation we may assume that ¢ = L?*(Q,u), A = M,. We
know that for every ¢ > 0

pla™ (p — &, p1 +¢)) >0

This means that we can find a sequence ¢, | 0 such that

(a™ ([ + engr, 1 +€0])) >0

This is obtained by induction and the fact that p; is not an isolated point and

12%#(@_1@1 —e,m+¢)) =pla ({m}) =0

Define f, = 1o-1((u4ensr piten])- Lhen for all n € N

<fn7Afn> — fa|fn‘2
1ol J1fnl?

<1 +en
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Observe that f, L f,, if n # m. Thus for M,, :=span(f,,..., fon_1). Then

fn < sup (u, Au) < piy + ey
it

and therefore po, < pq which is a contradiction.

4.5.4 Weyl’s Criterion

é Y
Theorem 4.15 (Weyl’s Criterion). Let A : D(A) — J be self-adjoint. Then

o X\ € o(A) iff there exists a Weyl sequence (x,), C D(A) such that ||z,| = 1,
1(A = Nz =0

o \ € 0.55(A) iff there exits a Weyl sequence (x,,), C D(A) such that ||z,| = 1,
|(A—=N)z,|| = 0 as x, — 0 iff (), is an ONF.

o )\ € 0ys(A) iff X € a(A) but for all ||x,|| = 1, ||(A = Nz,|| — O there exists a

subsequence T,, — Tos strongly and ro, € D(A), ATy = A\oo.

Proof. (i) By the spectral theorem we may assume that J# = L*(Q,u) and A = M,.

Then let us assume

A€ a(A) =0(M,) =esstana < Ve >0:p(a”'(A—e,A+¢)) >0

For a sequence €, | 0 define f, := 1,-1(x—c, r4e,) 7 0 and x,, := Hj‘CZH' Then
fn n—00
(A= Nz,|| = (a—)\)Hf H <ep, —0

because |(a — ) f.| < €,|fn] pointwise.

Conversely, assume that there exists a Weyl sequence, (z,,), C D(A), ||z,]| = 1 and
I(A = )|l — 0.

We shall prove (A — A\)~! is not bounded by contradiction, i.e. assume that (A — \)~!
is bounded. Then 1 = ||z, = [[(A = X)"HA = Na,|| < |[(A =X ||(A = N)z,| — 0.
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(i)

(iii)

Assume that A € ge(A). Then for all € > 0
pla ' A —e, X +¢)) > 0.

Let us consider p(a=t(\)).

o If (@' (X)) > 0 then X is an eigenvalue of A with eigenfunction ~ 1,-1y).

e If A\ has infinite multiplicity, dim(ker(A — A)) = oo, then we can choose (z,),
ONB for ker(A — A) and (A — A\)zx, =0 for all n € N.

e If A has finite multiplicity, then it is not an isolated point of o(A), then we can
define Q,, = a7 *(\ — &,, A + &,,) for &, | 0 and (by going to be a subsequence if

necessary), (€2, \ Q,41) > 0 for all n € N,

Define f,, := 1g,\q,,, and z,, = ”;—:” We have

I(A = M| < &0 =0

similarly to (i) and (z,),, is an ONF because €, \ Q,+1 and Q,, \ Q41 are disjoint
if n # m.

o If u(a=*(N\)) =0, then (2, = a~*(\) and therefore

lim 41(Qn) = p(a™" () =0

n—oo

Thus up to a subsequence we can assume that (€2, \ 2,4+1) > 0 for all n € N and

proceed similarly.

In summary we proved that if A € oe(A), then there exists an ONF (z,), in D(A)
such that ||z,|| =1, |[(A — A)z,| — 0. Then in particular x,, — 0 weakly.

It remains to prove that if there exists a Weyl sequence (x,),, z, — 0 weakly, then
A € Oess(A).

To do this assume (iii) for the moment. Since A has a Weyl sequence, by (i) A €
o(A). We check that A ¢ ogis(A). Assume that A € og;5(A4). By (iii), there exists
a subsequence z,, that converges strongly in ¢, but this is impossible as z,, — 0

weakly:.

Assume that A € og;(A), i.e. A is an isolated eigenvalue with dim(ker(A — \)) < oc.

Because A is an isolated point of o(A) there exists an € > 0 such that |t — A| > ¢ for
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all t € o(A) \ {\}.
Thus [[(A — N)ul| > elJu|| for all u € ker(A — \)*. Now take a Weyl sequence (). We

may decompose it as z,, = Pz, + Ptz,, where P is the projection onto ker(A — \) and
Pt =1—P. Then

(A= Nzn|l = || (A= NP, +(A = NPy || > e||Pra,|| . Pz, =0
=0

n—oo

|x, — Px,|| —— 0
Since P is a projection onto a finite-dimensional space it is compact. Thus Pz, is
pre-compact, i.e. we can go to a subsequence and assume that Pz, — x, strongly.
T, — Too and

n—oo

Az, = (A= Nz + Az, — Moo

Since A is closed, To, € D(A), AToo = Ao

Conversely, assume that every Weyl sequence there exists a subsequence such that
Ty — Too € D(A). We have to prove that A € ogis(A). If A € 0ess(A), then by (ii) there
exists a Weyl sequence (z,,), such that z,, — 0 weakly. But then x,, cannot converge
strongly.

qg.e.d.

From the proof we get

r
Lemma 4.16 (Spectral Gap). If A\ is an isolated point of o(A), then there exists € > 0

such that for all u € ker(A — \)*

1A = Nul| = elu]

[ This holds even if X has infinite multiplicity. 0

4.

5.5 Weyl Theory

A corollary to [I'heorem 2.12| which we can now prove is

(Lemma 4.17. Let A : D(A) — 2 be self-adjoint, B be a compact self-adjoint opemtor.]
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Then A + B is self-adjoint (by|Theorem 2.13) and

Uess(A + B) = Uess(A>-

O

Proof. Assume that A € 0es5(A). Then there exists a Weyl sequence (x,,),, C D(A), ||z,|| = 1,
(A= A)z,| — 0 and x,, — 0. Then z, is also a Weyl sequence for A+ B because Bz, — 0

strongly as B is compact. qg.e.d.

4 Y
Definition 4.18. A : D(A) — J be self-adjoint. B : D(B) — 4 symmetric and

D(A) C D(B).
Then we call B “A-compact” (relatively compact w.r.t. A)if B(A+1i)~! is a compact

operator. |
. y

Remark 4.19. If we know that A > 1, then B is A-compact iff BA™! is compact.

Proof. If B is A-compact, then

BAT'=B(A+i) M (A+i)AT!

vV vV
compact bounded

where the last follows from the inequality ‘“T“ = @ <V2ifa>1. Thus BA!
is compact as the compact operators are a double-sided ideal. Conversely, if BA™! is
compact then

B(A+i) ' = @:A(A +4)7.

compact bounded

Lemma 4.20. Assume that B is A-compact. Then for all € > 0 there exists C. > 0
such that for all x € D(A)

|Bz|| < el| Azl + Cc|l]]



54 CHAPTER 4. SPECTRAL THEOREM
L o)

Proof. Assume that B(A + in)~! as in the proof of [Theorem 2.12l We have for all
xeH

|B(A + z'n)’le = | B(A+ i)’l (A+i)(A+ in)’1 x| <enllz|.

~
compact bounded
with €, | 0 (exercise).

Then for all z € D(A)

1Bzl = | B(A+in) ™ (A + in)a|| < eull(A + in)al| < ev/[| Azl + n2[? <

< enll Az + (enn) ).

q.e.d.
4 Y
Theorem 4.21 (Weyl). If B is A-compact, then
Uess(A + B) = Uess(A)-
A L v

Proof. Let A\ € 0ess(A), then there exists a Weyl sequence (x,),, C D(A), ||z,|| = 1, such

that ||(A — A)x,|| — 0 and z, — 0.
Then we prove that z,, is also a Weyl sequence for A + B, i.e. Bx,, — 0. To see this note

that e e b
+1 — +1
1= - — (ALY AN NN+
AT A Tag At A+
then
Br, = B(A+i)"" (A= Nap+ (A +i)z, ) 0.
h— t S =0 g 0
compac N

g.e.d.

Remark 4.22 (Spectral Theorem). 1) Multiplication U AU = M, on L*(Q, p).

2) Functional Calculus: f(A) can be defined such that

o [(A)g(A) = (f9)(A)
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o f(A)=f(A)

e o(f(A)) = f(o(A))
Multiplication is useful to study the spectrum of one operator. However, if A, B are
self-adjoint operators (that might not even commute), then the multiplication version
is not useful to study A + B, as Uy # Up.
We may use the functional calculus. If A and B commute, then f(A) and g(B) commute.

When f, g are polynomials this is obvious and may be generalised 0
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Chapter 5

Free Schrodinger Operator —A

é N
Theorem 5.1. Define A = —A on €° (Rd). Then there exists a self-adjoint extension

of A to the Sobolev space
D(A) = H*(RY) = {f € L*(R?) |V|a| <2: D°f € L’} = {f € L*(RY) | |kI*f(k) € LQ}

In fact for all u € D(A)
Au(k) = 4 |ka(k).

. g J
4 Y
Definition 5.2 (Fourier Transform). For f, g € L'(R?), define
f) = [ flajemeas
R4
a(k) = / g(z)e* e dy
Rd
. U y
é Y
Theorem 5.3. e For all f € L'(RY) N L?(RY)
1 £llz2 = 1]l 2 (Placherl Identity)

This allows one to extend the Fourier transform to an isometry in L*(R%).

57
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e [nverse Fourier transform@

@)= [ Foyerm=ar
]Rd

e Duality
<f7§>L2 =(f,9)

G

r
Definition 5.4. For a = (ay, ..., aq) € N? and k € R? we define

(Du)(x) = (95, - Opru) ()

d d
(ck)® = c'a\ Hk}lj, lo| = Zaj
=1 j=1

G

’
Theorem 5.5. If f € €>° (Rd), then for all o € N?

Df(k) = (2mi)* (k).

Proof.
Oa (k) = [ On, f(x)e™ " de =
/
- / f(x)awje—%rikwdx —
R4

— (2mik;) / F@)e 2k dy — (2miky) (k)

Proof of [Theorem 5.1 Let u € €>°(R?). Denote Fu = @ then

F(Au)(k) = —Au(k) = —(2mik)%a(k) = 472 |k|*a(k)
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Since . : L? — L? is a unitary transformation we see that
FAF ' = Mgz 2.
Here M2 can be extended to a self-adjoint operator on
D(Myzep2) = {g € L* | 47*|k|*g € L*}
A can thus be extended to a self-adjoint operator on
D(A) = {f € L2 | 4n|k[2f € L2} —: H(RY)

g.e.d.

Remark 5.6. A = —A in D(A) = H*(R?) is the Friedrich’s extension of A defined on
6> (RY). O

é Y
Definition 5.7 (Sobolev Spaces).

H'R?) := { f € L(RY) | k[ f(k) € L*R%) }
This is a Hilbert space with the inner product

ummz/ﬁ%wuﬂ%ka

. DJ

4 Y
Definition 5.8 (Weak Derivative). If f € Ll i.e. f € L'(K) for all K C R? compact

loc»

and g € LL _(R?), then for a € N¢ we call D*f = g in the weak sense (or g the weak

loc

derivative of f) if for all ¢ € €>°(R?)

/fD%: (—1)'04/990.
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Remark 5.9 (Motivation). If f € € then

[ oo =0 [0rpye

Thus the strong (or usual) derivative agrees with the weak derivative if the former

exists. However even if f ¢ €, we can still define its weak derivative. U

.
Theorem 5.10.
H'RY) ={f € I’(R) |Va e N¥|a| < s = D°f € L*(R%)}

. DJ

Proof. Assume that f € H* ie. fe L% |k|*f(k) € L% Take o such that |a| < s. We prove
that D[ exists and belongs to L2. For all p € €>°(R?)

/ fD% = (DG, f) 2 = <5c%, f>L2 - / (2mik)o f (k) dk

thus
[

where we used that |k|*f(k) € L? and |k|'® < C(1 + |k|*).

Thus .Z(¢) = | fDp is a continuous functional on €>°(R?) and therefore L?. By the Riesz
representatlon theorem we now prove that there exists a unique g € L? such that g = D*f.
By Riesz there exists an h € L? such that £ (¢) = (h, ) for all ¢ € €. thus we can choose
g= (=1

Conversely, assume that f € L? and for |a| < s D®f € L2 We need to prove that f €
H*(RY), i.e. |k|*f(k) € L2,

Again, take p € €>°(R?). Then we compute

[ Rkl Rk < ikl )|, [l < o0
~——

=llell L2

(@, D"f) = / (D fp = (1) / D% = (~1) / @rik) Bk f(R)dk = (%)
= (. (-1 1CriR)*f (k) )
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Using
lgllz = sup  [{¢, 9) 2| = llgll L2
PeE(RY)
lphill 2 <1
we find by that
1D fllr2 = |(—1)*@2mi-) flle . VaeN:|a|<s = [k°|f(k) e L?

and therefore also |k|*f(k) € L2.
qg.e.d.

Remark 5.11. |||z = || f|lz2 and || f||ze < || f]|z2 for all f € L'. The second claim

follows from

(k)| = ‘ / f<x>e—2”“dx' < [1f@iar =1l

Theorem 5.12 (Hausdorfl-Young). If f € LP(RY), 1 < p < 2, then f € LP € R with
Ll =1 and ||fll <IIfllee- O

4 N
Theorem 5.13 (Riesz-Thorrin Interpolation Theorem). If we define a linear operator

£ such that

L L — qu’ ||$||P0,q0
L — LY, 1L [|p1 01
Then £ can be extended to LPs — L% with ||L||p, 4 < 1 where

1_1—3 S 1_1—3 S

)

Ps DPo b1 qs qo q1

) 0,1]. O
Lfora z € 0,1] )

Proof of [Theorem 5.19. Define Lu = 4, then .Z is linear and ||L|l22 < 1 (po = o = 2) and
[Z]l1,00 <1 (p1=1,q1 = 00).
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Thus by the Riesz-Thorrin theorem we have ||.Z||,, 4, with

De > 1 2
1_1—3 s_l—s

s 2 00 2

1_1—3 s_l—i—s

for all s € [0,1], i.e. p;* + ¢; ! = 1. In particular p, € [1,2]. qg.e.d.

4 N
Definition 5.14 (Convolution). We define for suitably integrable functions f, g

(f + 9)(e) = / £z — 1)e)dy.

For such functions
o fxg=gxf

o (fxg)xh=fx(gxh).

Remark 5.15. Observe that if f € LP, g € L9 with }lo + % =1 then

(o)) = ' [ 1 —y)g(y)dy' < (1 ura) " ([ 1atwiear) " gl

U
é N
Theorem 5.16 (Convolutions). If f € LP,g € LY then fxg € L" and
1 * gllzr < I £llbllgllq
where
1
1+==—+-
r p g
A L y

Proof. e If r = oo then this is the case from above.
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o If r=p, ¢ =1 and we have

(1= | e st < (f1swnn) " (f it —ortaton )

and therefore

/I(f «g)(@)Pdz < g} / £ = Pla)ldydz = gl 7 11 = (gl 1 £1,)”

asl—l—ﬁ:p.

e For all other r, p < r < 0o, we can use the Riesz-Thorin theorem.

q.e.d.

4 N
Theorem 5.17. Ifp ' +q¢ ' =1+r"1 and r € [1,2], then for all f € LP, g € LY,

fxge L™ and m e L" where r~' + '~ =1 and

frg=fa
§ = <
Proof.
- / / flz —y)e ™+ eV dng(y)e > vdy = f(k)g(k)
g.c.d.
,

\
Theorem 5.18 (Fundamental Theorem of Calculus of Variations). If f € Ll (RY) and

JECEOEE

Lfor all p € €>°(RY). Then f =0 a.e. O
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4 N
Theorem 5.19 (Approximation of § by convolution). For any g € L*(R?), [g =1

define
gn(2) = n’(gnz)

(such that [ g, =1). Then for all f € LP(R?) with 1 < p < oo

n—00

gn*f?f-

Proof.

Step 1 Assume that f € €>°(R?). Then

(ga % £) (@)~ (z) = / gu(2—1) f () dy— / gulz—y) f(2)dy = / gulz—)(F(4)~ F(2))dy.

Let us assume that g has compact support, e.g. supp g C Bg(0) thus supp g, C Br(0).

Thus

|(gnf) (@)= f ()] < (/Ign(fﬂ—y)ldy) sup |f(2)—=f(@)| < llgller sup |f(2)—f(2)] == 0

|z—z|<E lo—a|<f

Step 2 Now let f € LP(R?). Using the denseness of €>=(R?) in LP(R?) we can find f. € €
such that || f — f:||, <e.

We have

lgn*f =Fllp = Nlgn * (f = fo) + gn* fo = Jo 4 fo = flloll < lgn * (F = f)llp Hlgn*fe= Fellpt 1= Fllo S

lgnlla 17—l
thus we have by Step 1
: 0
limsup [|gn * f = fll, < (lglh + DILfe = fll, +0 < e == 0.

n—oo

Step 3. For the general case g € L'(IR?) one has to approximate g by functions with compact
support.
q.e.d.
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Proof of |[Theorem 5.18.

Step 1 Assume that f € L'(R?). Choose g € €°(R?), [ ¢ =1 and g,(z) := n’g(nz).

By the previous theorem g, * f — f strongly in L*(R¢). On the other hand g, (z —y) =
o(y) € € thus

<%*ﬂu»=/QAx—mf@my:o

for a.e. . Thu f =01in L', ie. f =0 a.c.

Step 2 Let f € LL (R?). Choose h € €. It follows that fh € L'(R%) and for all p € €>°(R?)

loc
/ fhe =0
~—~
€6

Applying Step 1 with fh implies that fh = 0. This is true for all h € €° thus f = 0.
g.e.d.

5.1 Sobolev Inequality

4 Y
Theorem 5.20 (Standard Sobolev Inequality). For d > 3 and f € H'(R?), we have

IVfllz = Call £l
with p* = dQsz, where the constant Cy is independent of f. U
A\ y
4 N
Theorem 5.21 (Hardy-Littlewood-Sobolev Inequality). Ford > 1,0 < a < d, %-l— % 4F
52
f(@)g(y)
[ [ 2 axay| < Clslgl
|z =yl
R Rd
G U V.

Proof. Assume that f,¢g > 0 and || f]|, = ||lgll; = 1. Using the Layered-Cake representation
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for f >0
:/]—{f(z)>a}da
0
9(y) = / Lig(y)>bydb
0
—1 i [ —a—1
|z —yl|* 1{|z uT® seyde = ¢ L{ja—y<cpde
0 0
Then
// |x—y|a dmd _/////1{f(:v)>a}1{g )b} L{o—y|<cpac” @ ~da dbdc dzdy

R R4

We can ignore of the three characteristic functions to get an upper bound. Defining

I(a,b,c) = / / 1{s()>a} Lg()>by L{je—y<cyrc " dady

Rd R4

we can use Tonelli’s theorem to rewrite

E:///I(a,b,c)dadbdc
00 0

Ignoring one of the three characterstic functions we can estimate
I(a,b,c) < ha(a)ha(b)ac™™!
where

hl (a)

%L %\

L{f(@)>aydz

ha(b) : Lig(y)>erdy

Similarly
I(a,b,c) < ha(b)hs(c)ac™



5.1. SOBOLEV INEQUALITY

where

hg(c) = /1{my|<c}dx = |B1|Cd

R4

also I(a,b,c) < hi(a)hs(c)ac™@ 1.
Thus
I(a,b,c) < min{hi(a)ha(b), hi(a)hs(c), ha(b)hs(c) yac L.

We estimate

(e}

/I(a, b, c)dc = / I(a,b,c)dc + / I(a,b,c)de <
0 ha(c)<hi(a) h3(c)>h1(a)
<C / hy(b)ctc e + C / hy(a)hy(b)cte ™ de =
ha(c)<hi(a) h3(c)>hi(a)

e

= C'ha(b)hy(a) T + C"ha(b)hy(a) T = Cha(b)hy(a)"~

By the same argument we can also show that

/ I(a,b,¢)de < Chy(a)hy(b) 4.

0

Combining these two

(e 9]

/I(a, b,c)de < Cmin{hl(a)h2<b)1—%7 hg(b)hl(a)l—%}

0

Integrating over a, b we find that

[ ele eliNe o}

///I<“’b’ ¢)dedbda < C// hu(a)ha(b)' +C//h2(b)h1(a)1—3 _A+B

P
b<a b>ad

Using the identities

1= / |f(2)Pdz = p / ha(a)a""'da

= / o) de = g [ ()b

67
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We find

A< 0// hi(a)hyi(a)hy(b) ™9 dadb = C’/hl(a)ap_l / a~ "Dy (b)~d dbda
b<

b<a

IS
SIS]

If we bound can bound

/ a~ P Vhy(b)-9db < C

SIS

b<a

(independently of a) then we can estimate A. Indeed

/ hao(b)~ddb < / ha ()b~ Ldb / b=¢db

b<a

S1iS)

here (¢ —1)(1 - 9) — &5 = 0. We have 0 < § < 1, then
by —E+1
/ btdb = C(at)

Thus

since —(p— 1) +2(=(+1)=0as j+ .+ G =2

For the second term we have

analogously to A. q.e.d.

é Y
Theorem 5.22 (Fourier Transform of #) Defining c, 1= w_%F(%) where I' is the

Gamma function. Then for 0 < a < d

—

1 1
Colgle = o pjae
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in the sense that

//}x_ma d“dafi%ﬁghk

Rd

LfOT all f,g € €>(RY). O

Remark 5.23. e The left-hand-side is well-defined if f € LP, g € L? by the HLS
inequality, if 1 —i— 2=2-23

e The right-hand-side is well-defined by the generalised Hausdorff-Young inequality
(see Chapter IX.4 of Simon and Reed, Methods of Mathematical Physics).

e In general, for a function w nice enough we have

//mg(y)w(x—y)dxdy:/f—xg*w)(l“)dx:<f’g*w>:<f’w>:

Re Rd
(7.am) /f )i (k
Consequently, if w > 0 then

| [F@swut - pass = [ 1700 > o
[

In particular

for all f nice enough.

Lemma 5.24 (Fourier Transform of Gaussians).

—

k2 .
e~ = 7™ in RY
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More generally for A >0

e S .2
N2

0]

Proof. We have for x, k € R?
d
Y —rz? —2mik —m(a?+4+a2) —2mi(kizi+tkqzq) —ra? —2mik;z;
e (k’): e~ g 2mikT 0 e (@ z3) g~ 2mi(k1z1 d:vddl,:H e~ o Wz]a:]dl,j
R4 Rd J=lg

Thus we can restrict to d = 1. In this case

2 oo (249 g2 _ 12
/6 L 2mkxdx — /6 w(x +21k:z)dx —e wk /6 7 (z+ik) dr

R R R

We only need to prove [ e~ @ik qg = 1 for all k. Obviously this holds for £ = 0 and
R

d 22 d 2 d s
Bl —m(x+ik) _ —7(x+ik) —9 —m(x+ik)? . w(z+ik) —
Tl dr = /dk dr = / mi(x +ik))e de = z/dxe dr
R R R
_ Z-efﬂ(m#»zk) > =0
thus the integral is independent of k& and therefore is equal to 1 for all k. g.e.d.

Proof of [Thearer 5.23,

:/e‘tts_ldtt =ity / —m (A2 (wa?)dN = (rx?)® [ e AN
0 0

0\8

Thus we have

(e 9] o0

5/6_“%2”4’”01A Cs|$|_sz/€_”m2)\§‘1d>\

0 0

Taking the Fourier transform of both sides

o 0 o [e.e]

_— — 1 2, 1 Ldt
colz| =4 =" /e‘“xQ/\2‘1d/\ = /A—de—”’&m—ldx e /tge_”k2t1_2t—2 - /e_”tkztdz_ldt -
2

0 0 0 0

— cd—s|k|_(d_
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qg.e.d.

Proof of |Theorem 5.20.

_ = —qg(k A /2 a(k)12 /2
[70= [Fa= [miwsar < ( [umiwpa) ([E0Ea) -
N [ g )"
=C V] o — &2 < CIV£llallgllg
Where§+%+‘%2:2, hence%zl—k%, #—i—%zl. Finally
[fllpe = sup [(f,9)| < CIVSl2
llgllg<1

q.e.d.

Remark 5.25 (Fractional Sobolev Space). Recall that H*(R?) = {f € L2||k|°f(k) € LQ}.
This definition is good for all s > 0. When s ¢ N, H*(R?) is called a fractional Sobolev
space. This is relevant in “relativistic physics”. In this case the Kinetic energy operator
then

S\ o 2
VA T+ 2 — Pm = —A ~ 2e2m if —A<c'm
vV —=A + 4m2—|—62m N 7 T —A>>02m

where m is the mass of the particle under consideration and c is the speed of light. [J

é N
Theorem 5.26 (Fractional Sobolev Inequality). Take 0 < s < min{1, %} andp = 2L
Then for all f € H*(R?)

(f, (=A)f) = ClIfll5-
The constant C' > 0 is independent of f.
Here
(o (=85) = [ 1700 Pl kpya
Rd
A U y

Proof. Analogous to the integer case. g.e.d.



(d >

72 CHAPTER 5. FREE SCHRODINGER OPERATOR —A

Returning to H! does a version of the Sobolev Inequality hold for d = 1,2. It does not hold
that
IVfll2 = CllA

for d = 1,2 for any p.

4 Y
Theorem 5.27 (Full Sobolev inequality for H(R%)). We have

£l @ey = Cllfllp

where
2<p< A, ifd>3
2<p< oo, ifd=2
2<p<< ifd=1

in the last case f is even continuous. Heuristically, the Sobolev inequality is stronger

L i lower dimensions. O )

Proof.

3) We know that

[l = 1V Ffllz2 = Cllf
11l = (1 f]l2

where p* = -*5. By Holder’s inequality we know that for 2 < p < p*

£ 1lp < maxc{[| fllz, [[ Il }-

i /(1 + 472 k?)| f (k)| 2dk
R2

Take 1 < ¢ < 2. Then

b
—

|
N

151z = / o < | [0 w0 { [
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9

2

_9g
12

where & —n(1 —2) =0 hence n = = 5%, > 1 which implies that

1
L k=
/(1+47r2|k;|2)’7 ¢ <oo

R
Thus we know that ||f||g < C| fl|%:- On the other hand
1£1lp < 11l < ClL L
for%+%:1and1<q<2, ie. p € [2,00).
(d =1) Assume that f € €>°(R). We have

MF/NW

and therefore

from which follows
[f(@)]* = |f(x)?| =2 /f(t)f’(t)dt < 2| fll2lf |2

Thus [[f[I3, < 2If 1120112 < 20170
By approximation (as > is dense) it follows that the inequality holds for all f € H!(R?).

Consider f € H'(R) we find again by approximation via smooth functions that

1/2

y y 12 Yy
U@ﬁ@b/ﬂ%élﬂt /WW& < I1fbvie =9

xT

Thus f is Holder continuous and in particular continuous.
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Remark 5.28. If f € L?(R), then f(x) does not make sense point-wise. However, the

above theorem says that if f € H!, then there exists a unique representative in [f]

which is continuous. In this sense H'(R) C R. O
é Y
Theorem 5.29 (Sobolev Embedding). Let (f,), € H'(R?) be a bounded sequence.
Assume that f,, — f weakly in H'(R®). Then for every bounded set Q (or more generally
A(Q) < o0) then
lofn — 1of
Lr(R4)

where

2<p< PG ifd>3

2<p< ifd=2

2<p< o0 ifd=1
in particular in the last case L*°(w) = € () with the supremum norm. O )
Remark 5.30. Here f,, — f weakly in H' iff for all g € H!

(fas @i > (fo g (%)

which is equivalent to
fo 2225 f in L2

()
Opifn =20, f  in L2

The direction :> is trivial. The converse follows since f,, — f in H! implies that
fn — fin L? as the H' topology is stronger than the L? topology. On the other hand,
Oz, [n 18 bounded in L?, thus we can descend to a subsequence such that d,,f — g;

weakly in L?. The limit d,, f = g; because for all ¢ € H'

Further note that the function 1q : f + 1of is thus a compact operator H'(R?) —
LP(RY).
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Proof. We introduce g, = €2 f,, i.e. §n(k) = e % ** f (k).

Then
o= fully = [ a0 = Fuai = [ (7= = 1)1 o) P
R4 R4
Note that
1> e > 1 - an?|k)?
thus

0<1— e I < par?|k)?

whence we follow

0<1—e M <min{l, t472k%} < /t472 k|2

and therefore
2

< tar?|k|?

_ 21112
‘1_6 t4m? k|

Using this we may estimate

lgn = Full2 < / #47k2| f ()Pl = ¢ / IV ful2de <t 1% < Ct

R4 R4

Now

Ilafn — 1aflz = || 1afa — Loe fr + 1o (fu — f) + Lae™ f — 1Qf||2 <
< ta(fa =2 fo)lla + 1o (fu = Pllz + 1L f = |2 <
<N fo = €2 falla + 1106 (fo = Pllz + 1€ f = fll2 <
<V fulla + 1 lla) + [110e™ (fa = )l

Using the lemma below we may rewrite the last term as

A= 0@ = o [ ) = Ty

Rd

Since f, — f weakly in H' it follows that f, — f in L? and thus since for all z € R?

lz—yl

yrs e aw € L*RY) it follows that for a.e. x € R?

e (fu = f)(z) == 0.
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However, we know that

1/2

1/2
|2 (fa = Na)] < ﬁ (R/ e dy /\fn —IF) <G

Thus we may bound 1ge®(f, — f) < 19C; € L*(R%) as M) < oo and therefore by

dominated convergence it follows that

1o (f, — f) =30

L2
and therefore we find that

t—0

limsup || 1o f, — Lafll2 < VIC +0 =50

n—o0

We conclude that 1qf, — 1of — 0 strongly in L?(R%). Moreover,

1Lafn = Lafllpr < [fo = fllpr < Cllfa = fllr <C

by the Sobolev inequality with p* chosen accordingly.

By interpolation it follows for p* < oo now that for all 2 < p < p*

n—oo

1o fn = 1aofll, — 0.

The special case d = 1, p* = oo follows from

T

fal@) — £a(0) = / F()dt "= / F(8)dt = f(z) — £(0)

0

as f! — f" weakly. We will have finished the proof if we can show that f,,(0) — f(0).

Take g € €°(—1,1), [g =1, g > and g,(z) = ng(nz). Using the mean value theorem for

integrals we know that there exist for all n € N, 2] € (—L L) D SuUpp gm, such that

m’m

[ o) su@rte = 1) [ gn(a)de = a7
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and zy € (—%, %) such that

[ omta)s@rts = 1ia) [ anlode = 1o

n—oo

in particular f,(z") —— f(zg").

As (fn), is weakly convergent it is norm bounded, i.e. there exists M € R such that

| f e, | full e < M in particular this family of functions is equicontinuous as for all n € N

o) = @) < N2V |2 =yl < MA/|z =y

and analogously for f. Thus for any € > 0 we can find m € N large enough such that for all
T,y € (——,%) and n € N

€ €

[fal2) = faW)l < 50 1f(@) = fly)l < 5

and therefore for n large enough such that |f,(z}) — f(zg")| < § we find

9 €

[£2(0) = SO < [£a(0) = fulwi?)| + falal?) = Ff)] +1£(55) = FO < 5+ 5+ % <e

ie. fu(0) === f(0).

Consider the case € is compact. Assume that ||1o(f, — f)|lcc 7 0. Thus there exists a
sequence (z,), C €2 such that

||fn(xn) - f(xn)| =e>0

for some ¢ > 0 and all n € N. By going to a subsequence if necessary we may assume that

T, — xo for some x( € €.

Recalling the proof of the Sobolev inequality we note that |f(x Vi9e =yl fll -

Thus we have

e < |fulwn) = fan)| < [faln) = folo)| + [fu(2o) — f(@0) + [f(x0) — f(zn)] <
< Vlea = 2ol (I full s + 111 falzo) — f(zo)| = 0
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4 Ny
Lemma 5.31 (Heat Kernel).

tA 1 _le—y?
0@ = e [ € 1)

R4

Remark 5.32. Suppose that A : D(A) C L? — L? with
(Au)(o) = [ KCo)uly)dy
the K is called the kernel of A. In particular consider the operator
Au(k) = f(k)a(k)
and assume that (Au)(xz) = (G * u)(z), then

Au(k) = G« u(k) = G(k)a(k)

and thus G(k) = f(k).
Thus if G = f, then Au(z) = G *u, i.e. G(x —y) is the kernel of A O

é Y
Example 5.33. A = ¢'® for t > 0. Then

@(k) _ 6—t47r2k2a(k) o fk) = otk

What is G,
Recalling that

it follows that
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Consequently .
‘A - _\z—gF
(6 u) (23) - (47Tt)d/2 /6 4 u(y)dy
R4
\ J
é Y
Example 5.34. Consider the operator A = (=A)™', f(k) = ;=z. The kernel of
(—A)tis
1
G(x) = 47T2—|_|2(95)
Using the Fourier transform of |z|~* it follows that
1 Cq—2 1
G pum—
(%) A2 ey |x|d2
Lfor d> 3. J
é Y
Theorem 5.35 (Green’s Function of the Laplacian).
Sl ifd»3,
G(z) = | =5 In(|z]), ifd=2,
—2|zl, if d=1.
is the kernel of (—A)7Y, i.e.
(-8) (o) = [ G-ty
Rd
A\ U y
é Y
Theorem 5.36 (Sobolev Inequality/Embedding for H*(R?)). Let s € N. Then
e Id : H*(RY) — LP(R?), f > f is a bounded operator for
2<p< 2, if d > 2s,
2<p< oo, if d =2s
2 < p< oo, if d < s.
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where

G

In the last case H*(RY) C € (RY)

e For all bounded sets ), 1q : H*(R?) — LP(R?), f + 1qf is a compact operator,

In particular H*(R3) C €(R3?) but H'(R3) ¢ € (R3).

CHAPTER 5. FREE SCHRODINGER OPERATOR —A

2<p< 75, if d > 2s,
2<p< oo, if d =2s
2 <p< oo, if d < 2s.

g

Proof of H*(R?) C ¢ (R?). Take v € H?*R?®). Then —Au = f € L*({R?). Thus u =

(=A)7'f.

Step 1 Assume that f has compact support. By the formula for the Green’s function of the

1/2

Laplacian
f(y)
u(z) = (G * f)(z) prp—_
R3
We have
1 1 1 1
u(z) — u(x’ Z/f(y)< - )dy: / fly ( — )dy
)~ ul) |z —y| |2 =yl ) lz =yl |2/ =yl

R3 supp f
and thus
i) e = [ 1761 : ‘d<HfH /\ : LYy
u(z) —u(z')| = y — y 5 - y

lz—yl | —yl| 7 lz—y|l |2’ —yl

supp f supp f

We have
jo—a'|
L | flz—yl ==yl e—ylle’ ]
lz—y| |2 —yl jz—ylla’ —yl | maxfe—yll'—sl}
|[z—yl|z"—yl
and therefore
_ lle _ ! £
I /1 ‘<|$ | max{lxlyl,lw y|} <|x—x’|€( 1 - 1 -

lz —y| |2’ — vyl |z —y||]2" -y |z — y| 2" —y|

)
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Thus
1 12 1 1 2
_ d < _ /25/ d <
A KA g g ) Y
supp f supp f
1 1
_J)2e
<lo=22 [ (e + )
supp f
Note that
1
| < oo
supp f

if 24 2e < d = 3 (thus this is ok if € small enough). In conclusion

|u(z) = u(z)]

|z — 2| < Co

if z, 2’ € Q0 is bounded, i.e. u is Holder continuous.

Step 2 Let f € L2(RY). Take xy € €. Then xyu € H? and A(yxu) = Axu + 2(Vy) - (Vu) +
xAu = g € L*(R%) and supp g C supp x. By Step 1, yu is continuous for all y € €.
Thus for any € R? we can choose  such that XlU = 1 for some small neighbourhood

of  and therefore u is Holder continuous at z.

[ Y
Theorem 5.37 (Newton). Let pu be a positive measure on R such that p is invariant

under rotatations, i.e. for all R € SO(3), u(A) = u(RA). Then

/ du(y) du(y)

e -yl J max{lz] [y}

Proof. Because p is invariant under rotations we may rewrite

du(y) _ [ du(y)
|z =yl ||z|w — y]
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for some w € S?. Then

ddS Tonelll // dy
Ix—yl ISQI//lelw—yl 52| IIIEIw yl )

W.lo.g. we may assume that (|y|,0,0) =y € R? to calculate

1 du(y) rT sin(¥)dddy B
5 ) el —1™ 47r/ / T cos(@) ol + [eP ({0 con(@)? 1 sm(D sin(p)?)
9 2
81n(19)d19d<p B
47T// V(2] cos(@) — [y)? + [zPsin(P)®

sm 19)(119 s=cos(¥)

2‘$| / V/(cos(v )2 + sin(¥)?

1 1 1
2|z 1 V(s =12+ 182 |z max{1,7}  max{|z], |y}

g.e.d.

Remark 5.38. 1) For d > 3 we have the generalisation

/ du(y) du(y)

o —yl*2 ) max{|z][y[}*

however one needs some potential theory to prove this.

2) Note that

//dﬂl d,u2 da:d _fdﬂlfdﬂz

|z — 9| |21 — 2

where z; is the centre of rotation of the measure p;.



Chapter 6
Schrodinger Operator —A +V

We consider the operator A = —A +V on L*(RY), V : R - R, V € LL (RY). Ais

well-defined on €>°(R?) at least as a quadratic form

(u, Au) :/|Vu|2+/V|u|2

When is A bounded from below? In physics this means that the system described by A is
stable. (1, Ay)) gives the (mean) energy of the particle, for ¢ € L?(IR%) the wave function of
the particle. Further |¢)(x)|? gives the probability distribution of the position of the particle
and [)(k)|? the probability distribution of the moment, for [|¢[|s = 1.

Example 6.1 (Hydrogen Atom). Let A = —A — £ on L?(R3). Why is

||

2
/IVu|2—/ﬂ>—O
||

for all u in the domain with ||u|ls = 1. We can estimate the potential using

11 1 1 !
2]~ ey tleter T liar S prldem + g
for all R > 0. Thus 9 2
1
/\u(m)] < / u@F 1
|| iln || R

By the Sobolev inequality

/ywy? > C’(/\u!6)1/3

83
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hence

1/3 2/3
2

|z|<R z|<R z|<R

and therefore

(1, Au) /|v;2 /'“ 1—CR/|Vu\2—%.

LBy choosing R small enough we get (u, Au) > —C for all ||u|s = 1.

Remark 6.2 (Heisenberg Uncertainty Principle).

/|Vu(x)|2dx /|x|2|u(x)|2dx > Co> 0
R3 R3

for all u € H'(R?). However, this is not enough to prove the stability of Hydrogen.
But using the Sobolev inequality we find for ||ulls = 1

|U<£C)|2
Vul* — > —
/| ul? / 2] dx C

Rescaling uy(x) = £72u(fx) such that ||us = |Jus we get

€/|Vu(x)|2—€/|u|(+l)l2dx> ¢

for all £ > 0. Therefore we get the inequality ¢?a —£¢b > —c for all £ > 0 when a, b, c > 0,
which is equivalent to 2\/ac > b or dac > b*. Thus for all ||ull; = 1

e i)




85

This inequality implies the Heisenberg uncertainty principle as

([0 ( [ ratiumpar) > ( /(" '2)2/3(|x|2|u<x>|2)”3dx>3 -

O

Returning to the general Schrodinger operator A = —A + V' with general V. Considering

d > 3 we have ) )
v < (fre) (fwr)
d je p

with i +% = 1. If we choose 2p = 2% ie. p = 2% and ¢ = 4, we get by the Sobolev

- [k < | [viee| < e( [ wae) v,

(. > (1= C1vl) ([ 194

If C’HVH% < 1 then A > 0. More generally, for V € L%(R?) we can rewrite the potential as

inequality

1.e.

V=V1vsr+V1y<r

Then
[y < [ Wit v R [l <evVigen, [ 190+ R
R3 [VI>R [VI<R

and therefore

(u,Au) = (1 — CHV1{|I|>R}Hg> / |Vu|2 —R

Observing that by dominated convergence
/2 R—oo
Vigesmlla = / V71 apomy = 0

we find that by choose R large enough so that ||V1gsry| < C7', ie. so that the factor in
front of [|Vul|? is positive, that (u, Au) > —R.

We have thus proven the following theorem in the case of d > 3. Note that the L*> part of
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V' gets estimated away by

/ VIaP| < [Vl / uf? = V]l
R3

R3

and replacing R with R + ||V .

4 Y
Theorem 6.3. Assume that V € LP(RY) + L>®(RY) where

P2y, ifd>3
p>1, ifd=2
p=1, ifd=1

Then —A + 'V is bounded from below, in fact
1 2
(u, (A +V)u) > 3 |Vu|* = C

for all u € €= (RY) with ||ull, = 1. Consequently —A +V can be extended to a self-

adjoint operator by Friedrich’s extension theorem, with quadratic form domain H'(R?).

\ DJ

4 R
Lemma 6.4. If 1 < p < q<r < oo then for all f € LY, we can write f = f1 + fo such
that fi € L? and fo € L", i.e.

LCcIP+ L ={fi+fo|iel’ foel}

Remark 6.5. Recall that —A can be extended to a self-adjoint operator D(—A) =
H?*(R?). The Friedrich’s extension of —A+V, in general, might have a domain D(—A+
V) much bigger than H?(RY). O

( Theorem 6.6 (Self-Adjoint Extension of —A+V of H?(R?)). Assume thatV € LP+L*> ]
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with
p}%, ifd>4
p> 2, ifd=4
p =2, ifd=1,2,3

Then V' is (—A)-relatively bounded, where the bound can be chosen as small as neces-
sary, i.e. for alle >0
IVaullz < el Vallz + Cellullz.

Consequently, by the Kato-Rellich Theorem —A + V is a self adjoint operator on

D(—A+ V)= D(-A) = H*(R?) O
A\ y
Proof.
(d>4)
1/2 1/2q 1/2p
Vel = ( / \vwzruﬁ) <(fwe) ()
where & + 2 =1, 2p = 24 hence p = 3% and ¢ = {. (Recall that H*(R?) C L (RY)
if d > 4.)
Thus ||Vulz < ||VHgHUHH2 For every ¢ > 0 if HV||%HuHH2 For every ¢ > 0 if
||V||d e, then
Vullz < ellull> < 2ef| Aullz + Cellull;
More generally, if V' € L%, then we can write V = V; + Vo with V, € L™, V) € L5,
||V1Hd e and
Vulla < [[Viullz + [Vaullz < ellullaz + [[Valloollullz < 2ef|Aullz + Cellulls
for all ¢ > 0.
(d < 3) Using H%(R?) c L>(R%)

Vaulls < [Vllollullee < ClVI2llullz

If ||V]|2 < €, then we are done. More generally, we proceed as above.

q.e.d.
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é Y
Theorem 6.7 (Essential Spectrum of —A +V on H?(R?Y)). Assume that V € LP + L4
with

q,p 22, Zfd:1a273
d .
D> 3, ifd >4

Then V' is (—A)-relatively compact and therefore

Oess(—A + V) = 0e55 = [0,00).

Proof. Recall by [ITheorem 4.21| that the assertion holds if B; is Bs-relative compact, i.e. if
Bi(By +i)~! is compact. If By > 0 then this is equivalent to By(Bs + 1)~! being compact

because
Bi(By + 1) = Bi(By+14) ' (By +i)(By +1)7*

NV TV
compact bounded

and the reverse holds.

Why is V(1 — A)~! compact? Take u, — 0 weakly in L? then we have to prove that
V(1—A)"tu, — 0strongly in L?. Let f,, = (1—A) u,. Since u,, — 0 weakly in L?, f, — 0
weakly in H? (Exercise!). We want to prove that V f,, — 0 strongly.

Write V = Vi + Va, Vi = V1 <ry and Vo = V1, >p. Then

WidalB= [ WiPIAE 22250

lz|<R

by the compact embedding theorem, since f,1f.<ry — 0 strongly in L? with p < p* in
HA(RY) C LV (RY), thus |fu|*1{u<ry — 0 in L”? and [V|? € (L*?)". From the last fact it
follows also that

Vafally = (Va, fu) = 0.

q.e.d.

In particular in R? the last theorem tells us that —A — ﬁ is self-adjoint on H?(R?) iff

1 1 3

— 1<y € L? — — dr<oo <= a< -

EERG / 2] >0 453
lz|<1
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and Tegs(—A — #) = Oess(—A) = [0, 00).
Thus in physics == with o < % is not too singular. A really singular potential would be #

R
in R3.

é N

Theorem 6.8 (Hardy’s Inequality). For all u € H'(R?)

1 [ Ju(@)?
Vul? > = dz
frou =3 [
Here }1 is sharp, i.e. —A — # with ¢ > ;11 1s not bounded from below. O

N Y
N\

’
Theorem 6.9. IfV € LP + L? with

< p < o0, ifd >4

NI NI

< p < o0, ifd=1,2,3.

Then V is (—A)-compact, and by Kato-Rellich —A +V is self-adjoint on H*(R?), and
by Weyl’s theorem (Theorem 4.21|)

Tess(—A + V) = 00ss(—A) = [0, 00).

O

\ y

[ Y
Theorem 6.10 (Friedrich’s Extension of Schrédinger Operator). If V € LP + L7 with

d .
5 <P, q <0, ifd >3
1 <p,qg< oo, ifd=2
1< p,q< o0, ifd=1.

Then —A + V' is a self-adjoint operator defined by the Friedrich’s extension with form

domain H'(R?), and
Uess(_A + V) = Uess(_A) = [07 OO)
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Remark 6.11. In the case d = 3, we need V € L? for p > 3 5, i.e. for potentials of the
form V(x) =

Notice the improvement of the conditions on V' when d < 4. For example in d = 3

we only require o < 2.

\I“

—A+ ﬁ is self-adjoint on H*(R?) if s < 2 but has a Friedrich’s extensions when s < 2,

hence the domain of the Friedrich’s extension can be larger than H?(R?). O

Proof. Recall that under the condition V' € L? + L9, —A + V is bounded from below with

<%pA+ww:/ﬁmP+/ww>%/wm%-

for all [julls = 1. Then —A + V' can be extended using the Friedrich’s extension to a self-

adjoint operator with quadratic form domain H'(R?). Now we prove that

Oess(—A + V) = 0ess(—A) = [0, 00).

Take A € 0ess(—A + V). We prove that A > 0. Using Weyl’s criterion (Theorem 4.15)), there
with ||u,|l2 = 1, u, — 0 weakly in L? such that ||(=A + V)u, —

exists a sequence (uy,)

n?

Then

n—oo n—o0

0= lim (u,, (A + V)u, — Au,)) = lim </ |V, |* + /V|un|2 — )\)

If we can prove that [ Vl|u,|* = 0, then A > 0. Recall that

[ee] mn 1
A*:j/WWP+/WWV>§/W%V—

Thus [|Vu,|? < ¢ independently of n, i.e. (uy,), is bounded in H'(R?). Consequently, we
can go to a subsequence such that u, — u weakly in H'(R%). Because u, — 0 in L? u = 0,
i.e. u, — 0 weakly in H'.

It is left as an exercise to show that if V € LP 4+ L? as in the assumption and u,, — 0 in H!,

then
/V!unl2 270.

Now take A\ € 0ess(—A) = [0,00). We have to prove that A € ges(—A + V). By Weyl’s

criterion there exists a sequence (u,), such that |[u,|l2 =1, v, — 0 in L? and

| — Auy — Aug|2 0.
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Now we prove that

n—oQ

[(—=A + V)un — Mi[l2 — 0

i.e. A € 0ess(—A + V). This means that we have to prove that ||[Vu,|2 — 0.

Let us consider the case d = 3.
Vel = [ 1V

is difficult to estimate because V' ¢ L2 (R?) (we only know that V € L (R?)). Write

loc loc
Vi, =V(1—A)" 1= A, =V(1—A)" Vg,
Since ||Au, — Auy|ls — 0, u, is bounded in H?*(R?). This means that
lgallz = 11 = A)unlly = (un, (1 = A)*un) < [lunllze < C
Thus we can go to a subsequence and assume that g, — ¢ in L2. Therefore
Uy = (1= A) g, == (1-A)7g

in L?  as (1+ A)~! is bounded. Thus (1—A)"'g =0, i.e. ¢ =0. Now we know that g, — 0
weakly in L% we want to prove Vu, = V(1 —A)~lg, — 0 strongly in L?. We are done if we
can prove that V(1 —4¢)~! is compact in L2
By the lemma below (1 — A)~2V(1 — A)~"2 is a Hilbert-Schmidt operator.
Recalling that AB is compact iff BA is, it follows that the compactness of (1 — A)~72V(1 —
A)~Y? implies that V(1 — A)~! is

q.e.d.

Lemma 6.12. (1 — A)~2V (1 — A)™"2 is a Hilbert Schmidt operator. O

Proof. By writing V' =V, — V_ and considering the two cases separately we may assume
that V > 0. We can write

(1-A)""V(1-A)""=KK

with K = V(1 — A)~"2. We know that K*K and KK* always have the same non-zero
eigenvalues with the same multiplicity, i.e. K K* is Hilbert Schmidt iff K*K is. Consider
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KK*=+/V(1—A)"'/V (the Birman-Schwinger operator). We can write

(VP = 27 VP8) @) = V@) (11 - 87 (V) @) =
N / G, y)(VV ) (y)dy = / V@G )V @) f (9)dy

where G(z,y) is the kernel of (1 — A)~!. Thus the kernel of K K* is

Recalling that an operator B is Hilbert Schmidt iff its kernel b € L2, with ||B|%g =
[ [1b(z,y)Pdzdy. Thus KK* is Hilbert Schmidt iff \/V(z)G(z — y)\/V(y) € L?, ie. we

have to show that
// 7)|G(x — y)|*V (y)drdy < oco.

What is the Green’s function G of (1 — A)~!. One can compute it is given by the Yukawa
potential e| r However, we do not need to use this as we have already proven that in R?,
the kernel of (—A)~!is =

4r|z|”
Because 1 — A > —A it follows that (1 — A)~' < (=A)™!, hence KK* < VV(=A)"'WV.
We conclude that K K* is Hilbert Schmidt if we can prove that vV (—A)~*v/V is Hilbert-

Schmidt. By repeating the calculation above we find that

2
|2l // 2)|G(x — y)[PV (y)dady = y < C|V|?
by the HLS inequality as
1 N 1 n 2 5 - 3 d
p p 3 - PES T
which is the case per the assumption of the theorem above. g.e.d.

Why is — g ‘S with s < 2 relevant?. In three dimensions, s = 1 is the Coulomb potential, in
particular
1
el
describes the hydrogen atom. In this case
1 1

— 1a:<1+ 1iz>1
o]~ Ja] IS ] TR
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where the first summand is L” for p < 3 and the second one is in L? for ¢ > 3.
By the Kato-Rellich theorem —A — ﬁ is self-adjoint in H2(R?), 0es(—A — &) = [0, 00).

||
Actually
1

]

where the eigenvalues are —ﬁ with multiplicity n?. If s < , V=

o(=A = —) = (ttn), V[0, 00)

T IS eLP+ L p>=2
and —A — # is self-adjoint on H2(RY). If s < 2, —A — W can be extended by Friedrich’s
theorem.

Why is s = 27 Because of Hardy’s inequality

4 N
Theorem 6.13. ()2
u(z
Vul? > dz
Jrvur > [52
R3 R3
for all w € H'(R®) and § is the sharp constant. O
G V.
Proof.
9 a0 la(p) Ipls li(q) 20"
kd Ip—ql Q| p—ql
3
= [1a)Plpl* [ o dady
lal*lp — 4
We now compute
1 1 1 1
1) =€ = (e )
lal* lg — p| R
~ 1 1 C3_g 1 1 1
Jp) =)= = T2 15—s
W= i P = e o P~
o C3—5 Cs—2 1
f(p) - TCs Cs_s |p’572
This calculation are ok if 5 — s < 3,i.e. s >2 and s € (2,3). Thus
wl)ly, < o dp = 2dp = 2z
W |a(p)*Ip|® |s2p ¢ [ la(p)PlplPdp = ¢ | [Vul
Optimising over s we get ¢ = i. g.e.d.

Recalling that for Ve LP + L9 1 < p,q < o ifd =1 and % <p,q < ooifd> 2 we know
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that oess(—A + V) = [0, 00).
We are interested in the negative eigenvalues described by the min-max values
pn = pn(—A+V)= inf max (u,(—A+V)u)

MCH?RY) ueM
dim M=n_ llull2=1

with g, T pteo = 0. If g, < 0, then pu, is an eigenvalue (the corresponding eigenfunction is

called a bound state).

We are interested in the existence of negative eigenvalues: Recall that if d > 3, if V € LY?
and ||V |45, small, then —A +V > 0 by the Sobolev inequality, i.e. for all u € H'(R?)

/|Vu|2 +/V|u!2 >0

and thus there are no negative eigenvalues, hence o(—A + V) = g (—A + V) = [0, 00).

Theorem 6.14. Suppose thatd =1,2. If V € €*(R?), V <0,V #0. Then —A+V

has at least one negative eigenvalue. 0

Proof. Assume that —pu is an eigenvalue, 1 > 0 and u is an eigenfuction, i.e.
(FA+VIu=—p . (FA+pu=-Vu=Vu . u=(A+p) Vu

which can be rewritten as

Viu=vVIVI(—=A+ ) VIVIVIVIu= VIVI(=A + )V [V]e

therefore we define the Birman-Schwinger operator

K, =/ IVI(=A+p)VIV]

for yr > 0. The above equation means that ¢ = /|V|u would be an eigenfunction of K,

with eigenvalue 1.

Now let us prove that there exists some p > 0 such that K, has eigenvalue 1. Once we have

proven its existence then we can conclude that there exists ¢ # 0, ¢ € L? with

0 =K,p VI(=A+ )" VI[V]e
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and define
= (—A+p)'V[V]p € H*(R?)

as v/|V]¢ € L?. Now we prove that (—A + V)u = —puu. Indeed

Ve = VIVIVIVI(=A 4+ 1) V[V]e = V/|V]u
=(—A+p) " VIV]ig=(-A+p) ' |V]|u
(A4 pu=|Vju=-Vu

To finish, we need to prove the existence of 1 > 0 such that K, has eigenvalue 1.

Recall that K, is a Hilbert-Schmidt operator with kernel

z,y) = VIV(@)|Gu(z = y)VIV(y)|

Here G, (z — y) is the kernel of (—=A + p)~" and G, (k) = (472[k[> + p) .
In the case d = 1,2 and V € €° then

[ [ 1Kt nPasdy = [ V@G~ )PV @)ldsdy < [V IVIIGE =
— IV VIR < Gy < oo,

i.e. K, is Hilbert-Schmidt (actually this holds also for d = 3).

We also know that K, > 0, we can write K, using the spectral decomposition and in
particular, ||K,| is an eigenvalue of K,. Thus it suffices to prove that there exists a y > 0
such that ||K,| = 1.

We have

1Kol = sup (1, Kym) = sup / [ IEVIV@IGata = gt VIVldedy -

lInlle=1 lImll2=1

In\/|7

||77||2 ) 42 k2 +/~L

If 4 — 0, then ||K,|| — oco. Indeed take ny € €°, n > 0 and [ n9+/|V| > 0 then

2 2

—

o/ 1V (k) .

) ST
}}L%HKMH =z }g%/ Am2k2 + dk cony

noy/ IV (k)

4mr2k2

dk = oo
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Here the assumption d = 1, 2 is needed as in higher dimensions
ind=1,2.
If p — oo,

|k‘2 is integrable at 0 but not

Ky =VIVI(=A+ ) VIVIS VIV VIV [V aop™

—1 H—7X

hence || Kpul| < [[V]loop™ — 0.
We now want to prove that p — ||K,|| is continuous on (0, 00) from which the existence of
the sought-after u follows by the intermediate value theorem.

Take puq, o > 0, pio — 1. Then

) = 1< s = Kol = [VIVI((2 4+ i)™ = (=8 + ) ™) VIV =
= HW(‘A"‘M)A)(M — ) (—A 4 p2)” \/|7H <
VI|l=2+ i) =2+ ) || VIVT] <

< —

< ||V||oo |,LL2 - :u1| H2—H1 0
Ha b1

where || - || denotes the operator-norm unless otherwise indicated. g.e.d.

é N
Theorem 6.15 (Existence of Infinitely Many Negative Eigenvalues for Singular Poten-

tials). Let V € LP + L%, with

1< p,q< o0, ifd=1
§<p,q<oo, ifd > 2

(i.e. such that o.s(—A + V) = [0,00)) Assume further that V(z) < — 1o, when ||
is large enough where co > 0, and 0 < s < 2 are given constants. Then —A +V has

. infinitely many negative eigenvalues. U )

Proof. We will use the min-max principle, i.e.

= Un(—A+V inf  max (u,(—A+V)u
fin 3= i )= ok ) max us ( Ju)
dim M=n" llull2=1
We know that p, T tteo = 0 and if u,, < 0, then pu, is an eigenvalue. It suffices to show that

pn < 0 for all n € N. Let us choose M: for a fixed n € N, we can choose (u;);_, such that

u; € €X(R?), [lugllz = 1, suppu; are disjoint and infyey suppu, [ =1
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Take a parameter £ > 0 and define u\” (z) = ¢%2u;(¢z) for all i € {1,...,n}. Then |[ul?||; =
|uil]|]2 = 1. Thus (ul@> is an ONF of L?, indeed (u§€)> have disjoint supports. Moreover,
i=1

. 1
inf lz| > -.
xelJ; suppu( ) 4

Now consider

(. a4y = [[9af+ [VIdOP = [ 1960 + [Vl e Pe

If 7 is small enough

G
< (=A+V)u /|vu“ | 751{|w‘> Jul? (2)Pdz =

242/|Vui|2—€‘9 o O i) Pdz < 0

if £ small enough, because s < 2.

Chose M = span (uy))n , dim M =n. So
=1

1=

fin < sup (u, (A +V)u)
et

Since u € M, we can write as
U= Zﬂiuy)
i=1
for ¥; € C and |jul|3 = >i, |9 = 1. Now
n 2 n
w84V = 1+ [Vl = [1930a® [ V1Y our =
i=1 i=1
=Y "0 ( / vl vl + / V|u§@|u§.f>) -
(2]
=i ([ 1vaB - [VIaOR) <o

~~
<0

q.e.d.



98 CHAPTER 6. SCHRODINGER OPERATOR —A +V

4 N
Theorem 6.16 (Trapping Potentials). Assume that V € L (R%), p > g, and V 1 oo

loc

as x 1 |ool, i.e.

lim essinf V(z) = +o0
R—oo |z|>R

Then —A 4V is a self-adjoint operator by Friedrich’s extension and it has a compact
resolvent, i.e. (—A+V +C)~! is a compact operator for C large enough. In particular
there exists an ONB for L*(RY) consisting of eigenfunctions of —A +V, i.e. (—A +

n—0o0
0

. V)u, = Apuy, for all n € N where (uy,), is an ONB and \, —— 0. )

Such potentials are of interest as they represent trapping potentials (almost) confining par-
ticle in some small physical region. In particular an important example is V' = |z|* with

—A + |x|? representing the quantum harmonic oscillator.

Proof. V € L (RY) and V 1 oo implies that —A + V' is bounded from below. Now we have

loc

to prove that —A + V has eigenvalues (),) with A, T +oo. By the min-max principle,

this means that the min-max values u, T 400 as n — oo. Assume by contradiction that
tn = Hhoo < 00. Then pio, = inf oess(—A + V).

By Weyl theory there exists a sequence of unit vectors (,,) that converges weakly to 0 in
L? and

n—oo

[(—A + V) — poopnlly — 0

or equivalently
n—0
/|wn|2 T /vmﬁ e ™ 0.

For the first step, V € L can be written as

loc

V=W+W

with V =V, +V,, V; € LP(RY), V4 > 0, Va1 00 as || — co. By the Sobolev inequality

1
[ Ve il = 5 [ 196 -

Thus

1
3 [19e+ [l < €

i.e. ¢, is bounded in H! and therefore there exists an H' weakly convergent subsequence.
Further [Va]p,|? < C. As ¢, — 0 in L? and ¢, bounded in H', ,, — 0 weakly in H'. By
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the Sobolev embedding 1y,<ry¢, — 0 strongly in L.

On the other hand
C> /Vz\son!z > / Valon|? = (lingVz) / |on?

lz[>R lz|>R

—1
o2 <O inf V2) 220
2| >R

|z|>R

thus

independently of n. Now we have
—1
/ o= [Pt [P [ ler+o( )
lz|<R lz|>R lz|<R

thus

n—00 |z|>R

-1
limsup/|<pn|2<0+0(1nf V2> 2o g
d

Therefore @, == 0 strongly in L?. This contradicts ||¢, s = 1. q.e.d.
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Chapter 7
Semi-Classical Estimates

Remark 7.1 (Rigorous Results). If V' is nice enough, then —A +V has a finite number
of eigenvalues.
Recall that fore >0, V <0

(—A+Vu=—eu <= p=K.p, K. =+|V|(-A+ e)_lx/ V|

Remark 7.2 (Birmann-Schwinger Principle). e —A + V has an eigenvalue —e iff

K. has an eigenvalue 1.

e If we call No_.(—A + V) the number of eigenvalues smaller than —e, then N__,

equals the number of eigenvalues of K, which strictly greater 1.

U
é Y
Theorem 7.3 (Birmann-Schwinger Bound). Assume that 0 >V € L7*(R%) and d > 3.
Then
number of negative eigenvalues of (—A + V') < C’||VH3/2
. with C' being a constant independent of V. O )

Proof. Let us assume that d = 3. Then V € L%? and K, = \/|[V|[(-A +¢)"'/|V] is a

101
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Hilbert-Schmidt operator with kernel

Ke(v,y) = VIV (2)|Ge(x —y)V/ |V (y)],

15, 2 = Tr(K.K,) = / V(@)|Gele — )|V (y)\dady,

A 1

Gelk) = |27mk|? + €’

. e—Velal
() = T

Thus we find that

1 V@)Vl _ see 1 V(z)V(y)
K> < velr=vldpdy < // dedy < C||V||2
|| ” 1677'2 / ]x—y]Q € Yy 167T2 ‘x_y‘z Y H ||3/2

where the Hardy-Littlewood-Sobolev inequality was used in the last inequality.

From the second Birmann-Schwinger principle we therefore get

N._. = number of eigenvalues of (—A + V') which are < —e =
= number of eigenvalues of K, which are > 1=
= number of eigenvalues of K? which are > 1 <

< Z all eigenvalues of K? = || K.||fs < C|[V|3,

Remark 7.4. The Birmann-Schwinger bound
Noo(=A+V) < IV,
is not good semi-classically! The semi-classical approximation yields

Noo(=A +AV) = O(N7?)
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in R? as A — oo. The Birman-Schwinger bound only gives us

Noo(=A+\V) < CN2,

7
Theorem 7.5 (Lieb-Thirring Inequality). For alld > 1 and V =V, — V_ with V, €
L (RY), V_ € L'*5(RY), then

loc
Te(—A+ V) < o/v_”?
R4

\ DJ

Proof. Without loss of generality let us assume that V' < 0 (why?). Let us consider d = 3.

—A+V)_ Z’)\ A—I—V|—Z/l{|>\|>e}d€—/21{)\<e}de_

Ai<0 >\<00 Ai<0

_ /N<_e(—A +V)de

Then from the Birgmann-Schwinger principle, we know that
Neo(=A+V) < [|Kc|? = / [V (@)[|Ge(z = y) PV (y)|dedy <

V(z)]*+ |V(y)|?
</ V()] 2' W6, (@ — y) Py = [VIBIGLIE

Further

[N]ISW

IGellz =

2 / . dk k—\/éf/ o = e2 lconst
“lly (|27k|? + e)? e2(|2ml]? + 1)2 a

R4 R

with the constant being finite for d < 3. Thus N._.(-A + V) < C’eg_sz_(x)zdx and

therefore



104 CHAPTER 7. SEMI-CLASSICAL ESTIMATES

Now

r [rend-2 e1?

Tr(—A + V) = /N<_e(—A +V)de < C//(é) Vi) + 2] dedr =
0 Rd O -
—C [ V@i
R4

where the substitution e = 2V (x)t was used in the last equality.
When d > 4, the proof has to be changed. g.e.d.

Remark 7.6. 1) Kato-Rellich: For a symmmetric operator B and a self-adjoint
operator A, if B is A-bounded, with relative bound a < 1, i.e.

[Bul| < al|Aul[ + Cull

for all w € D(A) C D(B). Then A + B is self-adjoint with D(A + B) = D(A).
2) If B is A-compact, i.e. B(A +1i)~! if is compact, then

e B is A-bounded with relative bound £ > 0 for ¢ sufficiently small, in partic-
ular A + B is self-adjoint with D(A + B) = D(A).

b Uess(A + B) = Uess(A)~

3) Friedrich’s Extension: If K is symmetric, K > —C then there exists a self-adjoint

extension (but we do not know the domain).
U

4 Y
Example 7.7 (Schrodinger Operators). —A+V, D(=A) = H?*(RY), A= —-A, B=V.

1) If V € LP + L with

. ifd=1,2,3
. ifd>4

Then V' is (—A)-bounded with relative bounded € > 0 for all sufficiently small
e > 0. Consequently, —A + V is self-adjoint in H?.
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2) If Ve LP + L7 with
2<p,q< o0, ifd=1,2,3
%<p,q<oo, ifd>4
Then V' is (—A)-compact, consequently
Oess(—A + V) = 0ess(—A) = [0, 00)
Here V' € L™ is not allowed! Because if V =1,

Ous(—A+ 1) = 0y (~A) + 1 = [1, 00).

3) Quadratic Form Approach: If V' € LP 4+ L7 with

1 <p,q< o0, ifd=1,2
< o0

4<pyq ,  ifd>3

Then —A 4+ V > —C hence there exits a self-adjoint extension of —A + V. We

do not know the domain, but we know that the quadratic form domain is H?.

If Ve LP + L7 with

1 <p,q< oo, ifd=1,2

d .
§<p7Q<OO> lfd>3

then oess(—A+V) = 0ess(—A) = [0, 00). But we do not know if V' (—A)-compact!

4) V=A — & is self-adjoint on H'(R?) for 0 < a < :.

We have to prove that —ﬁ is v/ —A-bounded with relative bound < 1.

Vedddddddddaddds
L -------------- J

( Theorem 7.8 (Kinetic Version of the Lieb-Thirring Inequality). Let v be a ﬁm’te—mnk]
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projection, i.e.
N
Y= Z |us) (il
i=1

for an ONF (u;), in L*(R%) with kernel

v(z,y) = Zui(fv)ui(y)

We may define the density of v to be
N
pr(@) =z, 2) = Y Jui(z) .
i=1
Then we have the inequality
N
2
S [ 190> 5 [ o) b
i=1 Rd R4
with a universal constant k = k(d) > 0. Consequently, we obtain the Lieb-Thirring

inequality for the sum of negative eigenvalues

T[-A+ V] < C/V_Hg
Rd

. for a universal constant C' = C(d) > 0. O

Proof.

Step 1 Why does the kinetic inequality imply the Lieb-Thirring inequality? Assume that

—A 4+ V has negative eigenvalues —pu; and eigenfunctions u; with p; > 0 and
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Take N € N. Define v = 32| |u;) (u;]. Then
N N

Y RTTEES SIURERSRA =3 ( 1wt [viue) =i [t v,

i=1 i=1 i=1
142 144
142 1+2  py ¢ V2 1 1+4
“/”” d‘/v’”}/(w ik vk vl E s vl A
d 2 2

where K > H% for d > 1 is used in the last inequality which is proven below.
d

WV

Thus we find
N 1 "
Z“i S d /VJrQ
i=1 L+3

taking NV to oo yields then the conclusion.

Proof of the Kinetic inequality.

Originally, Lieb and Thirring proved in 1975 their inequality via the Kinetic inequality
and a duality argument (i.e. optimising V'). Here we present a new proof of the kinetic

inequality by Rumin 2011 (Solovej’s Version)

/ Vus]? = / 12k 2] () 2k = / / 1oy i () Peledk
Rd Rd Rd O

Define

ﬁj(l{:) = ai(l{:)l{\ka\2>e}
iy (k) = (k) 1gjomke<e}

in particular u; = u;” +u; (where ui := ). Thus

N N o0 N
Z/|Vuz-|2:Z//]ﬂj(k)|2dedkzz//\uj(:c)|2dk;de:
i=1 =10, i=1

=19 Rd

:27/!%(@ — u; () |*dkde

0 Rd
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Using the reverse triangle inequality we find

N /2 N 1/2 N /2
(Dui(x)—w)ﬁ) > (Z\umﬁ) —(Zruim\?)

from which we get

i=1

i [1vups [ ]O éruxxn?— S Jup (a)

Here
N
> lui(@)? = py(x)
i=1
and
N N 2 2
Zlu;(x”? — Z /ﬂ;(k‘)emkxdk = Z /ai(k)1|2wk|2<e€2mkxdk <
=1 =1 Rd i=11,
2mikz |2 \/E d
< |1|27rk|2<ee | dk = l\k\g%fdk = | By o
R4 Rd

where the Bessel inequality was used in the last inequality.

Noting that for 0 < b <V, a >0

la—b] > [a— bl =[a—b],

Thus we conclude

i/ v > [ ]o [W - Vi (g—;)/]ddx —x [ pofaytd

R4
as
o0 ¥/
/[a - 62]2 de = /(a —e7")2de = ca?ti
0 ' 0
with

Ad?n d\ 7
d=—"" pl14+<
D) = S 6d+ @ (+2>
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which satisfies

1
d) >
wld) > +2
for d > 1.
qg.e.d.
é , N
Theorem 7.9 (CLR Bound). If V_ € L2(R%), d > 3 then
d
N(-A+V) SC’/V_2
R4
where N(—A + V') denotes the number of negative eigenvalues. O )

Remark 7.10. 1) The Lieb-Thirring inequality is true for all d > 1, but CLR is
true only for d > 3. The reason for this is that for d = 1,2 and V € €>°, V <0,
V' # 0 then —A + V has at least one negative eigenvector.

2) The CLR bound is stronger than the LT bound (when d > 3). For example we
can prove LT by using CLR as follows

(&

’Z negative eigenvalues‘ = /N<_e(—A +V)de = /N<_§(—A +V+ 2)de <
0 0

o0

<c//[v+§fdxde:0/v”gdx
0

R4 R4

Proof. We shall prove the CLR bound via the Rumin method. Assume —A 4+ V has > N
negative eigenvalues, i.e. dim(P(—A 4+ V < 0)) > N, i.e. the space spanned by negative
eigenvalue eigenfunctions. Thus dim(v/—AP(=A +V < 0)) = N as vV/—A has a trivial
kernel. Thus we can choose (;)Y, in P(—A+V < 0) such that (M%)f\il is an ONF on

L?ie. <\/ —AQOZ’ \% _A80]> = (S”
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Using the same notation as in the proof of the LT bound we have

N = ZHMW Z/wwdx Z//m dedz = Z//m 2)[Pdeds >

2

>/ ]O g}’%w— é\so;(x)\z deds

_l’_

Note that

N N

> ler (@) = Z

i=1 1=1

2

/ @; (SE) 1{‘2ﬂk|2<6}627rikxdx

2
) HRTESS ok | P
2mk]
1{j2nk2<e} /1{|k| <e} or /1{r2<e} i1
< [ 2PETESE e — (2 dk = dr =
/ |27k |2 (2m)” |k I'(4)(2m)d r? tT
0
Ve
27r% /d3 271'% d—2
=—— 0 [ r"dr=— e 2
NEICE [ enid—2)
Thus
N 7 d—212 d
N=3 [1val = [ [ Vo) - '] deds = i [ oty
=1 Rd O +
where

-2 (T@E-2\
K(d>_d(d+2)< 2l-dp—% )

which satisfies K(d) > 20 for d > 3.

Therefore we conclude that

N K [ .
0> AV =N+ [ Vo —~+= [ a5 [Vv.p>
i§:1<U( + V)u) +/p 2+2/pd p
N K [ 4 d-—2 . 2 [ 4 N 2 [ a
> &2 - = _ = 2 A 2
ST R d/v_/Q d/v‘

where Young’s inequality ab < ‘% + %q, for p7' 4+ ¢! = 1, was used in the penultimate
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d—2

inequality and used that @ — %= > 0. Hence

[SlI=H

N <

~

/

4
d

qg.e.d.

Remark 7.11 (Semi-Classical Approximation). In quantum mechanics a particle is
described by 1 € L*(R?) with |¢(x)|? being the probability density of the position and
|4)(k)|? the probability density of the momentum. In classical mechanics on the other
hand a particle is described by a point (z,k) € R? x R%,

For a semiclassical approximation we are interested in the non-positive eigenvalues of

a Schrodinger operator —A + V' for which

Tr[-A +V]_ // (127K + V(2)] dkdx:Ld/v_(x)Hidx

Rd

Here ay+ = max{+a,0}. Changing variables to |2mk|* = V_¢? which is equivalent to

d
v 2
v dk = Vo al

=Y
21 (2m)d

we get

[S]ISW

Jllmi v ak = [[vopee +vigar = v@i | [222;)13—“

here we therefore have

s 1 28t
LC‘_/ (27)d dg_(?ﬂ)dd(d—l—Z)

called the semi-classical constant.

7

Theorem 7.12 (Lieb-Thirring Inequality). If V. € L'*2(RY), then

Tr[-A+ V] < C/v_(x)Hde
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L where C' is independent of V. U J

’
Theorem 7.13 (Weyl Assymptotics). If V_ € L2 (RY), then

1+4

Tr[-A + AV]_ = Lcl/ v

R4

lim

A—ro0 )\ %

1.€.

Tr(—A +AV)_ = Ld/(w_)H? + o(AH%).

Here
Tr(=A+AV)_=ATr {%(—A) + V}

Therefore, Weyl’s theorem is equivalent to

Te[R*(-A)+V]_ = h_chl/V— ()2 d + o(h™?)

Rd

. when h | 0. Here h is interpreted as the reduced Plank’s constant. 0 )
é Y

Definition 7.14 (Coherent States (Schrodinger 1926)). Take G € 4> (R?) with G(z) =

G(—z) and |G|z = 1. For every (k,y) € R? x R?, we defined

Fiy(x) = ™Gz — y)
Also we denote projection
Ty = [Fhy) (Fryl -

\ U 4
r

Lemma 7.15 (Coherent States Identities). For every (k,y) € R x RY, F},, € L*(R?)
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and || Fy.yll2 = 1. Moreover, we have for all ¢ € L*(R?)
J 140} Pl = (1P x 6P w)
Rd

/ | (Fogs ) [Py = (G2  [52) (k)

in particular
J 1) Py =

Rd Rd

which can be suggestively written as

Tydkdy = 1

Rd R4

. J

Proof. Let 1) € L?, then

/

R4

[T v

[Rd

ah = [loc=auem] a -

JILRE
Rd

_ /|G(x — (@) Pde = |G * |4 (y)

The second identity is left to the exercises and the last equation follows from the first with

Fubini as
[ [ 1t Party = [16 i@ = [ [166 - )PPty -
Rd R4 R4 R4 Rd

= [P [166 ks = [ pPe - o
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Lemma 7.16. For every ¢ € H*(RY),

/ V|2 = / / [27k[2] (Frys ) [2dkdy — [ VGIE I

R4 Rd R4

and

JOxIGEIE = [ [Vl (Frvt) Py

R4 R R4

Proof. From the previous lemma we know that

/ | (Fogs ) [Py = (G2  [02) (k)

therefore

[ [ B ks = [ okl (162 ) (k= [ [ 200G — )71 a) Pl =
R

Rd R4 Rd R4

N // 27 (k — g+ q)*|G(k — @) |¢(q)|*dgdk =

R R4

- / / (12n(k — @) + @n)22(k — g) - g + [27aP) |Gk — @) P14b(q) Pdgdi

Rd R4

Concerning the first term

[ [ 1nte = PG — 0Pk = [ [ paePicoriiPad -

Re R4 Rd R4

- / IR / 10(q)2dq = VG242
R4 R4

Similarly

/ / 2mqPIGk — @) P1() Pdgdk = [VEIRIGIE = IV

R4 R4
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and for the second term

/ (2m)22(k — q) - dlC(k — @) P1i(q) Pdqdk = (R/ fé(@?dZ) - (m/ qz&(q)qu) _

Rd R4

as |G(—0)| = |G(¢)| as follows from the symmetry of G.

For the second identity we use

[ 1B Pk = (G 10w

from which follows

[ [ vt paray - / V() (G * [0/ (y)dy =
/ V)6l = 2 o) Py -

R4 R4 —\G(Z y)I?

- / (V % 1GP)()(z) Pz

qg.e.d.

Proof of [Theorem 7.13, Let us consider the case d > 3 such that we can use the CLR bound.

Step 1 Assume that V € €>(R?). Take (u;), to be a finite ONF in L*(R%) such that
u; € H'(R?). We want to prove that

al 1+4
Z g, (—A + V)uy) /—Ld/V 2 + error

=1 R

We have

> Gun (-8 + V|6 |2p) = 3 [ [ (20 + V)| (Frye) Pilkay - NITGB
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The key observation is to note that for all (k,y) € R? x R?

| kaul HFk,y”g =1

Mz

=1

which leads to

N
d
//ﬂ%W+V )Z]wmﬂm%@>—//WWW+V@L%®:—%/V“2

R Rd =1 R Rd

Step 2 Assume that —A + V' has N negative eigenvalues with eigenfunctions u;. When d > 3
and V is nice enough we have the CLR bound

NgC/V?
Rd
Take 0 <1 < 1 and write
N N N
Z iy (A + V) = Z<ul, (T=n)(-A)+V =« |G]2)ui>+z<ui, (n(=A) + (V =V *|G|*))us)
i=1 i=1 i=1

We can estimate the two terms separately. From Step 1 we have

}:@“ 1—n)(=A) +V*|G)u;) = ( y—mﬁéém(@¢m+lfﬁ*mw)m>>

1=1

Vot
>0t [(15) - NIve

R4

For the second term we use the Lieb-Thirring inequality

i@ ((=A) + (V = V #|G))u;) = "é<“ (_A N M)u> 5

n
_ 2
—nTr[—A—i——V V*|G|} =
n -
. 21+g
oy f[L=reier
n

R4
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Thus we have

—Tr[-A+V]_ Zu“ —A+V)u) >

L. d d
>—Ht$3/wﬂ—o/Vﬂvmg g/W V|G|

forall 0 <n < 1.

Replacing V by AV and dividing by A!*2 we get

L. i O d C d
N1+ Tr[-A+V]_ > —ﬁ/V—HQ - X/V—ZHVGH% - —d/‘V_V* |G|2‘1+g
2 —n)2 n2

We gain the lower bound

LC d d
dTr[_A+V]>_—ld/V_1+2 —%/W—V*\GHI“
A—00 )\1+§ (1 _77)5 n?

for all 0 < n < 1 and all G satisfying the assumption for the coherent state.

Next, we can choose Gy(z) = \/L;dGo(f) where (Gg is some fixed, nice function and take

s — 0.
We know that lim, ,o(V — V x |G,|?) in L2 strongly if V'*2. This means that

This means that

L. d
dﬁ}A+VL>———L7/VH2
A—00 A1+§ (1 _ 'I’})E

taking n — 0 this gives us the lower bound

CT[-A+ V] > —Ld/VHg.

A—00

Step 3 For a general potential V', V_ € L% we note that —A+V > —A—V_asa quadratic
form thus
—Tr[-A+V] >-Tr[-A-V_]_.

This follows from the general fact that if A > B as quadratic forms then p;(A) > p;(B) for

all i € N, where y; is the i*" min-max-value (by the min-max principle).

For the lower bound, we can therefore assume that V' < 0 and V € L% Since V € LHg,
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Tef(—A) + A(V, — v>1> >

118
we can choose V,, € €°(R%) and V,, — V strongly in L*2. We can write
Tr[(1 A) + AV, !
(1= )(-8) + A+~

Tr[-A+ 2(V, = V)] N
)\1+% -

Tr[-A+V]_ =lim inf( y
A—00 At32
AV
Gl-avyl )
— nliminf
A—00

- d
)\1+§

lim inf
A—=oo )\1t+3

> liminf(1 — n)
A—00
- V|t

><1—n)Ld/ ol
’]72

Taking n — oo the second term vanishes and first term gives us
Tr[-A+V]_ > (1 —n)Lg / Vit

lim inf y
A—oo )\1+35

for all 0 < n < 1. Finally take n to 0.
For the upper bound the idea is to find u; such that
if |27k|? +V(y) <0

N 1’

ZKF/WJ’ u1>|2 =
0,

=1

if |27k|* +V(y) =0

For this we need the Lemma below.

We have to prove that
Tr—A+V] < —//[|27rk]2 V()] dk dy
R R

lim sup —
d
A—00 )\1+ 2

Step 1 Define the operator « : L*(R?) — L?(RY)
7= [ 1B Bl vy
M

where
M = {(k,y) | [2nk]* + V(y) < 0}

In fact
<f77f> = ’<Fk7y7f>|2dkdy
[/{/

for all f € L?(R%). We claim 0 < v < 1 and that 7 is trace class
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The first claim is equivalent to

Vi€ IARY 0 < (frf) < |fIE < VS e I2(RY) - / | (Foy 1) Py < | 2

The first inequality is trivially true and the second follows from the fact that

/ [ (Foye £) [Pk dy =[£I,

Rd R4

Concerning the second claim we have

Trqy = Tr //|Fky (Fiy| didy ://Tr[|Fk,y> <Fk,y|]dkdy:// Ldkdy —
M
d
//1{|27rk2+v <0}dkdy_C/V_2 < 0

Re R

Step 2 Assume that V € €>°(R?). Because 7 is trace class, 0 < v < 1 we can write

N
7= sz' i) (i)
i=1
for some ONB (u;);.y and 0 < v; < 1. Then by the lemma below for A = —A +V

[e.e]

—Tr[-A+V]_ Z'M’ Z (u;, Au;) = Tr[Ay] = Tr / | Fey) (Froy| dkdy | =

©i<0 =1
//TrA|Fky Fky‘dkdy—// Fk:yyAFky dk‘dy

Now we calculate

(Frys AFyy) = (Fryy (0 + V) Fiy) = /(|Vach,y(95)|2 + V()| Fry(2)]?) dz.

R4
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Noting that

Vo Fioy(2)] = [2mike® * G (z — y) + ™V, G(z — y) |2 = [2mikG(x —y) + V,G(z —y)|* =
= 27k[*|G(z — )| + V.G (z — y)]* + 2m(zmka(m —YV.G(x — y))

J/

-~

as G is chosen to be real

Thus

(Fhy, AFyy) = /(!27T/f|2|G(x —y)I* + IVoGla = )] + V(@)|(z — y)[*)de =

= 127k * 4+ VG5 + (V = |G]*)(»).
and therefore

CTMA+ V] < / / (120K + [VGIE + (V * [GP)(y)) dkdy =
M
= [[(emn + Vi) aray + [ [ (IVGIE + (v« [6P)w) - V() iy
M M

Because M := {|27k|> + V (y) < 0}
//(|27r1<;y2 + V(y))dkdy = —//[|27rk;|2 + V(y)]_dkdy = —Ld/V_Hg.
M Rd Rd Rd
Moreover,

/ / (IVGIE + (V % [GR)(y) — V() dkdy < (IVGIE + [V * G]?) — V]]ao) / / dhdy =
M

M

‘ vl

= C(IVGIE+ 1V 161~ Vi) [V

Rd

In conclusion

vl

d
—Tr[-A+ V] < —Ld/V_”Q +C(IVGI5+ 1V *G]*) = V) /V—-

Rd



Step 3 Assume that V_ € L'*2(R%). Then we can find (V)
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Replacing V' by AV we obtain

d 2
wi-a 4wl < —La [V o (I8 L e jap - v ) [ v

R4

Wl

d
)\1+§

taking the limit we get

d
2

CTCAFAV] < —Ld/v“g LoV s G) — VIIOO/V

lim sup —
A—00
R4

Now we have to optimise over G: Because V' € €°, if we choose
1 T\ 2
2 _
Gu(a) = 6o 5)
with Gy € (gcoo7 ||G0||2 =1 then
s—0

|V * |G P = V], =0

Thus

1+4
7 Tr[=A+ AV]_ < —Ld/V ?

lim sup —
A—00

C € with [V,]- — V_ in

n

L1+% (Rd)

We can try to use the procedure as for the lower bound i.e.
“A+ AV =1 =n)(=A) + AV, +n(=A) + XV = V,)
thus

~Tr[A+ V]2 =T(1—n)(—A) + AV, ]

—Tily(—A) + MV = Vo))

VvV VvV
semiclassical V;, € €>° >Chp

however this is only heuristic argument and does not actually work. The proof is left

as an exercise

q.e.d.
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Lemma 7.17 (Min-Max principle for Sums of Eigenvalues). Assume that A is a sym-

metric operator, bounded from below. Let yi;(A) be the i™ min-maz value of A. Then

(1)

N

N
ZM(A) :inf{z w;, Aug) uZ P ONF}
i=1

(2)
Z pi(A) = inf{z v; (ug, Auy) } (uz)fil ONF and 0 < v; < 1}

;<0 i=1

Proof. (1) The proof is given in Exercise 3.3.

(2) Assume that p;(A) < 0 for ¢ < N. Then by (1) for all € > 0 there exists an ONF
(us)l, such that

N N
Z“i Z (ug, Aug) > mf{z v; (ui, Auy) ul)f.vzl ONF and 0 < v; < 1} —€
i=1

=1

Take N 1 0o (or N 1 M if A has M negative min-max values). Thus

Z wi(A) > inf{z v; (ug, Auy) | (ul)fil ONF and 0 < v; < 1} —€

1i<0 i=1
and take e — 0.

For the converse inequality take an arbitrary (u;) 0 < v; < 1. We prove that

€N

i v; (ug, Aug) > Z wi(A)

=1 /.Li<0

W.l.o.g. we may assume that (u;, Au;) (otherwise just choose the corresponding v; = 0).

In this case

N

N
sz‘ (u;, Aug) > Z wi, Aug) >
i1 T i—1

\\Mz

Z 1i(A)

i <0
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where we used (1) in the penultimate inequality. Taking N 1 co we find that

1 <0
g.e.d.

=1

d
2

Remark 7.18 (Lieb-Thirring Conjecture). If V_ € L'*%(R%), then
—Tr[-A+V]_> —//[|27Tk:|2 +V(y)]_dkdy = —Ld/\/pr
R4

Rd R4

for all d > 3.
The Weyl theorem only tells us that
A—00 / aas

Te[—A + AV]_ 222 Ly

d
)\1+§

i.e. that the conjecture holds asymptotically.
Furthermore for the constant L in the Lieb-Thirring inequality

NS —L/V_Hg
R4

it is easy to see that if L > 0 then
L 2 Lcl

however no sharp bound has been found yet.
There is also a dual kinetic version of the conjecture: If (u;);_, is an ONF in L*(R?)

then
N
S [1vul > K [ oo +iar
iled Rd
where p(z) = 32N, |u;(x)|? and
d <d+2 )3 d 4r?
Kag=—-——|—FLa =53
d+ 2 2 d+2|B1|d
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where B is the unit ball in R¢, in particular in d = 3

3
Kq=2(67%)"°
5
and
1
Ly = )
1™ 1572

Assuming that the LT kinetic conjecture is correct. Define A = —A on €>°(2) where
2 is an open and bounded domain in R%. Since A > 0 it follows that A can be extended
to a self-adjoint operator by the Friedrich’s method. The resulting operator is called
the Dirichlet Laplacian —Ap.
We shall show that

N

LT conjecture =—> Z,Mi(—AD) >

=1

KCI Nl+%
[

where the latter inequality is called the Berezin-Li-Yau inequality.

Proof. Take u; to be a normalised eigenfunction of —A,.

N N
Snl-an) =Y [ Vufdr > Ka [ o)
=1 =1 0

Q

Further we can use the Holder inequality

v=3 fier = foe (fo)* (1)

Q|

{

hence
Kcl

N*a.
I8

VIS

>

Kcl / PH
Q

There is a further important conjecture the Pélya conjecture (1961)

Kaod+2 2
Ap) > 4l 2y
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for all N > 1. This conjecture also implies BLY inequality

Proof.
N N
Kg d+2 2
i > —g——— Y il
R
with
d+2 N sd+21 (i )1 LA+ |
> Nl-‘rf . v — NH—* _ NH—
d ;” " N;<N) g )t ’
—
U
O
é Y
Definition 7.19.
H'(Q)={fel?(Q)| Vie{l,...,d}:0;f € L*()}
||f||12ql(ﬂ) = ||f||%2(9) + ||Vf||%2(sz)

We can show that

—H(Q)

T=Q) =H(Q)
—HY(Q)
T=(Q)  =H(Q) #H (Y
where formally one may say that H}(2) contains f € H'(Q) if f =0 on 9.
A U v

Lemma 7.20. If u € H(Q) and suppu CC Q, then u € H} (). O

Proof. Because suppu CC €2 there exists a € > 0 such that

suppu + B:(0) C Q.
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Choose g € €>(R?), suppg C B1(0), [ g = 1. Define

gn(z) = n'g(nz), go € €, supp g, C B1(0), /gn =1

Denote
u(z), if x € Q

0, if x ¢ Q

Consider ¢, = (@ * g,). We can show that ¢, € €>(R?), supp v, CC Q and ¢, — u in
HY(Q). qg.e.d.

Remark 7.21 (On H}(Q2)). 1) We can prove that if u € H'(Q), u € €(Q), u|,, =
0. Then u € H}(Q).

2) For the converse: if 90 € € (i.e. it is a (once) differentiable manifold) then: If
u € HY(Q), u € €(Q) and u € H}(Q) and u € HL() then u‘m = 0.

3) To understand H}(Q) better, you need to develop the idea of the “trace of u on
9 (the bounded map H'(Q) 3 u u|6Q € L*(09)) and extension of u € H} ()
iff & € H'(RY).

U

é N
Definition 7.22 (Dirichlet Laplacian). 2 is open, bounded set in R¢. Consider A = —A

on D(A) = €>(0Q), # = L*(Q). Denote by —Ap the Friedrich’s extension of A over
7. We know that the quadratic form

ga(w) —/|Vu|2 >0

Q

. with quadratic form domain H; (). 0

( Theorem 7.23 (Berezin-Li-Yau Inequality). Take u; be the i eigenvalue of —Ap with]
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Proof. Consider p; as the min-max values. We know that

N

Z [ = mf{z wi, Aug)

=1

This means that we need to prove that for all ONF’s (ui)ij\il,

N
i=1

We have

i=1

where f(k) = S°N, |a;(k)|?. Note that

N
_ Z /ui(l,)e—%rik-xdx < /‘Q_Qﬂik.x‘zdl': ‘Ql
1=1 Q

Q

and

Ra

We claim that

inf [ |27k f(k)dk|0< f<|Q, [ f=N
/ /

is attained by
; 2, if [k] <
fk) =
0, if |k| > ko.

meIONF}.

Z<Uz‘,Auz’> > 1N1+d — Z/|Vuz Z 1N1+d u; € D(A) = €.°(9).

N N N
Z/|Vui|2 :Z/|Vui|2 _ Z/|2wk|2|ai|2 =/|27rk:|2f(k)dk
=1 =1, =17, e

[ ftan = i JIZOR'S i [ uta)as =
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where kj is determined by

N N \i
N:/}: /]MM:KM&%g.: %:(MWM)

|k|<ko
Thus
" ]{?d+2
[lemnprigars [ ool =0l [ enria st < 0))st et -
R4 [k|<ko 0
QB |d Q| By|d N \T 4 4 1
1 27.d+2 1 2 m 142
- 2m) ko = 2\ @rgr) = ;N
av2 PN d 2<W)QQWM> d+2|B|i Q]
—_———

=Rl

q.e.d.
A natural question to ask now is whether
zgvzl Hi N—oo Ky 9
N1+3 | Q‘% '
The answer is yes if 0f) is sufficiently “nice”. However, it is not true general.
é N
Theorem 7.24. We assume that ) is open, bounded in R?, |0€)] < oo where
Mz e Q| dist(z,00) < r
|0€| := lim sup § | ( )<})
rl0 r
which is called the Minkowski content of 0S). Then
S i Nooo Ka
N ok
A U y

Proof. We need to prove the upper bound

S < Kq
1+2 =02
N

+ 0(1)N—>oo
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By the min-max principle, we know
N

Z (i = inf {
i=1

= inf{

(similar to lemma concerning the sum of the negative eigenvalues).

<Ui, A'LLZ>

(uz)fvl ONF} =

(u;)l, ONF,0 < 1,Zvi>N}

=1

(u;, Auy)

I Mg ||'Mz

Define
K= [ [ a0 i) (o] it
Rd R
where
oy = TG (x — y)
is a coherent state and 0 < M <1, M(k,y) =0 if y ¢ Q, for some 2, CC Q.

Then we can show that 0 < K <1 and

Tr i ="Tr U Mk, y) | fry) <fk,y|dkdy} :/ M (k, y)dkdy < oo

We will choose M (k,y) such that this is finite. Then we can write
K= Zvi |U1> <U7,’ , U ONF,U,Z € Hl(QT),O < (4 < 1.
i=1

Here suppu; C €2, because M(k,y) = 0 if y ¢ €, thus u; € H}(Q) by the lemma we

discussed. Thus by the variational principle, if we know

N
E V; =
i=1

then

o0

Z”’ Zvl (us, Auy) = Tr(AK) =

=1

=1 [ 3105 ) Gl b

:/ M (k,y)|2nk[*dkdy + Tr[K]|VG|?
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Choose M such that 0 < M < 1. Then
/ M(k,y)dkdy = N +e,6 >0
fixed. Explicitly we can choose

M(k,y) = Liri<koy Lo,

| B1[192r]
Concluding as

1
with ko = (N—+> <

Z“@ < g (N 4+ &)t + (N +¢)||[VG)2

d

then N
; 7 Kc

lim sup ZZ:l;u < 12

Nooo NYta 192, |4

for all 2, cc Q. Choose 2, := {x = Q| dist(x, 0Q) 7"} for which

192, > (9] — 2r|09Q|
if » > 0 small enough. In particular it follows that

lim [, = [,
rl0

We just prove that if [0 < oo then

Zﬂz— N1+d+0(NHd)

N—oo

the dual version of this inequality is

( 1
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Theorem 7.25. When A — oo, then

N

pi — Al = LyA™% + o AL+
Z[ ] Al (1+d)
i=1

o 0 )
Remark 7.26. Formally if you consider a potential
V =
00, if x ¢ Q
Then .
d
Z[ui — Al ~Tr[-A+AV]_ ~ Lcl/[Av]Ifz — La|QA5,
i=1 g
O

A consequence of the above theorem is Weyl’s Law: If we denote by N(A) the number of

eigenvalues 1; < A, then
[ By , 2 g

M to(ad)
ent TN )

To deduce it from the asymptotics of > [u; — A]_ we need the Tauberian lemma.

N(A) =

Lemma 7.27 (Tauberian). Given any increasing sequence (p;); with p; > 0, then the

following are equivalent
1) ¥l — Al = AR 4 o(AcH),

2) Hpms < A} =320 — A2 = (a + 1)AA? + o(A).
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Chapter 8
Many-Body Schrodinger Operator

The one-body Schrédinger operator is —A + V(z) on L*(R?).
For an N-body system the Hamiltonian is give by
N

Hy = (A + V(@) + > wlw— )

i=1 1<i<j<n

with z; € R?. Here we always assume V : R? — R is an external operator and w : R — R,
w(—z) = w(z) is an interaction potential.
Depending the type of particles considered there are several combinations of N-body Hilbert

spaces
1) N different particles, i.e. no symmetry, 5 = ®fil L*(RY) = L2(RIN).

2) N identical Bosons, i.e. the wave function has to be totally symmetric, 5 = L?(R*Y),
where for all ¢ € L2(R¥) and all o € &(n)

1/1(3317 o axN) = 1/1(330(1)7 s 7xa(n))'

3) N identical Fermions, i.e. the wave function has to be totally antisymmetric, 5 =
L2(R4N), where for all ¢ € L2(R¥) and all 0 € &(n)

(21, ..., 2n) = sgn(0)Y(Ter)s - - - s To(m))-

which is equivalent to requiring that for all 4,57 € {1,..., N}
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4) Any combination of the above where the corresponding Hilbert space is constructed by
taking the tensor product of the corresponding Hilbert spaces for each particle species

and number.

Example 8.1 (Atomic Hamiltonian).

al Z Yoo
Hy=S (-, - = -
" Z( Z |$i|>+;|xi—l’j|

i=1

with x; € R? which describes an atom with IV electrons of charge -1 and one nucleus of

charge Z.

. S

The natural questions to ask is whether Hy is bounded from below, what o(Hy) looks like

and whether there are any asymptotics for N — oo.

é Y
Theorem 8.2 (Kato). Assuming that V,w € LP(R?) + L4(RY) with
2<p,q< o0, ifd <3
g<p,q<oo, ifd>4
. Then Hy is self-adjoint operator on H*(RYN) and it is bound from below. 0 )

Example 8.3. If V,w ~ |71\ in R3 then these potentials satisfy the condition as

1

1
Er |1{|z|<1} + L1y € LX(RY) + LY(RY).

Proof. We use [Iheorem 2.12| Define

N
Hy=Y —A, = —Agav

i.e. Hy is self-adjoint in H?(R%) and

HN—HO+ZVQUZ +Z T — ;)

1<j



135

We prove that V(z;) and w(z; — z;) are Hy-bounded with the relative bound as small as we

want.

Consider V(z1). We need to prove

/ V@) b(a, .. o)y - doy < & / Vet on) + Collo2

RaN RAN

which follows from the inequality

Jv@rer<e [19swrE-c. [ire

proven in 0] and by Fubini’s theorem

/ V(1)) = (m/v ) (ay, ... xy)Pdry [des - doy <
RA(N—-1)

RAN

< / /|Vx1w|2dx1+c/|¢|2dx Az -+~ doy.

RA(N-1) Rd

Now consider w(z; — x2). We have

/|W<$1—$2)¢($1,---,xN)|2dl’1"'dIN: / /|W($1—$2)¢($1,"',$N)|2 dry - --dry

RAN RA(N—1)

Considering d > 4 we get via Holder’s inequality

/|w(x1 — )| (ar, -+ an) [Pday < (m/ w(@r — 22) [
R4 d

SAIN)
3o

(R/@b(a:l,...,x]v)rdxl
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where % + % = 1. Thus

D

/ (e — w)Pdm | = o2
d

T

/W(xla---,-TN”rdel </(‘V'¢|2+’w|2)d~rl

R4

The conclusion follows by minimising the proof for the external potential. qg.e.d.

Remark 8.4. e In general oo(Hy) # 0ess(Hp) = [0, 00).

e Even when V(x;) is Hyp-compact, but w(z; — x;) is not Hy-compact.

O
4 N
Theorem 8.5 (HVZ - Huntiker, Van Winter, Zhislin). Denote by
EN = inU(HN) = Hd}ﬁlf . = <w, HN¢>
e
where
N N
i=1 i<j
with V,w € LP + L1(RY) where
2<p,q <o, ifd<3
%l<p,q<oo, ifd >4
Then for w = 0,
Uess(HN) - [EN—IJ OO)
A\ U y

Remark 8.6. The physical motivation behind this theorem is as follows: Assume that
you have an N-particle with energy Fx. Then it is natural to assume that it requires

energy to extract one of this particles from the bound state hence the energy of the
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new state has to satisfy Ey_1 > Ey. OJ

Proof. The main tool we shall use is Weyl theorem [I'heorem 4.15|

Step 1) [EN—1700> C Uess(HN)
Take A > 0. We have to prove that Enx_1 + A € 0ess(Hp).

We use Weyl’s lemma for the essential spectrum, i.e. we find a sequence (1/15\];)>k
eN

k—o0

such that |||, = 1, ¢ 2% 0 and
H(HN —En_1— A)%@H 2%, 9.
2

e Because Ey_; = inf(0(Hy-1)) € 0(Hn-1), by Weyl’s lemma for o(Hy_1), there
exists a sequence (@Z)](\’f)_1> C L2(R¥N=D) such that ||1x_1|l2 = 1 and
k

k—o0
H(HN—l — Ex_ Y%, , == 0.

e Because A > 0, \ € 0ess(—Aga). Thus there exists a sequence (u(k))keN C L*(RY)

k—o00

such that [|u®| =1, u® =% 0 and
1(=A = N)u®]l; 2% 0,

e Consider w ) L @u® e, 1/)](\17) (x1,...,zN) = ](\lf) Sy, oy u® ().
We want to show that

— W ¥||5 = 1, which is trivially true,

](V) —— 0, which is left as a homework exercise,

- H(HN — Eno1 = Ny

We have

k—o00
=

N-1
HN:HN—1+< AXN+VXN —I—Zw —IL‘N>
=1

thus



138 CHAPTER 8. MANY-BODY SCHRODINGER OPERATOR

By our choice of 1/1%“11 and u® | it is straightforward to check that

| v = Bl = || (s = Bvea)old

[ =20 = 1B L 2 0

||u(k)H2 LN
2

It remains to check that

(vm) + 3 wlei- xN>>w§5>

k2o (%)

2

To prove , for simplicity, we first choose 1/1](\';)_1 and u® slightly better.
e By a density argument, we may assume that 7/}5\1;)71 S (Rd(N _1)), and u® e
&> (RY).

e Moreover, we can assume that there exists a sequence R, 3 Ry — oo such that

supp ng\lf)_l C Bg,(0) C R4N-1)

supp u®) C Byp, (0)¢ C R?

(the second inclusion can be done because —A — \ is translation invariant).

Now we prove

k k
[V, = [Vena® @, |8, =
k—o0
= Venlgpwmy  u®(an)], =0
kﬁ‘go
in LP+L9, and u(¥) bounded in H2(R%)
and
k k
Hw(xl - IBN)%(V)H = Hw(xl - iUN)1{|zl|<Rk}1{|xN|>2Rk}¢§v)_1(931, cee ,ZBN—l)U(k)(ZEN)HQ =
k
= || w(zr — »”CN)l{\asl—mNKRk}i/f%t(fﬁb e #L”Nfl)“(k)(xN)”z =0

-~

k— oo
w(@){jz|>R, )~ 70
in LP4+LY

Step 2 Oess(Hy) C [En—_1,00), we need to use w > 0 and a localisation technique which is

proven in the lemma below.

Take \ € 0ess(Hy). We have to prove that A > Ey_;. By Weyl’s lemma there exists a
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sequence of unit vectors (zﬂ](\lf)) C R4 such that w](\lf) — 0 and ||[(Hy — )\)w](\’f)ﬂz — 0.
k

We know that ¢ is bounded in H2(R?), thus ' — 0 in H*(R™). By Sobolev

embedding for all R > 0

(k) k—o0
N 1Br(0) L2(RIN) 0

Now we use the IMS localisation as follows

e We choose 2 function y, n : R? — R satisfying x € €>*(R9), x,n =0, x> +7* =1

and require

supp x C {|#| <2}, suppn C {|z| > R}

and |Vx|,|Vn| < &.
e On R take

1= 1_[()((%)2 + 77(%‘)2) = X($1)2X($2)2 " 'X(J7N)2 + 77(171)2X($2)2 - 'X(IN)2 + -

where K =2V — 1 and ¢y, p; € €°(R™) and
supp po{ (z1,...,2N) |Vz' €{l,...,N}:|z;] <2R} C Beyr(0) C R
and for every j € {1,..., K} there exists a j' € {1,..., N} such that
supp ¢; C {(a:l,...,xN) ‘ || > R}

Moreover |V, [V, < G

< %- Now we apply the IMS formula for ¢;

K
(—A)RdN = Z ARdN Z |V30]|2

therefore
K

K
Hy =Y @iHyp; = > [Vl

J=0 J=1
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hence

N K
< E\I;),HN1/)§\];)> Z< U, 0 Hyp > - <¢%)7Z|V@j|2¢§5>>-
=0

j=0

We know that
(0, Hypld) 222 5

Now we want to estimate the right hand side of the expansion. Because |V¢;| < %,

(68> 1960 ) < %

with the constant C' depending on N, d but independent of R.

Consider j =0

k—o0
<w](\l;)7(p0HN§00w1(\];)> - <9001P§\’/€)7 HN gpof(/}N)> ENHSDO’Lp H2 =

>EN=infU(HN)
Consider j € {1,..., K}. Then there exists a j' € {1,..., N} such that
supp ; C {(z1,...,2n)||zy| > R}.

Let us assume that j* = N for simplicity of notation (which we can do by rela-

belling if necessary).

We have

N-1
<¢§5),<ijN90jw§5)> <<Pa v (HNl + (= 0ey) + Viwn) + Y wlai —an >90j¢§5)> >
7=1
> (ot (By1 + Vel ) =
k k
— Bl B+ [ Viwle el >

k k
>EwaM@5ﬂwmumﬁwwﬁ

-~

=:ep=0
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Concluding we find

1 k k C R—o0
A= Jim (0 B0l >~ + By Jim Z e @1 | —en 2 By

-

=1

R—o00
as eg — 0 and

1= [P = / s P o / 3PP + o(1i e

Thus A > En_; as we wanted.

qg.e.d.

[ )
Lemma 8.7 (IMS - Localisatio, Ismagilov, Morgan, Morgan- Simon, I.M. Sigal). As-
sume that {@j}?zl C ¢*(RY), satisfy ¢; = 0 and Zle @7 =1, then

—Ags = Z‘PJ Zlv%|2

| as operators on L*(R?). O

Proof. We prove that if ¢ > 0, ¢ € €2, then

as quadratic forms on €>°(R?). Let f € €>°(R?) then

<f, P(=4) +(_A)902f> Z%/fsoQ(—Af) Z‘ﬁ/V(stz)V

2

:m/ Vf)<p2+f(V902))Vf=/IVf|2s02+29‘i/f90V90Vf

(. (p(=D)g — (Vo) f) = / Fet-t)es = [96P12 = [19Gen) = [ 19aPIs =
— [16P191P + 25 [ WalFov s,
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Applying this to ¢ = ¢, and summing over j yields the result.

qg.e.d.

Remark 8.8. The Kato Theorem (which tells us that Hy is self-adjoint in H? and

bounded from below) and the HVZ thoerem hold in all 3 cases
o L2(R¥) with no symmetry
o L2(R™¥) anti-symmetric/fermionic case

o L2(R™) symmetric/bosonic case.

Remark 8.9.If V.w € I + L w > 0 and if Ey < En_; then Ey is an eigenvalue

of Hy. The quantity Ey_; — Ey is called the ionisation energy. Thus we are led to

the Tonisation problem: When is Fy < Ey_17 How many electrons can a nucleus

bind?

The Atomic Hydrogen Hamiltonian is given by

N A 1
HN:Z(_Axi_m)+ 2 |z — 4

- — Ty
i=1 1<i<j<N

with 2; € R? on either L*(R3"), L2(R3Y) or LZ(R3").
By the [Theorem 8.5|c(Hy) = [En_1,00), Exy = info(Hy).

O

(Corollary 8.10. If Exy < En_1, Then Ey is an isolated eigenvalue of Hy .

o)

The Question to ask now is when does Fny < Eyx_; occur?

Remark 8.11. 1) Ey < Ey_; always holds.

2) If Ex < Ex_; then Ey is an eigenvalue of Hy. If Ey is an eigenvalue then

En < En_1.

0
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Theorem 8.12 (Zhislin). Let Z > 0 (not necessarily an integer) and N € N. If
N < Z+1, then Ey < Ey_1 and Hy has therefore a ground state. O

Proof. We shall proceed by induction. If N =1, the Hy = —A — Z

o7 in L*(R3). This is the
2
info| —A — 2 —Z—.
|z] 4

hydrogen atom,

Thus B) = £° < E, = 0.

Assume that we have Fy_1 < Ey_o and N < Z + 1. Then we have to prove Ey < En_.

Because Fny_1 < En_2 we know that Hy_; has a ground state Wy_q, i.e. Hy 1Yy =
En_1¥n_1.

We want to construct a wave function ¥y such that
(Un, HyUy) < En
Consider a state Uy = U1 @ u, u € L*(R?) with ||ull = 1 and
Un(zy, ... on) = VYy_g(x,. .., en_1)u(zy)

For this state

z =
(Un, HNUN) =( Uy, | Hvor — Ay — — + — | ¥y ) =
|

Ty i1 |zi — N

N-1
Z Wy_ - 2
ZEN—1+/‘VU‘2_/!$|‘U($)|2+Z / Ty 1(1;1’] - v ule) dry - -dey
R3 R3 i:1R3N

z; — |

We shall use Newton’s Theorem [Theorem 5.37] to calculate this. Assuming that w is radially

symmetric and thus by Newton’s theorem

TG Y N 120 | P /|u
= max{lyl JeaT) e

RS
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and therefore

Nz‘l lon1 (1, an) Pu(zn) Z u(z )|
N—-1 17" N N

/ ] X /|QON 1 xl)"'? )|2 |£EN| =
=1

_$N|
:(N—1)/‘“|$—|dx

Concluding we get

u\xr
En < (Un, HyUy) < En_ 1+/|Vu|2 /' ]

By our assumption N — 1 — Z < 0. Choosing ¢ € €>°(R?), ¢ radial and [ |¢|? = 1, further
define uy(z) = £2p(¢x) for which u; € € and [ |uy|? = 1. Furthermore we have

/ |Vug|2 _p / Vol?
/ |W IsO |2

2
Ba< Byt 8 [ 19gl s (-1 2y [P0,
—_————

||

Thus

<0

for all £ > 0. By taking ¢ > 0 small enough we conclude that
En < En_q.

q.e.d.

Remark 8.13 (Ionisation Conjecture). If N > Z 4+ 2, then Ey = Ey_; and Hy has
no ground state.

Physically one may interpret this as there not existing anions of charge -3 or higher. [J

Example 8.14. In particular H and H~ exist, but H?~ does not, but we do not know

anything for other atoms.
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[Theorem 8.15 (Lieb). If N > 2Z + 1 then Ex = Enx_1 and Hy has no ground]
state. O

Proof. Let us assume that Hy has a ground state
HyVy = EyVy
multiplying this with |zx|¥y and integrating we get
= (lan|¥n, (Hy — Ex)Un) =

= Uy, | Hy_y — Ex — Ay —
<|xN| N7<N1 o |$N| Z|$z—$N|> >

1) (|len|¥Yn, (Hy-1 — EN)UN) = (Jan| YN, (En-1 — E,)¥yN) > 0.

2) (lan|Un, —Asy¥n) = 0 (proved later using Hardy’s inequality).

3) (vl st ) = 2

)

Thus

Similarly we get for all j € {1, ...,N}

A
|z — 4]

i#]

Summing all of these inequalities we get

Z/Nf Pl =2

1,7=1 i,j=1 ——— i,j=
i#] i#] i#]

thus Z > %, ie. N<2Z+1.¢ q.e.d.
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It is known that if N > Z + ¢Z'7%, ¢ > 0 small enough, then Hy has no minimiser. It is
an open question whether N > Z 4+ C' (with C independent of Z) implies that Hy has no
ground state.

It is further conjectured that N +— FE\ is a convex function, i.e.
En1—Eno<En—En_1 <= En_1—En<En_o—FEn_

In particular if Hy has a bound state (ground state + isolated eigenvalues) then Hy_; has
a bound state (open!).
Now we turn to the question of Ey z looks like for Z — oo, N ~ O(Z).

We will restrict ourselves to the anti-symmetric case.
Remark 8.16. Recall that for a symmetric function for all 7,5 € {1,..., N}
Un(Z1, oo Ty Ty ooy 2N) = Un(21, oo, Xy oo Ty oo, TN)
For example this is the case for some u € L2 (Rd)
=

Un(zy,...,on) =u(zy) - -u(zy) = u" (21, ..., xN)

which is called a Hartree state and is used to describe Bosons.

Antisymmetric functions on the other hand describe fermions and satisfy for all 7,5 €

{1,...,n),i# ]
Un(z1, .. @iy, xy o) = =Yn(21, 0Ty, Ty TN)
For example in the case N = 2
Wy(z1, x9) = const(u(zy)v(zs) — v(xy)u(zs))

For the general we can construct such a state via the so-called Slater determinant,

used in Hartree-Fock theory. 0
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Definition 8.17 (Slater Determinant). For N € N, and (ul)f\il an ONF in L*(R)

\I/N = Ul/\UZ/\' . '/\UN =

1 1
m det[ui(a:j)]KLKN = ﬁ Z Sgn(O')Ul(fL'a(l)) c. un<l'a(n))

: 0'6671

. DJ

Remark 8.18 (Question). Why is antisymmetry crucial? Because it implies the Pauli

exclusion principle

72 particles cannot occupy the same quantum state.”

é N
Definition 8.19 (One-Body Density Matrix). Given an antisymmetric N-body-wave

function ¥y, we define its one body density matrix to be the operator
790 LA(RY) — L2(RY)

with kernel

7\(1;1]1(95&) = N/\PN($7I27 oo N)YN(Y, T, oy )dEy - doy

It satisfies 'Yx(pl])v > 0 and Tr 'Yx(pl])v = N. O
A y

é N
Definition 8.20. For Uy € L2 (RdN ) the corresponding density matrix is defined as

| ) (W y|. This is a projection operator on L2(R™) with kernel

<|\IIN> <\IIN|)(I1)"'7xN7y17"'7yN) = \IIN(IIW"7xN)\IjN(y1a"'7yN)

and therefore
¥o) = NTrgy oy [Tx) (T]

where we have taken the partial trace w.r.t. x,, ..., 2y, which equivalent to the marginal

obabilit It 2. O
L pr ility w.r.t. )
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4 R
Example 8.21. If Uy = u; Aug A -+ A uy then
N
y® = Z |us) (uil
\ o J
’
Definition 8.22 (One-Body Density Matrix). For Uy € LZ(R™) we define 7\(1,112, :
e (Rd) — L2 (Rd) by
fY\(Illjzf(x)y) = N/\IIN(mvx% ce ,I'N)\I/N(y,IQ, s 737N)d'r2 o de
Thus '7\(1,1; > 0, trace class, Tr 7(1) = N. We can also define the one body density
pun(@) =1 (2,2) = N [ [Wy(o, ;... o) Pl o
L This satisfies py, >0, [ poy(z)dz = N. O )
[ )
Lemma 8.23. If h is a self-adjoint operator on L? (Rd), then
N
Hy =Y h,,
i=1
is a self-adjoint operator on L2(R™) with domain AN D(h). Moreover,
(Uy, Hy¥,) = Tr (m&:}v)
q =D
[ )
Example 8.24.
N
(o3 B = ()
i=1
N
<wN, ZV(mi>\IfN> = Tr(Vai) ) = / V(@)puy (2)dz
i=1
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The last equality on the second line can be verified by using the spectral decomposition

of the density matrix

Yoy Dl (sl pa(e) = 3 ()l

4 N
Theorem 8.25 (Pauli Exclusion Principle). If Uy is a wave function in L2(R™), then

Remark 8.26. If Uy € L*(R*™) or L2(R™) then we only know that
0< 7\(1,111 < ]\7=T1°7\(I,1[)V

In fact, if Uy = u®V, then 7\(1,1]1 = N |u) (ul. O

é N
Corollary 8.27 (Ground State Energy of Non-Interacting Fermi Gas). Consider Hy =

SN e, on L2 (R™N) with h self adjoint, bounded from below on L*(R?). Then

inf o(Hy) = Z pi(R)

. where puy, is the n™ min-max value of h. U

Proof. Take Uy € L (R™), [Wxllo = 1. Then (¥y, HyWy) = Tr(m&il). Because 7y is

L3
trace class, 0 < 7y <1, Tral) = N,

1
Yol =D Nl (ul,
=1
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(Vn, HyUy) = Z)\i (u, hu;) >
mf{z n; (vi, hvy)
N
= Z,UZ(h)
i=1

thus inf o (Hy) = SN, p(h).

Concerning the upper bound, we use the Slater determinant. Using

<y<LY = ONF}

N

Z wi(h) = inf{z (vy, hvy)

i=1

(), ONF}

Thus for all € > 0, there exists an ONF (vi)fil such that

M) =

N
(v, hv;) < Z,uz(h) +e
i=1

i=1

Now we choose

1 1
Uy =0 AvgA--- Aoy = N det[vi(z))],<; jon = il Z sgn(0)v1 (1) Un(To(m))-
(1) N
Then 7y = > i, [vi) (vi| and therefore
N
(W, HyWy) = Tr(hn) ) = > (o) <37 pu(h) ¢

thus inf o (Hy) < 32N, pi(h) + e. Taking ¢ — 0 finishes the proof. g.e.d.

é N
Corollary 8.28 (Kinetic Energy Estimate). If ¥y is a wave function in L? (RdN ), then

N
<\1/N,Z\11N> — Tr(—mg K/ z)' Tide
=




151

L 0)

Proof. Follows from the Pauli exclusion principle and the Lieb-Thirring inequality.  ¢.e.d.

Remark 8.29. Lieb-Thirring conjectured that K = K = diﬁ I:TQ . U
1|

~
Lemma 8.30 (Tensor Product of Hilbert Spaces). Let 21,y be two measure spaces.

Then L2 x Q) =~ L2(2;) @ L*(Qs) where

LQ(QI) ® Lz(Qg) — span{u Qv |u € L2(),v € L2(Qz)}

and
(u®v)(z,y) = u(z)v(y)

Moreover, if (u;);ey @ ONB for L*(Q1) and (v;);oy for L*(Q2). Then

(UZ‘ (2] Uj)i,jeN

Lz's an ONB for L?(Q; x Q). O

Proof. We need only to check that (u; ® vj), ;o is an ONB for L2(9; x Qo).

7

® (u; ®v;), iy is an ONF in L2(2; x €s) as
(ui ® vj,w @ ug) = /W(CC)Uj(y)ul(x)Uk(y)dxdy = (i, wr) (vj, vi) = 6udjn-

o (u; ®vj); ;cy is complete: Assume that f € L2(Q1 x Qo), f L (u; ® ;)
that f = 0. We have for all : € N

i jeN- We prove

0= {fw @) = [ [ Tamun iy = [ ) / 7o, 9)os(y)dy da

J/

-

95 ()

Because (u;),cy is an ONB, for a.e. & we must have

| F@nnw =0

for all j € N. However, as (v;)._y is an ONB it follows that for a.e. z, a.e. y f(z,y) = 0.

JjEN
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qg.e.d.

e

Lemma 8.31. a) L*(R?") = L?*(R?) @ L*(RY) ® --- @ L2(R™) N-times and if

b) L2(R™) = PyL?(R¥) with the projection being defined by

~
(Wi);en 5 an ONB for L?(R?), then
{U11®®U1N |’i1,...,iN EN}

is an ONB for L?(RN)

1
PnUn(z1,...,2n) = N > sen(o) ¥y (%(1),“.,%(”))

geG,

for all Oy € L? (Rd). Consequently the Slater determinant
{uil/\ui2/\---/\uiN |i1,...,iN EN,il <lg < - - <’iN}

form an ONB for L2(R4N).

o _J
Proof.  a) By the previous lemma and induction.
b) Py is a projection as Pz = Py as
1
PXUn(zy,...,0N5) = PNM Z sgn(o)\I/N(xU(l), . ,xU(N)) =
€6y,
1 1
=31 2 58n(0) 3 D sen(M)Un (Trao(r), -+ Troo () =
O‘GGn TEGn
1 1
=N Z NI Z sgn(7 0 0)U N (Troo(1)s - - - » Troa(N)) =
ceGy, TEG),
indepeI:circent of o
1 | 1
= ﬁNﬁ sgn(T)\I/N(xg(l), .. ,xU(N)) = PyUn(z1,...,2N)
TEG,

q.e.d.



Proof of [Theorem 8.25. We want to prove that if u € L?(R?), |lu[|> = 1, then

<077$])VU> <1

Writin
& N
(wAu) = Te(Pdl)) = <\IJN, Z(Pu>xjx11N>
1

where P, = |u) (u|. Thus we need to prove that

in L2 (Rd). Consider an ONB (u;);oy of L? (Rd). We can choose u; = u. We claim that

Uiy N AN Uy, if 1€{iq,...
Auil/\,,,/\uiN: 11 TN {
0, otherwise
If the claim holds true
A= > i A Auay) (i Ao Ay
1€{i1,....in}

thus 0 < A < 1. Let us check the claim

7ZN}

153
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We have
- 1
Augy N+ Ny = Z(Pu)zj Z — sgn(o)u;,, (v1) - Ui, (TN) =
j=1 geGN N'
N
=D Z sgn ity (1) - <P Uiy (& )) Sl (TN) =
]:1 O'GGN
N
=30 2 O ot (1) () () =
]=1 O‘GGN

0, if1¢{i,....in}

N
Do 2 oeey 7 SEn(0) iy (1) - wn (25) iy (TN) = sy A At

o(j)=1
qg.e.d.
, )
Example 8.32. Consider
al Z
iy =3 (-8 - )
i=1 [
with z; € R3, Z > 0 on L2(R*"). What is inf o(Hy)?
By the Pauli exclusion principle
Z
info(Hy) = Z i ( - )
where y; is the ¢ min-max value (eigenvalue) of —A — % | on L*(R?).
Recall that —A — ‘ has eigenvalues —4L with multiplicity n?. Thus
N
z VA 1
domr DL —gntm =TT BN,
i=1 124-2244n?
as ,
1)(2 1
Nal12492 4. 4p?— n(n+1)(2n+1) ~
6 3
thus n ~ (3N)%. In the case N = Z, then
: 33 7
mfa(HZ):—ZZS —|—0(ZB> .




155

Remark 8.33. If we do not use the information on U(—A — %), then we can still

prove (for N = Z)

ol

info(Hz) > -CZ

for all Z € N. To prove this

i?%}A ) E:M( |+L>_NL>_ﬁLA—EJ+4_—MV

5
for L > 0. Using the Lieb-Thirring inequality — Ttr[-A+ V] > -C [ V2. T
Rd

- A_£+L}_>_o/[_£+4%x:_c / {_lgwrdx:

]

2 3
Choosing f_; =LZ= (<f—;> LZ) = Z5. Thus we get the lower bound —CZ5.

For the Homework one can proceed via

ol

N N
S pi(-A+[2?) =Y pi(-A+|z)* = L) +LN > CN
=1 i=1

Lieb—thirring
N
(s (<84 o)y > € [ o3+ [ faPoda
=1

p=0, [p=N.
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Considering the atomic Hamiltonian

H_°° A Z N
N‘Z(‘ “_@>+lei—xﬂ
1<)

i=1
on L2(R3N). Hy is self-adjoint on H?(R*) with

Ey =info(Hy) = inf (Uy, HyUy)
el
What does Ey look like? For N > 2 one already cannot solve this problem analytically. Even
numerically considering 10 particle problem and solving it using the finite-elements method
on a grid of 10-points per dimension we already get 1030 degrees of freedom. Hence the full
problem quickly exceed current computational capabilities. Thus we need approximations

to make Ey computable.

é N
Definition 8.34 (Thomas-Fermi Theory). Let px(z) be the one-body density of Wy

as in [Definition 8.22] Then we have

= Z pn(z)
<‘I’N’Z‘H‘I’N> sdbr

=1 R3

e From the kinetic Lieb-Thirring inequality we have

N
5
<\PN, > —Am\PN> ~ Kd/pfv

=1 R3

2
2

where Kq = 2(67)2.

<‘I’N Z|X—ac]|> 3 | [ 2 e

R3 R3

Thus we define the Thomas-Fermi functional
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with the Thomas-Fermi energy

Ez"(N) = inf{ €% (p) pGLlﬂLg,p>0,/p=N

R3

( Theorem 8.35 (TF Theory). Considering the case N = Z (not necessarily an integer). )
Then
(1) EXF has a unique minimiser. The minimiser is radial and
gKCz(pZF)§ = ,% — Pz * %
(2) EFF = Z5ETF and pLF(z) = Z2p1TF(Z%x).
A L v

Proof.  (2) Assuming that p >0, [ p = Z. Denote

plz) = 22 f(Z5x)

Then

Z3x

[oi=[2¥s drr/‘:Z;)/lflgdx:Z;/fg
/|x|d‘7“" Zg/fm yAt
[[7E =7 [ ﬁdf”d

Thus EXF(p) = Z5ETF(f) and therefore ETF = Z35 ETF.

(IStep 1 Consider the case Z = 1, which is enough by the above.

- - [0 A
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Step 2
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with p > 0, [ p =1. Observe that

e [ [ o) ) S

Thus

forallpeLlﬂL%,fpzl.

Thus E™ > —o0o. Thus there exists a minimising sequence p,, such that p, > 0,
[ pn=1and E™(p,) — E™F. Since

1 5
ETF<_5TF<pn>>§/p§_C

thus p, us bounded in L3 independently of n. Thus we can go to a subsequence

(if necessary) and assume that p, — pg in Lg, i.e. for all p € L3

/,OnQO —>/p0¢

We have to prove that py is a minimiser.

The mapping p — E(p) is strictly convex, i.e.

5TF<f+g> < E™(f)+E™(g)
2 h 2

with equality iff f = g.

To show this note that f +— f § is convex and f— ﬁ is linear. The non-trivial

thing is to show that

L[ f@)fy), .
ro g ] e =0
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is convex. This follows from

D(fl);rD(fz) _D(y) _

WV

D<f1 - f2)
2
=7

—c [l W =

as

Thus

o If £ has a minimiser, then it is unique. Moreover, the minimiser (if it

exists) is radial as
EN(p() =M (p(R))
for all R € SO(3).

e We can assume that the minimising sequence p,, in Step 1 are radial

ETF(p) = £ (p(R) = / ETF (p(R))dR > EF / p(R)AR | = ETF(p)

50(3) SO(3)

There dR is the Haar measure on SO(3), which is the only measure that on
SO(3) that is invariant under SO(3) and |, so 4R =1.

Note that p >0, [p=1and pis radlal In partlcular as ET(p,) = ET(p,,)
and p is a minimising sequence, weakly converging to pq it follows that p,, —

Po, hence p is also radial.

Step 3 We need to prove that py is a minimiser. We check that liminf, . ET¥(p,) >
£ (p).

5 5
e Since p, — py weakly in L3 it follows that lim inf [pd = [pd,as

151 = sup ‘/fg‘

IIs“lllr1

: 1 1 _

AT
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as

7 @) — o) ou(z) — po(2)
‘/ 2] */ 7| S

||
z|<R z|=R
<| [ e-n), ©
|z R
z|<R

Since ﬁlﬂxKR} €Ls= (L%> , it follows that

[

|z|<R lz|<R

as p, — po weakly in L3. Thus

lim sup / Pn — Po

R3

Taking R — oo yields the result.

[ P e [[ O [[ e e [

This can be done by separating the two cases max{|z|, |y|} < R and max{|z|, |y|} >
R.

Thus we may conclude that

E™ =liminf £ (p,) = £ (po)

n—o0

We yet cannot follows that py is a minimiser as we have to show that [ py = 1.

Note that as p, — po in L3 thus

1= liminf/pn = po

Thus we have to prove that [ py =1 and this is non-trivial.



161

Step 4 Consider the problem

EIF = inf{STF(p) ’p > 1,/p < 1}

for which EZF < ETF.

By the same argument, we can prove that EX" has a minimiser. Denote g the
minimiser EgF We will prove that [ go = 1 thus go is also a minimiser for E™¥

and therefore
ETF < STF(g(]) < EgF < ETF

and go = po.

Let us prove that [ gy = 1. Assume that [go < 1, ten E%(go) < E™(g0) <
E(f)orall f>0, [f<1 Takep > —Cgo. Then g. = go +cp >
< 1if € > 0 small.

Oife >01is
small enough and [g. = [go+¢ [ ¢

Thus £ (go) < ETF(g.) for all £ > 0 small.

Therefore we have

ko [ [Ears [ 40 g, [,
o 3 || [z =y

) 2 1 1
W=_-Kagy — — +go* —-
|z ||

d
¢ (%)

where

3

and one has to justify the interchanging of the derivative and the integration.

Therefore Wy > 0 for all ¢ > —Clgp, in particular we get

W >0, for a.e. x

W(z) =0 if go(z) >0

5 2 1 1 1

—Kclg3>——go*—>(1—/p)—

3 7 2] 2]
~——

>0

We have

as go is radial and by Newton’s theorem

1 . 90(1/) - 90(1/) dy < M

gox —= | ——y= [ ——————
] |z —y] max{|z[, [y|} kg
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Step 5

CHAPTER 8. MANY-BODY SCHRODINGER OPERATOR

2
ie. gi = % for a.e. x, however, this is impossible as gy € L' and $ is not.

We can conclude that [ gy =1, i.e. go = p is the unique minimiser for E™% (and
ETF = BIF),

We need to prove that

) 2 1 1
p— c 3—__ *_’ f .e.
3K190—| | 9o 2] or a.e. T

ie. W = 0. We can mimic the proof in Step 4. We have for all ¢ > —Cygq,

Je <o
/W@}O

Choosing ¢(z) = h(x) — ([ h)go(z) which has satisfies [ ¢o =0 and ¢ > —Cyj if

Thus

og/w(h— (/h)go(x)) :/(W+u)h

with 4 = — [ Wh € R a constant. Thus [(W + p)h > 0 for all h > —cgo. Thus

W+pup=>0, for a.e. x
W +p =0, if go(z) >0

Recalling that
5 21 1
WHp=-Kagi ——+go* 77— +u
3 | ]

We can see that p > 0. Indeed

5 2 1 1
_KC 3> * — — 2 _
3 lgO = ‘x’ gO ’l" M H’

and gy € L* thus —p < 0 and g > 0.

We prove that © = 0. Assume that g > 0. Because W + pu > —ﬁ +p > 0if
|z| > ﬁ it follows that go(x) = 0 if |z| > ‘—le, i.e. go has compact support. Take
R > 0 the smallest number such that supp go C Bg(0).
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Note that for all R < || < R

1 1 -1+ f\x|<R’ 90
—— Tt gox = =
o] 9" Ja] R
Thus
1 1 || =R
—— +gox — ——0
|| ||

i.e. for all € > 0 there exists a R’ < R such that

1 1
_— —|—go * — 2 —E&
|| ||

Thus W+pu> —+pu>0ife <pand |z| > R, ie go(x) =0if |[x] > R'. This
a contradiction to supp go C Bg(0) with R smallest.

Because p =0, W > 0 a.e. and thus we have

5 2 1 1
-Kagg >m—90*m>0-

3
for all z. Thus gy > 0 for all x and therefore W = 0 and

5 2 1 1

CKage = — — go % —.
3 190 ’x‘ 90 |$|

q.e.d.
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