Homework Sheet 12

(Released 5.2.2021 - Discussed 11.2.2021)
12.1. Given $\left\{R_{k}\right\}_{k=1}^{M} \in \mathbb{R}^{3}$ and $Z_{k}>0$. Consider the Thomas-Fermi functional $\mathcal{E}(\rho)=\int_{\mathbb{R}^{3}}\left(\rho(x)^{5 / 3}-V(x) \rho(x)\right) \mathrm{d} x+\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho(x) \rho(y)}{|x-y|} \mathrm{d} x \mathrm{~d} y, \quad V(x)=\sum_{k=1}^{M} \frac{Z_{k}}{\left|x-R_{k}\right|}$.
(a) Prove that for every $m>0$ the following minimization problem

$$
E^{\mathrm{TF}}=\inf _{\substack{0 \leq \rho \in L^{\left(1 \mathbb{R}^{3}\right) \cap}\left(\sum^{5 / 3 / 3}\left(\mathbb{R}^{3}\right)\right.}} \mathcal{E}(\rho)
$$

has a unique minimizer ρ_{0}.
(b) Prove that the minimizer ρ_{0} solves the Thomas-Fermi equation

$$
\frac{5}{3} \rho_{0}(x)^{2 / 3}=\left[V(x)-\rho_{0} *|x|^{-1}-\mu\right]_{+} \quad \text { for a.e. } x \in \mathbb{R}^{3}
$$

with a constant $\mu \in \mathbb{R}$.
(c) Prove that

$$
\int_{\mathbb{R}^{3}} \rho_{0}=\min \left\{m, \sum_{k=1}^{M} Z_{k}\right\} .
$$

12.2. For any open bounded set $\Omega \subset \mathbb{R}^{d}$, we denote the energy $E(\Omega) \in(-\infty, 0]$. Assume that we have the following properties

- (Translation-invariant) $E(\Omega+z)=E(\Omega)$ for all $z \in \mathbb{R}^{3}$.
- (Sub-additivity) $E\left(\Omega_{1} \cup \Omega_{2}\right) \leq E\left(\Omega_{1}\right)+E\left(\Omega_{2}\right)$ if $\Omega_{1} \cap \Omega_{2}=\emptyset$.
- (Stability) $E(\Omega) \geq-C|\Omega|$.

Prove that the following thermodynamic limit exists

$$
\lim _{\substack{\Omega=[-L, L]^{3} \\ L \rightarrow \infty}} \frac{E(\Omega)}{|\Omega|} .
$$

Homework Sheet 11

(Released 29.1.2021 - Discussed 4.2.2021)
11.1. On the fermionic Fock space $\mathcal{F}\left(L^{2}\left(\mathbb{T}^{3}\right)\right)$ denote the annihilation operators $a_{p}=a\left(u_{p}\right)$ with $u_{p}(x)=(2 \pi)^{-3 / 2} e^{-i p \cdot x}, \forall p \in \mathbb{Z}^{3}$. Let A be a non-negative trace class operator on $L^{2}\left(\mathbb{T}^{3}\right)$. Let $0 \neq k \in \mathbb{Z}$ and define

$$
\mathbb{A}=\sum_{p, q \in \mathbb{Z}^{3}}\left\langle u_{p}, A u_{q}\right\rangle b_{p}^{*}(k) b_{q}(k), \quad b_{p}^{*}(k)=a_{p}^{*} a_{p-k}^{*} .
$$

Prove that

$$
0 \leq \mathbb{A} \leq\|A\|_{\mathrm{op}} \mathcal{N}, \quad \mathcal{N}=\sum_{p \in \mathbb{Z}^{3}} a_{p}^{*} a_{p} .
$$

11.2. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a decreasing function satisfying that

$$
f(m+n) \leq f(m)+f(n), \quad \forall m, n \in \mathbb{N}
$$

and that

$$
f(n) \geq-C n, \quad \forall n \in \mathbb{N}
$$

for some constant $C>0$. Prove that the $\operatorname{limit}^{\lim } \lim _{n \rightarrow \infty} f(n) / n$ exists.
11.3. Let $\left\{Z_{k}\right\}_{k=1}^{K}$ be positive numbers and let $\left\{R_{k}\right\}_{k=1}^{K}$ be distinct points in \mathbb{R}^{3}. Let $0 \leq f \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{5 / 3}\left(\mathbb{R}^{3}\right)$. Consider the minimization problem

$$
E=\inf _{0 \leq g \leq f}\left\{\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{g(x) g(y)}{|x-y|}-\int_{\mathbb{R}^{3}} g(x) V(x)\right\} \quad \text { with } V(x):=\sum_{k=1}^{K} \frac{Z_{k}}{\left|x-R_{k}\right|} .
$$

(a) Prove that E has a unique minimizer g_{0}.
(b) Prove that $g_{0} *|x|^{-1} \leq V(x)$ for a.e. $x \in \mathbb{R}^{3}$.
(c) Prove that $g_{0} *|x|^{-1}=V(x)$ on $\left\{x: g_{0}(x)<f(x)\right\}$.

Homework Sheet 10

(Released 22.1.2021 - Discussed 28.1.2021)
10.1. Consider the atomic Hartree-Fock energy with $Z>0, N \in \mathbb{N}$,

$$
E^{\mathrm{HF}}=\inf _{\substack{0 \leq \gamma=\gamma^{2} \leq 1 \\ \operatorname{Tr} \gamma=N}}\left(\operatorname{Tr}\left(\left(-\Delta-Z|x|^{-1}\right) \gamma\right)+\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho_{\gamma}(x) \rho_{\gamma}(y)-|\gamma(x, y)|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y .\right)
$$

Assume that E^{HF} has a minimizer γ^{HF}. Define the mean-field operator

$$
h=-\Delta-Z|x|^{-1}+\rho_{\gamma^{\mathrm{HF}}} *|x|^{-1}-G
$$

where G is the operator on $L^{2}\left(\mathbb{R}^{3}\right)$ with kernel $G(x, y)=\gamma^{\mathrm{HF}}(x, y)|x-y|^{-1}$.
(a) Prove that $\gamma^{\mathrm{HF}}=\sum_{i=1}^{N}\left|u_{i}\right\rangle\left\langle u_{i}\right|$ where all u_{i}^{\prime} 's are eigenfunctions of h with N lowest eigenvalues.
(b) Assume further that there exists a constant $\mu<0$ such that $\operatorname{Tr} \mathbb{1}(h \leq \mu)=N$. Prove that if Z is large enough, then γ^{HF} is the unique minnimizer for E^{HF}.
10.2. Prove that for every $f \in L^{2}(\Omega)$, we have $\left(a^{*}(f)\right)^{2}=0$ on the fermionic Fock space $\mathcal{F}\left(L^{2}(\Omega)\right)$.
10.3. Prove that for all $f \in L^{2}(\Omega)$, we have

$$
\left\langle a^{*}(f) \Psi, \Phi\right\rangle_{\mathcal{F}}=\langle\Psi, a(f) \Phi\rangle_{\mathcal{F}}, \quad \forall \Psi, \Phi \in \mathcal{F}\left(L^{2}(\Omega)\right) .
$$

10.4. Let W be a self-adjoint operator on $L^{2}\left(\Omega^{2}\right)$ such that $W_{12}=W_{21}$. Let $\left\{u_{n}\right\}_{n \geq 1}$ be an orthonormal basis for $L^{2}(\Omega)$. Prove that in the fermionic Fock space $\mathcal{F}\left(L^{2}(\Omega)\right)$, we have

$$
\bigoplus_{n=0}^{\infty}\left(\sum_{1 \leq i<j \leq n} W_{i j}\right)=\frac{1}{2} \sum_{m, n, p, q \geq 1}\left\langle u_{m} \otimes u_{n}, W u_{p} \otimes u_{q}\right\rangle \quad a^{*}\left(u_{m}\right) a^{*}\left(u_{n}\right) a\left(u_{q}\right) a\left(u_{p}\right) .
$$

10.5. Let Ψ be a normalized vector in the fermionic Fock space $\mathcal{F}\left(L^{2}(\Omega)\right)$ with $\langle\Psi, \mathcal{N} \Psi\rangle<\infty$. Prove that its one-body density matrix satisfies

$$
0 \leq \gamma_{\Psi}^{(1)} \leq 1, \quad \operatorname{Tr} \gamma_{\Psi}^{(1)}=\langle\Psi, \mathcal{N} \Psi\rangle
$$

Homework Sheet 9

(Released 15.1.2021 - Discussed 21.1.2021)
9.1. Prove Vitali covering lemma: for any family $\left\{B_{j}\right\}_{J}$ of balls in \mathbb{R}^{d} such that $\sup _{j \in J} \operatorname{diam}\left(B_{j}\right)<\infty$, there exists a subfamily of disjoint balls $\left\{B_{j}\right\}_{J^{\prime}}$ such that

$$
\bigcup_{j \in J} B_{j} \subset \bigcup_{j \in J^{\prime}} 5 B_{j} .
$$

Here if $B_{j}=B\left(x_{j}, r_{j}\right)$, then $5 B_{j}=B\left(x_{j}, 5 r_{j}\right)$.
9.2. Let $d \geq 1$ and $\lambda \in(0, d)$. Prove that for every normalized wave function $\Psi \in L_{a}^{2}\left(\mathbb{R}^{d N}\right)$ we have the Lieb-Oxford inequality

$$
\left\langle\Psi, \sum_{1 \leq i<j \leq N} \frac{1}{\left|x_{i}-x_{j}\right|^{\mid}} \Psi\right\rangle \geq \frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{\rho_{\Psi}(x) \rho_{\Psi}(y)}{|x-y|^{\lambda}} \mathrm{d} x \mathrm{~d} y-C \int_{\mathbb{R}^{d}} \rho_{\Psi}(x)^{1+\lambda / d} \mathrm{~d} x .
$$

Here the constant $C=C(d, \lambda)$ is independent of N and Ψ.
9.3. Prove that for every constant $\mu>0$, when $N \rightarrow \infty$ we have

$$
\operatorname{Tr}\left(-N^{-2 / 3} \Delta-|x|^{-1}+\mu\right)_{-}+N L_{1,3}^{\mathrm{cl}} \int_{\mathbb{R}^{3}}\left(|x|^{-1}-\mu\right)_{+}^{5 / 2} \mathrm{~d} x=\frac{1}{8} N^{2 / 3}+O\left(N^{1 / 3}\right) .
$$

(You can use the spectral property of $-h^{2} \Delta-|x|^{-1}$ on $L^{2}\left(\mathbb{R}^{3}\right)$.)
9.4. Let A be a nonnegative trace class operator on $L^{2}\left(\mathbb{R}^{d}\right)$. Prove that

$$
\sum_{i=1}^{N} A_{i} \leq \operatorname{Tr}(A) \quad \text { on } L_{a}^{2}\left(\mathbb{R}^{d N}\right)
$$

9.5. Let $0 \leq V \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$. Prove that

$$
\operatorname{Tr}(-\Delta-\kappa V)_{-}=-L_{1,3}^{\mathrm{cl}} \int_{\mathbb{R}^{3}}|\kappa V|^{5 / 2}+O\left(\kappa^{5 / 2-\varepsilon}\right)_{\kappa \rightarrow \infty}
$$

for some constant $\varepsilon>0$. Try to get ε as large as possible.

Homework Sheet 8

(Released 8.1.2021 - Discussed 14.1.2021)
8.1. In this exercise we discuss the Lewin-Lieb-Seiringer construction of a trial density matrix for the kinetic energy functional. For $\rho \geq 0, \sqrt{\rho} \in H^{1}\left(\mathbb{R}^{d}\right)$, define

$$
\gamma=\int_{0}^{\infty} \frac{\mathrm{d} t}{t} \varphi\left(\frac{t}{\rho(x)}\right) \mathbb{1}\left(-\Delta \leq \frac{d+2}{d} K_{d}^{\mathrm{cl}} t^{2 / d}\right) \varphi\left(\frac{t}{\rho(x)}\right) \quad \text { on } L^{2}\left(\mathbb{R}^{d}\right)
$$

where $\varphi\left(\frac{t}{\rho(x)}\right)$ is the multiplication operator on $L^{2}\left(\mathbb{R}^{d}\right)$ with a given function

$$
0 \leq \varphi \in C_{c}^{\infty}(0, \infty), \quad \int_{0}^{\infty} \varphi(t)^{2} \mathrm{~d} t=1, \quad \int_{0}^{\infty} \frac{\varphi(t)^{2}}{t} \mathrm{~d} t \leq 1
$$

(a) Prove that $0 \leq \gamma \leq 1, \rho_{\gamma}=\rho$ and

$$
\operatorname{Tr}(-\Delta \gamma)=K_{d}^{\mathrm{cl}} \int_{\mathbb{R}^{d}} \rho^{1+2 / d} \int_{0}^{\infty} \varphi(t)^{2} t^{2 / d} \mathrm{~d} t+4 \int_{\mathbb{R}^{d}}|\nabla \sqrt{\rho}|^{2} \int_{0}^{\infty} \varphi^{\prime}(t)^{2} t^{2} \mathrm{~d} t
$$

(b) Prove that for every $\varepsilon>0$, there exists $C_{\varepsilon}>0$ independent of ρ such that

$$
\inf _{\varphi} \operatorname{Tr}(-\Delta \gamma) \leq K_{d}^{\mathrm{cl}}(1+\varepsilon) \int_{\mathbb{R}^{d}} \rho^{1+2 / d}+C_{\varepsilon} \int_{\mathbb{R}^{d}}|\nabla \sqrt{\rho}|^{2} .
$$

8.2. (a) Let $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ satisfy $\int_{\mathbb{R}^{d}} f(x) \varphi(x) \mathrm{d} x \geq 0, \quad \forall 0 \leq \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Prove that $f(x) \geq 0$ for a.e. $x \in \mathbb{R}^{d}$.
(b) Prove that if $f_{n}(x) \geq 0$ for a.e. $x \in \mathbb{R}^{d}$ for all $n \in \mathbb{N}$ and $f_{n} \rightharpoonup f$ weakly in $L^{p}\left(\mathbb{R}^{d}\right)$ as $n \rightarrow \infty$ for some $p \in(1, \infty)$, then $f(x) \geq 0$ for a.e. $x \in \mathbb{R}^{d}$.
8.3. Given real-valued functions $V, w \in L^{p}\left(\mathbb{R}^{d}\right)+L^{q}\left(\mathbb{R}^{d}\right)$ with $p, q \in[1+d / 2, \infty)$ and $\widehat{w} \geq 0$. Recall the Thomas-Fermi functional

$$
\mathcal{E}^{\mathrm{TF}}(f):=K_{d}^{\mathrm{cl}} \int_{\mathbb{R}^{d}} f^{1+2 / d}+\int_{\mathbb{R}^{d}} V f+\frac{1}{2} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} f(x) f(y) w(x-y) \mathrm{d} x \mathrm{~d} y .
$$

Prove that the variational problem

$$
E^{\mathrm{TF}}:=\inf \left\{\mathcal{E}^{\mathrm{TF}}(f): 0 \leq f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{1+2 / d}\left(\mathbb{R}^{d}\right), \int_{\mathbb{R}^{d}} f \leq 1\right\}
$$

has a minimizer f^{TF}. Moreover,

$$
E^{\mathrm{TF}}=\inf \left\{\mathcal{E}^{\mathrm{TF}}(f): 0 \leq f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{1+2 / d}\left(\mathbb{R}^{d}\right), \int_{\mathbb{R}^{d}} f=1\right\}
$$

Homework Sheet 7

(Released 21.12.2020 - Discussed 7.1.2021)
7.1. Let $\left\{u_{i}\right\}_{i=1}^{N}$ be orthonormal functions in $L^{2}\left(\mathbb{R}^{d}\right)$ and consider the Slater determinant $\Psi_{N}=u_{1} \wedge u_{2} \wedge \ldots \wedge u_{N}$.
(i) Prove that the one-body density matrix of Ψ_{N} is

$$
\gamma_{\Psi_{N}}^{(1)}=\sum_{i=1}^{N}\left|u_{i}\right\rangle\left\langle u_{i}\right| .
$$

(ii) Prove that for every interaction potential $w: \mathbb{R}^{d} \rightarrow \mathbb{R}, w(x)=w(-x)$,

$$
\left\langle\Psi_{N}, \sum_{1 \leq i<j \leq N} w\left(x_{i}-x_{j}\right) \Psi_{N}\right\rangle=\frac{1}{2} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left(\rho_{\Psi_{N}}(x) \rho_{\Psi_{N}}(y)-\left|\gamma_{\Psi_{N}}^{(1)}(x, y)\right|^{2}\right) w(x-y) \mathrm{d} x \mathrm{~d} y .
$$

7.2. Let γ be a trace class operator on $L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
0 \leq \gamma \leq 1 \quad \text { on } L^{2}\left(\mathbb{R}^{d}\right), \quad \operatorname{Tr} \gamma=N \in \mathbb{N}
$$

Assume further that γ has $N-1$ eigenvalues equal to 1 , but γ is not a projection. Prove that there exists no normalized function $\Psi_{N} \in L_{a}^{2}\left(\mathbb{R}^{d N}\right)$ such that $\gamma_{\Psi_{N}}^{(1)}=\gamma$.
7.3. Consider the Thomas-Fermi functional

$$
\mathcal{E}^{\mathrm{TF}}(f)=\frac{3}{5}\left(6 \pi^{2}\right)^{2 / 3} \int_{\mathbb{R}^{3}} f^{5 / 3}-\int_{\mathbb{R}^{3}} \frac{f(x)}{|x|} \mathrm{d} x .
$$

Prove that the variational problem

$$
E=\inf \left\{\mathcal{E}^{\mathrm{TF}}(f) \mid 0 \leq f \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{5 / 3}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} f \leq 1\right\}
$$

has a unique minimizer f_{0}. Moreover, $\int_{\mathbb{R}^{3}} f_{0}=1$ and $E=-(3)^{1 / 3} / 4$.
7.4. Let $d \geq 1$ and let $\mathbb{1}_{B_{r}}$ be the characteristic function of the ball $B(0, r)$ in \mathbb{R}^{d}. Prove that for every $0<\lambda<d$, there exists a constant $C_{\lambda, d}>0$ such that

$$
\frac{1}{|x|^{\lambda}}=C_{\lambda, d} \int_{0}^{\infty} \frac{1}{r^{d+\lambda+1}}\left(\mathbb{1}_{B_{r}} * \mathbb{1}_{B_{r}}\right)(x) d r, \quad \forall x \in \mathbb{R}^{d} \backslash\{0\} .
$$

Homework Sheet 6

(Released 11.12.2020 - Discussed 17.12.2020)
6.1. Consider a non-negative trace class operator on $L^{2}\left(\mathbb{R}^{d}\right)$

$$
\gamma=\sum_{n=1}^{\infty} \lambda_{n}\left|u_{n}\right\rangle\left\langle u_{n}\right|
$$

where $\left\{u_{n}\right\}_{n=1}^{\infty}$ are orthonormal functions.
(i) Prove that

$$
\operatorname{Tr}(-\Delta \gamma):=\operatorname{Tr}(\sqrt{-\Delta} \gamma \sqrt{-\Delta})=\int_{0}^{\infty} \mathrm{d} \tau \sum_{n=1}^{\infty} \mathbb{1}\left(\lambda_{n}>\tau\right) \int_{\mathbb{R}^{d}} \mathrm{~d} x\left|\nabla u_{n}(x)\right|^{2} .
$$

(ii) Deduce that if $0 \leq \gamma \leq 1$, then

$$
\operatorname{Tr}(-\Delta \gamma) \geq K_{d} \int_{\mathbb{R}^{d}} \rho_{\gamma}^{1+2 / d}, \quad \rho_{\gamma}(x)=\sum_{n=1}^{\infty} \lambda_{n}\left|u_{n}(x)\right|^{2}
$$

with the constant K_{d} in the Lieb-Thirring kinetic energy for orthonormal functions.
6.2. Let $\Omega \subset \mathbb{R}^{d}$ be an open bounded set. Let $\left\{v_{n}\right\} \subset H_{0}^{1}(\Omega)$ such that

$$
0 \leq \gamma:=\sum_{n=1}^{N}\left|v_{n}\right\rangle\left\langle v_{n}\right| \leq 1 \quad \text { on } L^{2}(\Omega) .
$$

Prove the following extension of the Berezin-Li-Yau inequality

$$
\sum_{n=1}^{N} \int_{\Omega}\left|\nabla v_{n}\right|^{2} \geq \frac{K_{d}^{\mathrm{cl}}}{|\Omega|^{2 / d}}(\operatorname{Tr} \gamma)^{1+\frac{2}{d}}
$$

6.3. Let $\left\{\Omega_{j}\right\}_{j=1}^{J}$ be disjoint open sets in \mathbb{R}^{d}. Let $N_{\mathrm{D}}(\lambda, \Omega)$ be the number of eigenvalues $<\lambda$ of the Dirichlet Laplacian on $L^{2}(\Omega)$. Prove that

$$
N_{\mathrm{D}}(\lambda, \Omega) \geq \sum_{j=1}^{J} N\left(\lambda, \Omega_{j}\right), \quad \Omega=\text { interior of }\left(\overline{\bigcup \Omega_{j}}\right) .
$$

(We have the reversed inequality for Neumann eigenvalues.)
6.4. Consider the operator $A=-\Delta$ on $L^{2}(0,1)$ with domain

$$
D(A)=\left\{u \in H^{2}(0,1) \mid u(0)=0, u^{\prime}(1)=0\right\} .
$$

(i) Prove that A is a self-adjoint operator.
(ii) Prove that $A>0$ and it has compact resolvent.

Homework Sheet 5

(Released 4.12.2020 - Discussed 10.12.2020)
5.1. Consider Bessel function $J_{1}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
J_{1}(t)=\frac{1}{i \pi} \int_{0}^{\pi} e^{i t \cos \theta} \cos \theta \mathrm{~d} \theta
$$

Prove that $J_{1}(t) \leq C t^{-1 / 2}$ for all $t>0$.
5.2. Let $\Omega=\mathbb{R}^{d} \backslash\{0\}$. Prove that $H_{0}^{1}(\Omega)=H^{1}(\Omega)$ if and only if $d \geq 2$.
5.3. Let $d \geq 1$ and let $\Omega \subset \mathbb{R}^{d}$ be an open bounded set. Define the extension $\widetilde{u}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ by

$$
\widetilde{u}(x)= \begin{cases}u(x), & \text { if } x \in \Omega, \\ 0, & \text { if } x \notin \Omega .\end{cases}
$$

Prove that if $u \in H_{0}^{1}(\Omega)$, then $\widetilde{u} \in H^{1}\left(\mathbb{R}^{d}\right)$ and

$$
\nabla \widetilde{u}(x)= \begin{cases}\nabla u(x), & \text { if } x \in \Omega, \\ 0, & \text { if } x \notin \Omega .\end{cases}
$$

5.4. Prove that the domain of the Neumann Laplacian on $L^{2}(0,1)$ is

$$
D\left(-\Delta_{\mathrm{N}}\right)=\left\{u=H^{2}(0,1) \mid u^{\prime}(0)=u^{\prime}(1)=0\right\} .
$$

Homework Sheet 4

(Released 27.11.2020 - Discussed 3.12.2020)
4.1. Here we discuss a simplified proof of the upper bound for Weyl's law. Let $d \geq 1$. Assume that $V_{-} \in L^{1+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$ and $V_{+} \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{d}\right)$ with $p \geq \max (1, d / 2)$ if $d \neq 2$ and $p>1$ if $d=2$. Let $F_{k, y}(x)=e^{2 \pi i k \cdot x} G(x-y)$ with a radial function $0 \leq G \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ satisfying $\|G\|_{L^{2}\left(\mathbb{R}^{d}\right)}=1$ and define the operator on $L^{2}\left(\mathbb{R}^{d}\right)$

$$
\widetilde{\gamma}:=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\left|F_{k, y}\right\rangle\left\langle F_{k, y}\right| \mathbb{1}\left(|2 \pi k|^{2}+\lambda\left(G^{2} * V\right)(y)+\|\nabla G\|_{L^{2}}^{2}<0\right) \mathrm{d} k \mathrm{~d} y .
$$

(i) Prove that

$$
\operatorname{Tr}((-\Delta+\lambda V) \widetilde{\gamma})=-L_{1, d}^{\mathrm{cl}} \int_{\mathbb{R}^{d}}\left|\left(\lambda G^{2} * V+\|\nabla G\|_{L^{2}}^{2}\right)_{-}\right|^{1+\frac{d}{2}}
$$

(ii) Using an appropriate choice of G to deduce that

$$
\limsup _{\lambda \rightarrow \infty} \lambda^{-(1+d / 2)} \operatorname{Tr}\left((-\Delta+\lambda V)_{-}\right) \leq-L_{1, d}^{\mathrm{cl}} \int_{\mathbb{R}^{d}}\left|V_{-}\right|^{1+\frac{d}{2}} .
$$

4.2. Let $d \geq 1$ and let $\Omega \subset \mathbb{R}^{d}$ be an open bounded set. Let $\mu_{1} \leq \mu_{2} \leq \ldots$ be the min-max values of the Dirichlet Laplacian $-\Delta_{\mathrm{D}}$ on $L^{2}\left(\mathbb{R}^{d}\right)$.
(i) Use the Berezin-Li-Yau inequality to prove that $-\Delta_{\mathrm{D}}$ has compact resolvent (hence all $\left\{\mu_{n}\right\}$ are eigenvalues).
(ii) Prove that $0<\mu_{1}<\mu_{2}$.
4.3. Let $d \geq 1$ and let $\Omega \subset \mathbb{R}^{d}$ be an open bounded set. Let $\mu_{1} \leq \mu_{2} \leq \ldots$ be the eigenvalues of the Dirichlet Laplacian $-\Delta_{\mathrm{D}}$ on $L^{2}(\Omega)$. Use the asymptotic formula for $\sum_{i=1}^{N} \mu_{i}$ to prove that

$$
\sum_{i=1}^{\infty}\left[\mu_{i}-\lambda\right]_{-}=-L_{1, d}^{\mathrm{cl}}|\Omega| \lambda^{1+\frac{d}{2}}+o\left(\lambda^{1+\frac{d}{2}}\right)_{\lambda \rightarrow \infty}
$$

4.4. Given an increasing sequence $0 \leq \mu_{1} \leq \mu_{2} \leq \ldots$ satisfying

$$
\lim _{N \rightarrow \infty} N^{-a} \mu_{N}=A(1+a)
$$

for two constants $A>0, a>0$. Prove that

$$
\lim _{N \rightarrow \infty} N^{-1-a} \sum_{n=1}^{N} \mu_{n}=A
$$

Homework Sheet 3

(Released 20.11.2020 - Discussed 26.11.2020)
3.1. Let $A \geq 0, B \geq 0$ be self-adjoint operators on a Hilbert space such that $\sqrt{B}(A+1)^{-\frac{1}{2}}$ is a compact operator. Prove that $A+B$ can be defined by Friedrichs method as a self-adjoint operator with quadratic form domain $Q(A+B)=Q(A)$ and

$$
\sigma_{\mathrm{ess}}(A+B)=\sigma_{\mathrm{ess}}(A)
$$

3.2. Let $d \geq 1$. Let $0 \leq U \in L^{p}\left(\mathbb{R}^{d}\right)+L^{q}\left(\mathbb{R}^{d}\right)$ with $\infty>p, q \geq \max (1, d / 2)$ if $d \neq 2$ and $\infty>p, q>1$ if $d=2$. Prove that $\sqrt{U(x)}(-\Delta+1)^{-1 / 2}$ is a compact operator on $L^{2}\left(\mathbb{R}^{d}\right)$.
3.3. Let $3 \geq d \geq 1$ and $V \in L^{2}\left(\mathbb{R}^{d}\right)$. Prove that for every $E>0$

$$
\mathcal{N}(-\Delta+V+E) \leq C_{d} E^{\frac{d-4}{2}} \int_{\mathbb{R}^{d}}|V|^{2}
$$

Here $\mathcal{N}(-\Delta+V+E)$ is the number of negative eigenvalue of $-\Delta+V+E$.
3.4. Let $A \geq 0$ be a self-adjoint operator on a Hilbert space. Let $\infty>q>1$. Assume that for every $\varepsilon>0$, we have the operator inequality

$$
A \leq \varepsilon+B_{\varepsilon} \quad \text { with an operator } B_{\varepsilon} \geq 0, \quad \operatorname{Tr}\left(B_{\varepsilon}\right) \leq \varepsilon^{1-q} .
$$

Prove that A is a compact operator and its eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots$ satisfy

$$
\lambda_{n} \leq C n^{-1 / q}, \quad \forall n \geq 1
$$

3.5. Let A be a self-adjoint operator on a Hilbert space such that $A_{-}=A \mathbb{1}(A<0)$ is a trace class operator. Prove that

$$
\operatorname{Tr}\left(A_{-}\right)=\inf _{0 \leq \gamma \leq 1} \operatorname{Tr}(A \gamma)
$$

Here we use the convention $\operatorname{Tr}(A \gamma)=\operatorname{Tr}(\sqrt{\gamma} A \sqrt{\gamma})=\operatorname{Tr}\left(\sqrt{\gamma} A_{-\sqrt{\gamma}}\right)+\operatorname{Tr}\left(\sqrt{\gamma} A_{+} \sqrt{\gamma}\right)$.

Homework Sheet 2

(Released 13.11.2020 - Discussed 19.11.2020)
2.1. Let $F, G: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be locally bounded functions satisfying $F(x), G(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Prove that the operator $F(x)+G(-i \nabla)$ on $L^{2}\left(\mathbb{R}^{d}\right)$ has compact resolvent.
2.2. Let $d \geq 1$. Let $V \in L^{p}\left(\mathbb{R}^{d}\right)+L^{q}\left(\mathbb{R}^{d}\right)$ with $\infty>p, q \geq \max (1, d / 2)$ when $d \neq 2$ and $\infty>p, q>1$ when $d=2$. Prove that the operator $-\Delta+V(x)$ can be defined as a self-adjoint operator on $L^{2}\left(\mathbb{R}^{d}\right)$ with the quadratic form domain $H^{1}\left(\mathbb{R}^{d}\right)$. Moreover,

$$
\sigma_{\mathrm{ess}}(-\Delta+V)=[0, \infty)
$$

2.3. Let $d=1,2$. Let $V \in L^{1}\left(\mathbb{R}^{d}\right)$ if $d=1$ and $V \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{p}\left(\mathbb{R}^{d}\right)$ for some $p>1$ if $d=2$. Prove that if

$$
\int_{\mathbb{R}^{d}} V(x) \mathrm{d} x<0
$$

then $-\Delta+V$ has at least one negative eigenvalue. Hint: You may consider $u_{\varepsilon}(x)=$ $e^{-\varepsilon|x|}$ when $d=1$, and $u_{\varepsilon}(x)=e^{-(1+|x|)^{\varepsilon}}$ when $d=2$.
2.4. Let $d \geq 1$. Let $\left\{u_{n}\right\}_{n=1}^{N} \subset H^{1}\left(\mathbb{R}^{d}\right)$ be an orthonormal family in $L^{2}\left(\mathbb{R}^{d}\right)$ and define $\rho(x)=\sum_{n=1}^{N}\left|u_{n}(x)\right|^{2}$. Use Rumin's method to prove that

$$
\sum_{n=1}^{N} \int_{\mathbb{R}^{d}}\left|\nabla u_{n}(x)\right|^{2} \mathrm{~d} x \geqslant K_{d} \int_{\mathbb{R}^{d}} \rho(x)^{1+\frac{2}{d}} \mathrm{~d} x .
$$

Here the constant $K_{d}>0$ depends only on d.

Homework Sheet 1

(Released 06.11.2020 - Discussed 12.11.2020)
1.1. Let $\Omega \subset \mathbb{R}^{d}$ be a Borel set, μ a locally finite Borel measure on Ω, and $a \in$ $L_{\text {loc }}^{\infty}(\Omega, \mu)$ a real-valued function. Consider the multiplication operator M_{a} on $L^{2}(\Omega, \mu)$ defined by

$$
\left(M_{a} f\right)(x)=a(x) f(x), \quad D\left(M_{a}\right)=\left\{f \in L^{2}(\Omega, \mu), a f \in L^{2}(\Omega, \mu)\right\} .
$$

Prove that
(i) M_{a} is a self-adjoint operator and $\sigma\left(M_{a}\right)=\operatorname{ess}$-range $(a) \subset \mathbb{R}$, namely

$$
\lambda \in \sigma\left(M_{a}\right) \quad \text { iff } \mu\left(a^{-1}(\lambda-\varepsilon, \lambda+\varepsilon)\right)>0, \quad \forall \varepsilon>0
$$

(ii) λ is an eigenvalue of M_{a} iff $\mu\left(a^{-1}(\lambda)\right)>0$. Moreover, the multiplicity of λ is $\operatorname{dim} L^{2}\left(a^{-1}(\lambda), \mu\right)$.
1.2. Let A be a self-adjoint operator A on a Hilbert space \mathscr{H}. Prove that $\lambda \in \sigma_{\text {ess }}(A)$ if and only if there exists an orthonormal family $\left\{u_{n}\right\}_{n=1}^{\infty} \subset D(A)$ such that

$$
\lim _{n \rightarrow \infty}\left\|(A-\lambda) u_{n}\right\|=0
$$

Hint: You can use Spectral theorem to reduce to a multiplication operator.
1.3. Let A be a self-adjoint operator on a Hilbert space. Assume that A is bounded from below and its min-max values satisfies

$$
\lim _{n \rightarrow \infty} \mu_{n}(A)=+\infty
$$

Prove that $(A+C)^{-1}$ is a compact operator for any constant $C>-\mu_{1}(A)$. (In this case we say that A has compact resolvent.)
1.4. Let A be a self-adjoint operator on a Hilbert space \mathscr{H}. Assume that A is bounded from below and let $\mu_{n}(A)$ be its min-max values. Prove that for all $N \in \mathbb{N}$,

$$
\sum_{n=1}^{N} \mu_{n}(A)=\inf \left\{\sum_{n=1}^{N}\left\langle u_{n}, A u_{n}\right\rangle:\left\{u_{n}\right\}_{n=1}^{N} \text { an orthonormal family in } \mathscr{H}\right\} .
$$

1.5. (extra) Let A be a self-adjoint operator on a Hilbert space \mathscr{H} such that $A>0$ and that A has compact resolvent. Prove that $A \geq \varepsilon$ for a constant $\varepsilon>0$.

