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c Department of Mathematics, Mapmo UMR 6628, BP 67-59, 45067 Orleans cedex, France

d Department of Mathematical Sciences, University of Copenhagen, Denmark

Abstract

We consider the problem of determining a pair of functions (u, f) satisfying
the two-dimensional backward heat equation

ut −∆u = φ(t)f(x, y), t ∈ (0, T ), (x, y) ∈ (0, 1)× (0, 1),

u(x, y, T ) = g(x, y)

with a homogeneous Cauchy boundary condition, where φ and g are given approx-
imately. The problem is severely ill-posed. Using an interpolation method and the
truncated Fourier series, we construct a regularized solution for the source term
f and provide Hölder-type error estimates in both L2 and H1 norms. Numerical
experiments are provided.

MSC 2000: 35K05, 42A16, 65D05, 65N21.
Keywords: heat source, backward, regularization, Fourier series, interpolation.

1 Introduction

Let T > 0 and let Ω = (0, 1) × (0, 1) be a heat conduction body. We consider the
problem of determining a pair of functions (u, f) satisfying the system

ut −∆u = φ(t)f(x, y), for t ∈ (0, T ), (x, y) ∈ Ω,

ux(0, y, t) = ux(1, y, t) = uy(x, 0, t) = uy(x, 1, t) = 0,

u(1, y, t) = 0,

u(x, y, T ) = g(x, y),

(1)
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where g ∈ L1(Ω) and φ ∈ L1(0, T ) are given data. Note that the over-determination
condition u(1, y, t) is necessary to ensure the uniqueness of the problem (see [17], Remark
3, p. 464). Since once the source term f is available one will get a classical backward
problem, we therefore only concentrate on finding the function f .

It is a particular problem of finding the source F (ξ, t) satisfying the heat equation

ut −∆u = F,

where ξ is the spatial variable. The inverse source problem is ill-posed, namely a solution
may not exist, and even if the solution exists then it may not depend continuously on the
data. Therefore, a regularization is necessary to make the numerical treatment possible.
Since the problem is very difficult, ones often restrict the heat source to the separate
form

F (ξ, t) = φ(t)f(ξ)

where either φ or f is given. The uniqueness and conditional stability of the heat source
of this form were considered by many author [3, 4, 23, 24, 22, 12, 13, 5].

In spite of the uniqueness and stability results, the regularization problem for un-
stable case is still difficult. To treat the regularization problem, many authors have
to assume that the heat source depends only either on time, namely F (ξ, t) = φ(t)
[20, 14, 6], or on space, namely F (ξ, t) = f(x) [2, 21, 6, 7, 9, 8, 10, 25]. The full separate
form F (ξ, t) = φ(t)f(ξ), where φ is given, was investigated in [15, 16]. We realize that in
the previous works on recovering the spatial source term f(x) [21, 6, 7, 8, 10, 25, 15, 16],
ones often have to require both of initial and final temperature. Moreover, error esti-
mates were either not given explicitly, or of logarithm-type only.

A natural and interesting question is to approximate the spatial source term f(x)
using either initial or final temperature (but not both). Recently, the regularization
using only the initial temperature was considered in [9, 17], and some logarithm-type
error estimates were given. In this paper, we shall construct a regularized solution using
only the final temperature, and provide Hölder-type estimates. Our work is motivated
by the unique determination of the spatial source term in the backward heat equation
first established in 1935 by Tikhonov [19]. We shall follow closely the strategy of our
previous paper [17] which deals with the heat forward equation. The main difference
is that in the backward case we find a refined version of the interpolation inequality
(see Lemma 4 below) which allows us to derive the Hölder-type approximation. The
one-dimensional setting of our result was already announced in [18].

The remainder of the paper is divided into three sections. In Section 2 we set some
notations and state our main results. Section 3 is devoted for the theoretical proof.
Some numerical experiments are provided in Section 4 to illuminate the effect of our
regularization.

2 Notations and main results

Let (u, f) ∈ (C1([0, T ];L1(Ω))∩L2(0, T ;H2(Ω)), L2(Ω)) be a solution to (1). Multiplying
the main equation of the system with W (t, x, y) := e(α

2+n2π2)(t−1) cos(αx) cos(nπy), then
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taking the integral over (t, x) ∈ (0, T )× Ω and using the integral by part we obtain∫
Ω

(g(x, y)− e−(α2+n2π2)Tu(x, y, 0)) cos(αx) cos(nπy)dxdy

=

T∫
0

e(α
2+n2π2)(t−1)φ(t)dt.

∫
Ω

f(x, y) cos(αx) cos(nπy)dxdy (2)

for all (α, n) ∈ R× Z. This formula motivates us to introduce the following notations.

Definition 1. For w ∈ L1(Ω), φ ∈ L1(0, T ) and α, β ∈ R, define

F (g)(α, β) :=

∫
Ω

g(x, y) cos(αx) cos(βy)dx,

D(φ)(α, β) :=

T∫
0

e(α
2+β2)(t−T )φ(t)dt,

H(φ, g)(α, β) := 1{D(φ)̸=0}(α, β).
F (g)(α, β)

D(φ)(α, β)
.

Observe that if D(φ)(α, nπ) ̸= 0 then the variational formula (2) may be rewritten
as

F (f)(α, nπ) = H(φ, g)(α, nπ)− e−(α2+n2π2)T

D(φ)(α, nπ)
F (u(., ., 0))(α, nπ). (3)

On the other hand, since {
√

κ(m,n) cos(mπx) cos(nπy)}∞m,n=0 is an orthonormal basis
for L2(Ω) with κ(m,n) = (2 − 1{m=0})(2 − 1{n=0}), the source term f ∈ L2(Ω) may be
represented in terms of F (f) by

f(x, y) =
∑

m,n≥0

κ(m,n)F (f)(nπ,mπ) cos(mπx) cos(nπy). (4)

Due to (3), F (f)(α, nπ) can be approximated by H(φ, g)(α, nπ) when (α2 + n2π2)
is large enough. This is because the term e−(α2+n2π2)T decays very fast and F (u(., ., 0))
is bounded uniformly. To ensure that |D(φ)(α, nπ)| is not so small we need a slight
condition that

either lim inf
t→T−

φ(t) > 0 or lim sup
t→T−

φ(t) < 0. (5)

Remark 1. Condition (5) holds for a broad class of functions, for instance when φ is
continuous at t = T and φ(T ) ̸= 0. This condition should be compared to the condition
φ ∈ C1[0, T ] and φ(0) ̸= 0 in [23, 24] and condition (H) in [17] where the heat forward
problem was considered.

We have the uniqueness.
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Theorem 1 (Uniqueness). Let g ∈ L1(Ω) and let φ ∈ L1(0, T ) satisfy (5). Then system
(1) has at most one solution (u, f) in (C1([0, T ];L1(Ω)) ∩ L2(0, T ;H2(Ω)), L2(Ω)).

In spite of the uniqueness, the problem is still ill-posed, and hence a regularization
is necessary. Our strategy is to first approximate F (f)(α, nπ) by H(φ, g)(α, nπ) for |α|
large (which ensures that α2+n2π2 is large), and then recover F (f)(α, nπ) for |α| small.
This enables us to approximate the exact solution by a truncated Fourier series. To
handle the key point of recovering F (f)(α, nπ) for |α| small, as in [17, 18] we shall use
the Lagrange interpolation polynomial.

Definition 2. Let A = {x1, x2, ..., xm} be a set of m mutually distinct real numbers and
let w be a real function. The Lagrange interpolation polynomial L[A;w] is

L[A;w](x) =
m∑
j=1

(∏
k ̸=j

x− xk

xj − xk

)
w(xj).

Now we are ready to state our main result.

Theorem 2 (Regularization). Assume that

(u0, f0) ∈ (C1([0, T ];L1(Ω)) ∩ L2(0, T ;H2(Ω)), L2(Ω))

is the (unique) solution of system (1) corresponding to (g0, φ0), where φ0 satisfies (5).
Let ε > 0 and let gε ∈ L1(Ω), φε ∈ L1(0, T ) satisfy

∥gε − g0∥L1(Ω) ≤ ε, ∥φε − φ0∥L1(0,T ) ≤ ε.

Let Mε = ε−2/7, Nε = T−1π−2 ln(ε−1), rε ∈ [(2/9) ln(ε−1), (2/9) ln(ε−1) + 1) ∩ Z,
Arε = {±(rε + j), j = 1, 2, ..., 4rε} and

Fε,m,n =

{
H(φε, gε)(mπ, nπ), if Nε ≤ m2 + n2 ≤ Mε,

L[Aε;H(φε, gε)(., nπ)](mπ), if Nε > m2 + n2.

The regularized solution fε is constructed from (gε, φε) by

fε(x) =
∑

m,n≥0,m2+n2≤Mε

κ(m,n)Fε,m,n cos(mπx) cos(nπy).

Then (i) lim
ε→0+

fε = f0 in L2(Ω).

(ii) If f0 ∈ H1(Ω) then lim
ε→0+

fε = f0 in H1(Ω) and there is ε0 > 0 depending only on

(φ0, ||g||L1(Ω), ||f0||L1(Ω), ||u0(., ., 0)||L1(Ω)) such that

∥f0 − fε∥L2(Ω) ≤
10
√
ε+

1

π
∥f0∥H1(Ω)

7
√
ε, ∀ε ∈ (0, ε0).

(iii) If f0 ∈ H2(Ω) then

∥f0 − fε∥H1(Ω) ≤
10
√
ε+ 2

√
2 ∥f0∥H2(Ω)

14
√
ε, ∀ε ∈ (0, ε0).
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Remark 2. Since
∂fε
∂ n

= 0 on ∂Ω, we do not expect that lim
ε→0+

fε = f0 in H2(Ω) even if

f0 ∈ C∞(Ω) (unless
∂f0
∂ n

= 0 on ∂Ω, but this condition is not reasonable).

Remark 3. To compute the Fourier coefficient Fε,m,n of the regularized solution, we just
need to calculate H(φε, gε)(α, nπ) for finite points α, and then calculate the Lagrange
interpolation polynomial of H(φε, gε)(., nπ) at mπ. Hence, the computational process is
discrete and it can be carried out easily by computer.

Note also that the uniqueness in Theorem 1 follows from the convergence in Theorem
2 (i). The proof of the main theorem is represented in the next section.

3 Proof of Theorem 2

We first derive some useful properties of F (w) and D(φ).

Lemma 1. Let w ∈ L1(Ω). Then for any α, β ∈ R and m = 0, 1, 2, ...,∣∣∣∣ ∂m

∂αm
F (w)(α, β)

∣∣∣∣ ≤ ∥w∥L1(Ω) .

Proof. It is straightforward to see that

∂m

∂αm
F (w)(α, β) =


(−1)m/2

∫
Ω

w(x, y)xm cos(αx) cos(βy)dxdy, if m is even,

(−1)(m+1)/2

1∫
0

w(x, y)xm sin(αx) cos(βy)dxdy, if m is odd.

The desired result follows from the uniform boundedness |xm cos(αx) cos(βy)| ≤ 1 and
|xm sin(αx) cos(βy)| ≤ 1.

Lemma 2. Let φ ∈ L1(0, T ). Then for all α, β ∈ R,

|D(φ)(α, β)| ≤ ||φ||L1(0,T ).

Moreover, if φ satisfies (5) then

lim inf
(α2+β2)→∞

(α2 + β2) |D(φ)(α, β)| > 0.

Proof. The first assertion, that |D(φ)(α, β)| ≤ ∥φ∥L1 , is obvious. Now assume that φ
satisfies the condition (5), for example lim inf

t→T−
φ(t) > 0. Then there is Tφ ∈ (0, T ) and
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Cφ > 0 such that φ(t) ≥ Cφ for all t ∈ (Tφ, T ). Thus

|D(φ)(α, β)| ≥ −

∣∣∣∣∣∣
Tφ∫
0

e(α
2+β2)(t−T )φ(t)dt

∣∣∣∣∣∣+
∣∣∣∣∣∣∣

T∫
Tφ

e(α
2+β2)(t−T )φ(t)dt

∣∣∣∣∣∣∣
≥ −

Tφ∫
0

e(α
2+β2)(Tφ−T )|φ(t)|dt+

T∫
Tφ

e(α
2+β2)(t−T ).Cφdt

≥ −e(α
2+β2)(Tφ−T ) ∥φ∥L1(0,T ) + Cφ.

1− e(α
2+β2)(Tφ−T )

(α2 + β2)
.

It follows that lim inf
(α2+β2)→∞

(α2 + β2) |D(φ)(r)| ≥ Cφ > 0, as desired.

We now validate the observation that F (f0)(α, nπ) is approximated byH(gε, φε)(α, nπ)
for (α2 + n2π2) large.

Lemma 3. Let u0, f0, g0, φ0, gε, φε be as in Theorem 2 with ε ∈ (0, 1/2). Then there exist
C0, C1 > 0 depending only on (φ0, ||g0||L1(Ω), ||u0(., ., 0)||L1(Ω)) such that if (α2 + n2π2) ∈
[π2Nε, C1ε

−1] then

|F (f0)(α, nπ)−H(φε, gε)(α, nπ)| ≤ C0(α
2 + n2π2)2ε.

Proof. It follows from Lemma 1 and Lemma 2 that

|F (gε)(α, nπ)− F (g0)(α, nπ)| ≤ ∥gε − g0∥L1(Ω) ≤ ε,

|D(φε)(α, nπ)−D(φ0)(α, nπ)| ≤ ∥φε − φ0∥L1(0,T ) ≤ ε,

and

|D(φ0)(α, nπ)| ≥
2C1

α2 + n2π2
if α2 + n2π2 ≥ R1

for some positive constants C1 and R1 depending on φ0. Thus if α
2+n2π2 ∈ [R1, C1ε

−1]
then

|D(φε)(α, nπ)| ≥ |D(φ0)(α, nπ)| − |D(φε)(α, nπ)−D(φ0)(α, nπ)|

≥ 2C1

α2 + n2π2
− ε ≥ C1

α2 + n2π2
.

We shall show that the desired estimate follows from the triangle inequality

|F (f0)(α, nπ)−H(φε, gε)(α, nπ)|
≤ |F (f0)(α, nπ)−H(φ0, g0)(α, nπ)|+ |H(φ0, g0)(α, nπ)−H(φε, gε)(α, nπ)| .

In fact, choosing C0 such that

C0 ≥ max

{
∥u0(., ., 0)∥L1

C1π2N1/2

,
∥g0∥L1 + ∥φ0∥L1

C2
1

}
6



where N1/2 = T−1π−2 ln(2) > 0. Using the variational formula (3) we find that

|F (f0)(α, nπ)−H(φ0, g0)(α, nπ)| =

∣∣∣∣∣e−(α2+n2π2)TF (u0(., ., 0))(α, nπ)

D(φ0)(α, nπ)

∣∣∣∣∣
≤

α2+n2π2

N1/2π
2 .e−Nεπ2T . ∥u0(., ., 0)∥L1(Ω)

2C1

α2+n2π2

≤ C0

2
(α2 + n2π2)2ε

where we used α2 + n2π2 ≥ π2Nε > π2N1/2. It is also straightforward to see that

|H(φ0, g0)(α, nπ)−H(φε, gε)(α, nπ)| =
∣∣∣∣ F (g0)(α, nπ)

D(φ0)(α, nπ)
− F (gε)(α, nπ)

D(φε)(α, nπ)

∣∣∣∣
≤ |F (g0)| . |D(φε)−D(φ0)|+ |D(φ0)| . |F (gε)− F (g0)|

|D(φ0)(α, nπ)| . |D(φε)(α, nπ)|

≤ ∥g0∥L1 ε+ ∥φ0∥L1 ε
2C1

α2+n2π2 .
C1

α2+n2π2

≤ C0

2
(α2 + n2π2)2ε.

Thus the desired result follows.

For each n = 0, 1, 2, ... it has been shown that F (f0)(α, nπ) can be approximated by
H(φε, gε)(α, nπ) for |α| large. The key point now is that we can recover F (f0)(α, nπ) for
|α| small from its values for |α| large. The following result is a refined version of Lemma
4 in [17] for real-valued function with bounded derivatives. It was already announced in
[18] and for readers’ convenience we repeat it again with a proof.

Lemma 4 (Interpolation inequality). Let r > 0 be an integer and Ar = {±(r + j), j =
1, 2, ..., 4r}. Let w, w̃ be real-valued even function, w ∈ C8r(R). Then

sup
x∈[−r,r]

|w(x)− L[Ar; w̃](x)| ≤ sup
x∈[−5r,5r]

∣∣w(8r)(x)
∣∣ e−r/2 + re4r. sup

x∈Ar

|w(x)− w̃(x)|.

Proof. Denote m = 4r and xj = r + j for 1 ≤ j ≤ m. For any fixed x ∈ [−r, r] we have
the triangle inequality

|w(x)− L[Ar; w̃](x)| ≤ |w(x)− L[Ar;w](x)|+ |L[Ar; (w − w̃)](x)](x)|. (6)

We first bound |w(z) − L(Ar;w)(x)|. According to the remainder formula of the
Lagrange interpolation polynomial (see, e.g., [1] p. 9), there exists ξ ∈ [−5r, 5r] such
that

w(x)− L[Ar;w](x) =
w(2m)(ξ)

(2m)!
.

m∏
j=1

(x2 − x2
j).

Using 0 ≤ x2
j − x2 ≤ x2

j (due to |x| ≤ r < |xj|) we deduce that

|w(x)− L[Ar;w](x)| ≤ sup
y∈[−5r,5r]

∣∣w(8r)(y)
∣∣Ψ1(r) (7)
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where

Ψ1(r) =
1

(2m)!
.

m∏
j=1

x2
j =

[(r + 1)(r + 2)...(5r)]2

(8r)!
.

It is straightforward to see that Ψ1(1) = 4/15 < e−1/2 and

Ψ1(r + 1)

Ψ1(r)
=

25 [(5r + 1)(5r + 2)(5r + 3)(5r + 4)]2

(8r + 1)(8r + 2)...(8r + 8)
<

510

88
< e−1/2

for any r ≥ 1, since

58(8r + 1)(8r + 2)...(8r + 8)− 88[(5r + 1)(5r + 2)(5r + 3)(5r + 4)]2

= 3276800000000r7 + 11345920000000r6 + 16117760000000r5 + 12084267520000r4

+5110135040000r3 + 1199880928000r2 + 141123408000r + 6086323584 > 0.

Thus Ψ1(r) < e−r/2 for all r ≥ 1, and hence (7) reduces to

|w(x)− L[Ar;w](x)| ≤ sup
y∈[−5r,5r]

∣∣w(8r)(y)
∣∣ e−r/2. (8)

We now bound the second term |L(Ar;w− w̃)(z)| in the right-hand side of (6). Since
w and w̃ are even, we may write

L[Ar;w − w̃](x) =
m∑
j=1

(∏
k ̸=j

x2 − x2
k

x2
j − x2

k

)
(w(xj)− w̃(xj)). (9)

For any fixed 1 ≤ j ≤ m, using again the estimate 0 ≤ x2
k − x2 ≤ x2

k we have

∏
k ̸=j

∣∣∣∣x2 − x2
k

x2
j − x2

k

∣∣∣∣ ≤
∏
k ̸=j

x2
k

|x2
j − x2

k|
=

(∏
k ̸=j

1

|xj − xk|

)
.

(
m∏
k=1

x2
k

xj + xk

)
.
2

xj

=
[(r + 1)(r + 2)...(5r)]2

(j − 1)!(4r − j)!(2r + j + 1)(2r + j + 2)...(6r + j)
.

2

r + j

≤ [(r + 1)(r + 2)...(5r)]2

(2r − 1)!(2r)!(2r + 2)(2r + 3)...(6r + 1)
.

4

2r + 1

=
4[(r + 1)(r + 2)...(5r)]2

(2r − 1)!(6r + 1)!
=: Ψ2(r).

A direct computation shows that Ψ2(1) = 80/7 < e4/4 and

Ψ2(r + 1)

Ψ2(r)
=

25[(5r + 1)(5r + 2)(5r + 3)(5r + 4)]2

2r(2r + 1)(6r + 2)(6r + 3)...(6r + 7)
<

2.510

23.66
< e4

for any r ≥ 1, since

58.2r(2r + 1)(6r + 2)...(6r + 7)− 22.66.[(5r + 1)...(5r + 4)]2

= 72900000000r7 + 265680000000r6 + 394065000000r5 + 302946030000r4

+125967060000r3 + 26004042000r2 + 1698012000r − 107495424 > 0.
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Thus Ψ2(r) < e4r/4 for all r ≥ 1. It then follows from (9) that

|L[Ar;w − w̃](x)| ≤ mΨ2(r) sup
y∈Ar

|w(y)− w̃(y)| ≤ re4r sup
y∈Ar

|w(y)− w̃(y)|. (10)

Substituting (8) and (10) into (6) we get the desired result.

The last preparation for the proof of Theorem 2 is the following lemma.

Lemma 5. For each w ∈ L2(Ω) and M > 0 define

ΓM(w)(x, y) =
∑

m,n≥0,m2+n2≤M

κ(m,n)F (w)(mπ, nπ) cos(mπx) cos(nπy)

Then (i) lim
M→+∞

∥ΓM(w)− w∥L2(Ω) = 0.

(ii) If w ∈ H1(Ω) then lim
M→+∞

∥ΓM(w)− w∥H1(Ω) = 0 and

∥ΓM(w)− w∥L2(Ω) ≤
1

π
√
M

∥w∥H1(Ω) .

(iii) If w ∈ H2(Ω) then

∥ΓM(w)− w∥H1(Ω) ≤
2
√
2

4
√
M

∥w∥H2(Ω) .

Note that {cos(mπx) cos(nπy)}∞m,n=0 is an orthogonal basis for both of L2(Ω) and
H1(Ω).

Proof. (i) The convergence follows from the Parseval identity

∥w∥2L2(Ω) =
∑

m,n≥0

κ(m,n) |F (w)(mπ, nπ)|2 < ∞

and

∥ΓM(w)− w∥2L2(Ω) =
∑

m,n≥0,m2+n2>M

κ(m,n) |F (w)(mπ, nπ)|2. (11)

(ii) Now assume that w ∈ H1(Ω). In this case we have

∥w∥2H1(Ω) =
∑

m,n≥0

(
1 + π2(m2 + n2)

)
κ(m,n) |F (w)(mπ, nπ)|2 < ∞

and

∥ΓM(w)− w∥2H1(Ω) =
∑

m,n≥0,m2+n2>M

(
1 + π2(m2 + n2)

)
κ(m,n) |F (w)(mπ, nπ)|2. (12)

Thus
lim

M→+∞
∥ΓM(w)− w∥H1(Ω) = 0

9



and (11) reduces to

∥ΓM(w)− w∥2L2(Ω) =
∑

m,n≥0,m2+n2>M

κ(m,n) |F (w)(mπ, nπ)|2

≤ 1

1 + π2M

∑
m,n≥0,m2+n2>M

(1 + π2(m2 + n2))κ(m,n) |F (w)(mπ, nπ)|2

≤ 1

1 + π2M
∥w∥2H1(Ω) .

(iii) Now assume that w ∈ H2(Ω). If M ≤ 64 then the desired inequality is trivial
since ∥ΓM(w)− w∥H1(Ω) ≤ ∥w∥H1(Ω) ≤ ∥w∥H2(Ω) . Therefore it suffices to assume that
M ≥ 64. Using the integral by part we get

π2(m2 + n2)F (w)(mπ, nπ) = −
∫
Ω

∆w(x, y) cos(mπx) cos(nπy)dxdy

+

1∫
0

((−1)mwx(1, y)− wx(0, y)) cos(nπy)dy

+

1∫
0

((−1)nwy(x, 1)− wy(x, 0)) cos(mπx)dx.

It then follows from the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for a, b, c ∈ R that

π4
∑

m,n≥0,m2+n2>M

(m2 + n2)κ(m,n) |F (w)(mπ, nπ)|2

≤
∑

m,n≥0,m2+n2>M

3κ(m,n)

m2 + n2

∣∣∣∣∣∣
1∫

0

((−1)mwx(1, y)− wx(0, y)) cos(nπy)dy

∣∣∣∣∣∣
2

+
∑

m,n≥0,m2+n2>M

3κ(m,n)

m2 + n2

∣∣∣∣∣∣
1∫

0

((−1)nwy(x, 1)− wy(x, 0)) cos(mπx)dx

∣∣∣∣∣∣
2

+
∑

m,n≥0,m2+n2>M

3κ(m,n)

m2 + n2

∣∣∣∣∣∣
∫
Ω

∆w(x, y) cos(mπx) cos(nπy)dxdy

∣∣∣∣∣∣
2

. (13)

We shall bound three terms of the right-hand side of (13). We first have

∑
m,n≥0,m2+n2>M

3κ(m,n)

m2 + n2

∣∣∣∣∣∣
∫
Ω

∆w(x, y) cos(mπx) cos(nπy)dxdy

∣∣∣∣∣∣
2

≤ 3

M

∑
m,n≥0,m2+n2>M

κ(m,n)

∣∣∣∣∣∣
∫
Ω

∆w(x, y) cos(mπx) cos(nπy)dxdy

∣∣∣∣∣∣
2

≤ 3

M
∥∆w∥2L2(Ω) .
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To bound the second term, we use the Parseval identity in L2(0, 1) to get

∑
n≥0

√
κ(n, n)

∣∣∣∣∣∣
1∫

0

((−1)mwx(1, y)− wx(0, y)) cos(nπy)dy

∣∣∣∣∣∣
2

= ∥(−1)mwx(1, .)− wx(0, .)∥2L2(0,1)

=

1∫
0

∣∣∣∣∣∣
1∫

0

((−1)m − 1)wx(x, y)dx+

1∫
0

((−1)mx+ 1− x)wxx(x, y)dx

∣∣∣∣∣∣
2

dy

≤
1∫

0

∣∣∣∣∣∣2
1∫

0

|wx(x, y)|dx+

1∫
0

|wxx(x, y)|dx

∣∣∣∣∣∣
2

dy

≤ 5
(
∥wx∥2L2(Ω) + ∥wxx∥2L2(Ω)

)
,

where the last inequality is due to (2a + b)2 ≤ 5(a2 + b2) for a, b ∈ R. Employing the
fact that

κ(m,n) ≤ 2
√

K(n, n),
∑

m≥
√
M+1

1

m2
≤

∑
m≥

√
M+1

1

m(m− 1)
≤ 1√

M
,

we have

∑
m,n≥0,m2+n2>M

3κ(m,n)

m2 + n2

∣∣∣∣∣∣
1∫

0

((−1)mwx(1, y)− wx(0, y)) cos(nπy)dy

∣∣∣∣∣∣
2

≤
∑

√
M+1>m≥0

 6

M

∑
n≥0

√
κ(n, n)

∣∣∣∣∣∣
1∫

0

((−1)mwx(1, y)− wx(0, y)) cos(nπy)dy

∣∣∣∣∣∣
2


+
∑

m≥
√
M+1

 6

m2

∑
n≥0

√
κ(n, n)

∣∣∣∣∣∣
1∫

0

((−1)mwx(1, y)− wx(0, y)) cos(nπy)dy

∣∣∣∣∣∣
2


≤ 30(
√
M + 2)

M

(
∥wx∥2L2(Ω) + ∥wxx∥2L2(Ω)

)
+

30√
M

(
∥wx∥2L2(Ω) + ∥wxx∥2L2(Ω)

)
=

60(
√
M + 1)

M

(
∥wx∥2L2(Ω) + ∥wxx∥2L2(Ω)

)
.

The third term can be bound by the same way. Thus (13) reduces to

π4
∑

m,n≥0,m2+n2>M

(m2 + n2)κ(m,n) |F (w)(mπ, nπ)|2

≤ 3

M
∥∆w∥2L2(Ω) +

60(
√
M + 1)

M

(
∥wx∥2L2(Ω) + ∥wxx∥2L2(Ω) + ∥wy∥2L2(Ω) + ∥wyy∥2L2(Ω)

)
≤ 68√

M
∥w∥2H2(Ω)

11



where we used M ≥ 64 in the last inequality. Therefore, it follows from (12) that

∥ΓM(w)− w∥2H1(Ω) ≤ (1 + π2)
∑

m,n≥0,m2+n2>M

(
m2 + n2

)
κ(m,n) |F (w)(mπ, nπ)|2

≤ 68(1 + π2)

π4
√
M

∥w∥2H2(Ω) ≤
8√
M

∥w∥2H2(Ω) .

This completes the proof.

We are ready to prove the main theorem.

Proof of Theorem 2. We shall use the notation ΓMε(f0) as in Lemma 5. In the following
ε0 > 0 and C0 > 0 are constants depending on (φ0, ||g||L1(Ω), ||f0||L1(Ω), ||u0(., ., 0)||L1(Ω))
but independent of ε.

Step 1. Bound on |F (f0)(mπ, nπ)− Fε,m,n| for m2 + n2 ≤ Mε.

We first note that Mε ≤ C1ε
−1 if 0 < ε ≤ C

−7/5
1 , where C1 = C1(φ0) > 0 is given in

Lemma 3. Thus for Nε ≤ m2 + n2 ≤ Mε it follows from Lemma 3 that

|F (f0)(mπ, nπ)−H(φε, gε)(mπ, nπ)| ≤ C0(m
2π2 + n2π2)2ε ≤ C0π

2ε5/7. (14)

Now we consider the case m2 + n2 < Nε. For each n, applying Lemma 4 to r = rε,
w(α) = F (f0)(α, nπ) and w̃(α) = H(φε, gε)(α, nπ) we find that

|F (f0)(mπ, nπ)− Fε,m,n| = F (f0)(mπ, nπ)− L[Aε;H(φε, gε)(., nπ)](mπ)|
≤ ∥f0∥L1 e

−rε/2 + rεe
4rε max

α∈Arε

|F (f0)(α, nπ)−H(φε, gε)(α, nπ)|

≤ ∥f0∥L1 e
−rε/2 + rεe

4rε .C0((5rε)
2 +Nε)

2ε.

Here we used supα∈R |w(8rε)(α)| ≤ ∥f0∥L1 by Lemma 2 in the first inequality, and used
Lemma 3 again in the last inequality. Since e−rε/2 = e4rεε = ε1/9 we conclude that

|F (f0)(mπ, nπ)− Fε,m,n| ≤ C0(1 + rε)
5ε1/9 if m2 + n2 < Nε (15)

Step 2. Bound on ∥ΓMε(f0)− fε∥H1(Ω).
Proceeding as in the proof of Lemma 5 (ii), we get

∥ΓMε(f0)− fε∥2H1(Ω)

=
∑

m,n≥0,m2+n2≤M2
ε

(
1 + π2(m2 + n2)

)
κ(m,n) |F (f0)(mπ, nπ)− Fε,m,n|2

≤ 4(1 +
√
Nε)

2
(
1 + π2Nε

)2
sup

m2+n2<Nε

|F (f0)(mπ, nπ)− Fε,m,n|2

+4(1 +
√

Mε)
2
(
1 + π2Mε

)2
sup

Nε≤m2+n2≤Mε

|F (f0)(mπ, nπ)− Fε,m,n|2

where we employed the fact that

#
{
(m,n) ∈ Z2|m2 + n2 ≤ R

}
≤ (1 +

√
R)2.
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Substituting (14) and (15) into the above estimate and using that Nε, rε are of order
ln(ε−1), we conclude that

∥ΓMε(f0)− fε∥H1(Ω) ≤ ε1/10, ∀ε ∈ (0, ε0) (16)

for some constant ε0 > 0 depending only on (φ0, ||g||L1(Ω), ||f0||L1(Ω), ||u0(., ., 0)||L1(Ω)).

Step 3. Estimate errors between f0 and fε.
(i) We first consider the case f0 ∈ L2(Ω). Using the triangle inequality and (16) we find
that

∥f0 − fε∥L2(Ω) ≤ ∥ΓMε(f0)− fε∥L2(Ω) + ∥ΓMε(f0)− f0∥L2(Ω)

≤ ε1/10 + ∥ΓMε(f0)− f0∥L2(Ω) . (17)

Thus lim
ε→0+

∥f0 − fε∥L2(Ω) = 0 due to Lemma 5 (i).

(ii) We next consider the case f0 ∈ H1(Ω). Similarly to (17) we have

∥f0 − fε∥H1(Ω) ≤ ε1/10 + ∥ΓMε(f0)− f0∥H1(Ω) (18)

and then lim
ε→0+

∥f0 − fε∥H1(Ω) = 0 due to the first assertion of Lemma 5 (ii). Moreover,

employing Lemma 5 (ii) and (17) we get

∥f0 − fε∥L2(Ω) ≤ ε1/10 +
1

π
∥f0∥H1(Ω) ε

1/7, ∀ε ∈ (0, ε0).

(iii) Finally if f0 ∈ H2(Ω) then it follows from Lemma 5 (iii) and (18) that

∥f0 − fε∥H1(Ω) ≤ ε1/10 + 2
√
2 ∥f0∥H2(Ω) ε

1/14, ∀ε ∈ (0, ε0).

The proof is completed.

4 Numerical experiments

In this section we shall examine some numerical examples to see how our method works.
For simplicity we fix T = 1.

Example 1. Let us consider the exact data

φ0(t) = π2eπ
2(t−1), g0(x, y) = (1 + cos(πx)) cos(πy).

Then system (1) has the exact solution

u0(x, y, t) = eπ
2(t−1) (1 + cos(πx)) cos(πy),

f0(x, y) = 2 cos(πy) + 3 cos(πx) cos(πy).

13



For each n = 1, 2, ..., corresponding to the disturbed data

φn(t) = φ0(t), gn(x, y) = g0(x, y) +
π

n
(sin(πx))2 cos(nπy),

system (1) has the disturbed solution

un(x, y, t) = u0(x, y, t) +
π

n
eπ

2(t−1)(sin(πx))2 cos(nπy),

fn(x, y, t) = f0(x, y, t) +
π

n

(
(n2 + 5)(sin(πx))2 − 2

)
cos(nπy).

It is straightforward to see that

∥gn − g0∥L1(Ω) =
1

n
→ 0, ∥fn − f0∥L2(Ω) =

π

n

√
27 + 14n2 + 3n4 → ∞

as n → ∞. Thus for large n then a small error of data may cause a large error of
solutions. Therefore, the problem is ill-posed and a regularization is necessary.

Using the regularization scheme in Theorem 2 with respects to ε = n−1 = 10−2, we
obtain the regularized solution

fε(x, y) =
2

1− e−2π2 cos(πy) +
3

1− e−3π2 cos(πy) cos(πy).

with the errors

∥fε − f0∥L2(Ω) ≈ 3.783× 10−9, ∥fε − f0∥H1(Ω) ≈ 1.247× 10−8.

The approximation in this case is very good because our regularization is particularly
suitable for the case that f0 is already a truncated Fourier series.

Example 2. In the second example we examine a more complicated situation. Let
us consider the exact data

φ0(t) = et−1, g0(x, y) = (1 + cos(πx))(2y3 − 3y2)

which give the following exact solution to system (1),

u0(x, y, t) = et−1(1 + cos(πx))(2y3 − 3y2),

f0(x, y) = (1 + cos(πx))(2y3 − 3y2 − 12y + 6) + π2 cos(πx)(2y3 − 3y2).

On the other hand, for each n = 1, 2, ..., the disturbed data

φn(t) = φ0(t),

gn(x, y) = g0(x, y) +
π

n
(sin(nπx))2 cos(2πy).

produce the disturbed solution

ũn(x, y, t) = u0(x, y, t) +
π

n
et−1(sin(nπx))2 cos(2πy),

f̃n(x, y) = f0(x, y) + π cos(2πy).

(
2π2n cos(2nπx)− 4π2 + 1

n
(sin(nπx))2

)
.
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In this case we also encounter the instability since

∥gn − g0∥L1(Ω) =
1

n
→ 0,∥∥∥f̃n − f0

∥∥∥
L2(Ω)

=
π

4

√
16π4n2 + 32π4 + 8π2 +

48π4 + 24π2 + 3

n2
→ ∞

as n → ∞.
Using the regularization scheme in Theorem 2 with ε = n−1 we get the following

regularized solutions fεk corresponding to ε = εk := 10−k,

fε1(x, y) = −0.6429040080− 5.434905616 cos(πx) + 5.356285882 cos(πy),

fε2(x, y) = −0.5150600756− 5.434905616 cos(πx) + 5.356285882 cos(πy)

+10.21960079 cos(πx) cos(πy),

fε4(x, y) = −0.5024461774− 5.434905616 cos(πx) + 5.356285882 cos(πy)

+10.21960078 cos(πx) cos(πy) + 0.006358334970 cos(2πy)

+0.5464631910 cos(3πy) + 0.6065053740 cos(πx) cos(3πy).

The (relative) errors between the regularized solutions and the exact solution in the
second example are given in Table 1. Figure 1, Figure 2 and Figure 3 represent, respec-
tively, the disturbed solution, the regularized solution (corresponding to ε = 10−2) and
the exact solution for a visual comparison.

ε =
1

n

∥fε − f0∥L2

∥f0∥L2

∥fε − f0∥H1

∥f0∥H1

10−1 0.09217686999 0.02681665374
10−2 0.009558836387 0.007396833224
10−4 0.003701017794 0.005197014371
10−6 0.001347817742 0.003666997806
10−8 0.000587555769 0.002739639346

Table 1. Errors between the regularized solutions and the exact solution.

Acknowledgments. The work was done when M.N. Minh and P.T. Nam were
students in Vietnam National University at HoChiMinh City.
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Figure 1. The disturbed solution with ε = 10−2.
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Figure 2. The regularized solution with ε = 10−2.
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