
First lectures on the algebraic approach to quantum physics

In this lecture, I want to introduce a formalism that can be used to shed some light on
why things are what they are in the common presentation of quantum mechanics. Where
do Hilbert spaces and wave functions come from? Why do the operators look the way they
do? In what respect (at a physical level, not just in the formalism) is quantum physics
different from classical physics?
In a typical introductory course of quantum mechanics, the wave function somehow falls
from the sky. It comes with its probability interpretation giving meaning to |ψ(x)|2, but
the relevance of the phase is unclear at best (besides not being invariant under gauge
transformations). Also, we learn, that the wave function is not really a representative of a
state but only its ray in Hilbert space. When we look at interference experiments like the
double slit, however, all the relevance is in the relative phase of wave functions.
So rather from these not really concrete objects of obscure empirical status, the algebraic
approach starts with something really concrete: Experiments or observables. These are
all possible measurement procedures in a given physical situation and we think of them as
having a numerical outcome (rather than for example vectorial, as in that case we could
ask for the individual components). At this point, we allow for the fact that our theory
is probabilistic, that there could be experiments that have different outcomes when done
multiple times. But this is not a restriction since deterministic theories are those where
all probabilities are either 0 or 1.
All these observables we group together in a set A0. In what follows, we are going to equip
A0 with more mathematical structure.
First of all, we find that if there is an experiment A ∈ A0, there is also an experiment 2A
which is the same as A but doubles all the values that it reads out. Similarly for any other
scalar multiple. In a second step, we realize for two experiments A,B ∈ A0, there is also
A + B ∈ A0 where we first do experiment A and then, with a fresh setup do B and add
the results together (note that this is compatible the the linearity of expectation values).
So we end up with A0 being a real vector space.
This all looks very trivial. But take note of the fact that we do not attempt to define a
product on A0 in a similar way. Rather we do something else to end up with a product,
something we will only be able ot sketch here: In the argument above that gave us 2A,
we don’t have to stop here but can completely relabel the scale on the measuring device
that displays the result of A, possibly in a non-linear way. Think for example writing
new numbers on the scale on some old gauge with a pointer. This suggests that there
should be some sort of basic functional calculus that for nice functions f :R → R yields
a non-linearly rescaled observable f(A). We could for example start to require that for f
that is polynomial.
Then we would in particular have the square of an observable and for A,B ∈ A0, we would
have A2, B2, and (A + B)2 which we could use to define a symmetrized product along
the lines of A ◦ B = 1

2 ((A + B)2 − A2 − B2). This product can be show to turn A0 into
something known as a Jordan algebra which is a specific commutative but not associative
algebra. We will not need the details but a structural theorem from their theory that
says, they (or at least those of practical relevance) arise in the following way: There is a
complex *-algebra A that is associative but not necessarily commutative with an involution
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∗:A→ A with (A∗)∗ = A and (A+ λB)∗ = A∗ + λ̄B∗ and (AB)∗ = B∗A∗ such that

A0 = {A ∈ A|A∗ = A}

and

A ◦B =
1

2
(AB +BA).

So from now on, we are going to deal exclusively with the algebra A, have to live with
the fact that the product is defined a bit in a round about way and actual measurements
only correspond to the self-adjoint elements A = A∗. Note that is is the same situation we
find in the ordinary description of quantum mechanics where only self-adjoint operators
correspond to things you can actually measure while for self-adjoint operators A and B
the product AB is only self-adjoint and thus directly measurable if A and B commute.
At an operational level, the non-commutativity of quantum mechanics only occurs at the
level of time evolutions where in general eitAeisB 6= eisBeitA.
In a further step, we want to equip A with a norm (and thus a topology). To this end, we
restrict our attention to experiments that have a bounded set of possible outcomes (which
we can achieve by a non-linear relabelling as above, more to that below). Then we define
‖A‖ to be the supremum of absolute values of possible outcomes. This is indeed a norm
that is also compatible with the product and the involution:

‖AB‖ ≤ ‖A‖‖B‖ and ‖A∗‖ = ‖A‖.

We can now add all the limit points of Cauchy sequences to A to make it complete in this
norm and in fact a Banach-*-algebra.
Now, it’s only one remaining step, there is an additional property for which I have no
justification except “it works”: From the above, it follows that ‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2.
We will require that here for all a, equality holds. This is known as “the C*-property”:

‖a∗A‖ = ‖A‖2.

Now, we have everything together to motivate
Def. The observables from (the *-invariant part) of a C*-algebra (A, ∗, ‖ · ‖), that is a
complex Banach-*-algebra in which the C*-property holds.
With this definition, A is not required to contain a unit element (an element 1 such that
1A = A1 = A for all A). If it does not there is a unique way to include one in A and even
though many things we are going to say below are still true (or can be reformulated) if
there is no unit, to simplify the presentation we will further on assume A does have a unit.
Let us look at examples of C*-algebras. As you will have already guessed, all this is
modelled on the most important case: If H is a Hilbert space, then B(H), the bounded
operators form a C*-algebra (the norm is the usual operator norm while the * is the
adjoint). You can convince yourself that all the required properties in fact hold.
Next we realize that any closed sub-*-algebra of a C*-algebra is a C*-algebra itself. So you
do not need all bounded operators on a Hilbert space to get a C*-algebra, a sub-algebra
that is closed under adjoints and that is norm-closed is also a C*-algebra.
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In fact, using the Hahn-Banach theorem it can be proven that every C*-algebra arises
in this way for some Hilbert space. The existence of that Hilbert space, however, is not
constructive (as so many thing that rely on Hahn-Banach they involve invoking the axiom
of choice) and this Hilbert space is “too big” to be physically useful. It is much better
to think of the elements of A to be some abstract observables that have some relations
like canonical commutation relations than concrete operators on a Hilbert space. This is
like thinking about abstract linear maps instead of matrices or Lie-groups in an abstract
way rather than sub-groups of the matrix groups GL(n,R). We will see below that a
better way to think of the relation between abstract C*-algebras and bounded operators
on Hilbert space as the latter being representations of the former.
A particular finite dimensional special case is H = C

N where the C*-algebra of operators
are the complex matrices Mat(N × N,C). More generally, it can be shown that every
finite dimensional C*-algebra is equivalent to one of the form

K⊕
i=1

Mat(Ni ×Ni,C).

These can be thought of block diagonal matrices with blocks of size Ni.
Another important example of C*-algebras arises in a geometric way: You start with a
locally compact Hausdorff space X (this is a certain type of not too pathological topological
space, details will not matter for us). On it, we consider the set C0(X) of continuous
functions f :X → C that vanish at infinity (defined to mean that for every ε > 0 there is a
compact set K ⊂ X such that |f(x)| < ε for x ∈ X \K.) This set becomes a C*-algebra by
defining the sum and product of functions in a pointwise manner (i.e. (fg)(x) := f(x)g(x)),
f∗ as pointwise complex conjugation. As norm, we use the supremum

‖f‖ = sup
x∈X
|f(x)|.

This is finite thanks to the “vanishes at infinity” property. Once more, it’s easy to convince
oneself that all requirements for a C*-algebra are fulfilled. It contains an identity if and
only if X is compact, the key question being if the constant function that is 1 everywhere
vanishes at infinity.
This is an example of a commutative C*-algebra since the pointwise product is commuta-
tive. What might be surprising is that all commutative C*-algebras are of this from, this
is known as Gelfand’s theorem. More specifically, if A is a commutative C*-algebra, there
is a locally compact Hausdorff space X(A) such that A is equivalent to C0(X(A)).
To see how it comes about one has to find linear functionals π:C0(X) → C that are
compatible with products and stars, i.e. π(fg) = π(f)π(g), π(f∗) = π(f) in other words
irreducible (one dimensional thanks ot a version of Schur’s lemma) representations (for
more on representations and their general definition see below). Obviously, there is one for
each point x via πx(f) := f(x). Some contemplation reveals all irreducible representations
arise in this way. Consequently, we can identify points of X with irreducible representa-
tions. Thus, as a set, we can define X(A) to be the set of irreducible representations.
In a second step, we have to equip it with a topology. Abstractly, this is the weak-*-
topology. But there is a more intuitive way to define it: To this end note that if you take all
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functions in C0(X) that vanish on some given subset U ⊂ X than due to continuity, they all
also vanish on the closure of U. Again, we can turn this around: For a subset of irreducible
representations of A, we define the closure as all those irreducible representations that
vanish on all of those functions. In terms of these closures we take all complements to
be the open sets. Then finally, one has to prove that X(A) with this topology is indeed
locally compact and Hausdorff.
As far as the physics is concerned, this special case of commutative C*-algebras corresponds
to the observables of classical physics: Think of X as phase space. Then the classical
observables are exactly the functions C0(X) on this phase space.
To see what is going one, it helps to look at the even more special case of a finite dimensional
commutative C*-algebra, in other words an algebra of matrices that all mutually commute
(which are thus normal). Thanks to the spectral theorem for matrices they can all be
diagonalized simultaneously. Thus, in a convenient basis, each matrix only contains non-
zero values on its diagonal which is the same as a function on a discrete set of points
(and the product of diagonal matrices being the pointwise product). Thus, in this case,
X(A) is simply this set of discrete points and the Gelfand theorem above is really a more
sophisticated version of a spectral theorem.
A nice corollary is a functional calculus for normal elements in a general C*-algebra: Recall
that an element A ∈ A is normal if A∗A = AA∗. So, in particular, if A is self-adjoint it is
also normal. For such a normal A we can then define a commutative C*-algebra generated
by A and A∗: Start from all polynomials in A and A∗ (where the order does not matter
thanks to normality) and complete it the norm. This is obviously a closed sub-*-algebra
and thus C* itself. With Gelfand, we have a space X such that all elements of this sub-*-
algebra are realized as complex functions on that space. In particular there is a function
fA:X → C that corresponds to A. If we then take a continuous function F :C→ C, we can
take F (A) to be that element of the sub-*-algebra that corresponds to the concatenation
F ◦ f :X → C. Convince yourself that for matrices as well as for polynomial F this does
the right thing.
In a C*-algebra, you can also define a resolvent set for an element A as those complex λ
for which A − λ1 is invertible in A and the spectrum σ(A) as its complement. Finally,
there is the notion of “spectral radius” which is r(A) :=

∑
λ∈σ(A) |λ|. You can then adopt

the proof given in lecture for operators on Hilbert space that for self-adjoint A ∈ A, the
spectral radius coincides with the norm to the C*-setting. Thanks to the C*-property, we
have then for general (not necessarily self-adjoint) elements

r(A∗A) = ‖A∗A‖ = ‖A‖2.
What is interesting about this is that the spectral radius was defined only using algebraic
properties of A. We conclude, that in a C*-algebra, the norm is unique: If you know
that some *-algebra has a norm that turns it into a C*-algebra, you can find it only using
algebraic properties.
Now that we became familiar with the most important properties of C*-algebras, it is time
to look at the corresponding morphisms.
Def. Let A and B be C*-algebras. A C*-morphism is a linear map Φ:A→ B that respects
the algebraic structure, i.e.

Φ(A1A2) = Φ(A1)Φ(A2), Φ(A∗) = Φ(A)∗.
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Note that we do not have to assume anything about the norm and continuity: From the
above it already follows that ‖Φ(A)‖ ≤ ‖A‖, that is C*-morphisms are automatically
contracting and thus continuous. This can be seen by realizing that an element of the
resolvent set of a is automatically in the resolvent set of Φ(A) and then the relation of the
norms follows from the spectral radius formula for the norm.

Similarly, C*-isomorphisms are C*-morphisms where have an inverse that is also a C*-
homomorphism (and thus automatically norm-preserving). Finally, C*-automorphisms
are C*-isomorphisms from A to itself. When I said above that a C*-algebra is equivalent
to something else, what I actually meant was that there is a C*-isomorphism between the
two.

Def. A representation of a C*-algebra A is a C*-morphism π:A→ B(H) for some Hilbert
space H.

You can think of a representation of the abstract algebra A of observables as concrete
operators on the Hilbert space H.

As always in representation theory, you can define direct sums of representations and
irreducible representations (those that do not have invariant sub-spaces or in other words
that cannot be written as non-trivial direct sums of other representations).

If there are two representations π1/2:A→ B(H1/2) we say they are (unitarily) equivalent
if there is a unitary U :H1 → H2 such that for all A ∈ A we have Uψ1(A) = π2(A)U and
think of them as “the same”.

Finally, you can ask about the representation theory of the algebra A. In particular, is there
more than one irreducible representation up to equivalence (again, Hahn-Banach together
with the GNS-construction we discuss below guarantees the existence of representations)?
If this question is answered in the negative, all this abstraction is pretty void and instead
of A we could have directly dealt with the operators π(A) ⊂ B(H) in a concrete Hilbert
space realisation. But if there is more than one it makes sense to abstract from them
and ask for properties that exist already in the abstract algebra A rather than one of its
contrete realisations.

Before we end this first part, let us address an almost philosophical question: Why only
bounded operators? We had just convinced ourselves that for interesting quantum systems
we need to also consider unbounded operators that bring with them their problems with
domains of definition, lack of continuity etc. Why do we ignore those in the algebraic
approach? Don’t we miss all the physics this way? How can we ever deal with canonical
variables that obey [x, p] = i which imply ‖x‖‖p‖ =∞?

And indeed there is no good algebraic theory that includes unbounded operators as that
would mean giving up on the norm of the algebra and thus its topology. In this case, the
theory of *-algebras is much much poorer in structure.

But it turns out, for many questions we can avoid using unbounded observables. The most
urgent case are of course the canonical variable x and p with [x, p] = i. It turns out, we
can equally well start from the unitaries U(s) = eisx and V (t) = eitp for s, t ∈ R (or in
fact other families of bounded functions of x and p but this choice is used most often),
that have commutation relations U(s)V (t) = eistV (t)U(s). Trivially, they also satisfy
U(s1)U(s2) = U(s1 + s2) and V (t1)V (t2) = V (t1 + t2). These are called Weyl operators
and since they are unitary they have ‖U(S)‖ = ‖V (t)‖ = 1.
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To have a C*-algebra, we start from abstract operators with these commutation relations,
that is we take all polynomials in U ′s and V ′s for different s’s and t′s, use the above
relations to simplify all products to a single U and V factor and complete this space in
norm. The C*-algebra obtained that way is called the Weyl-algebra or CCR for “canonical
commutations relations”.
One could have the idea to be able to recover x from U(s) by taking a derivative with
respect to s and similarly for p and V (t). But in the C*-algebra, as one can prove (see
exercise below) that

‖U(s)− 1‖ =
{

2 for s 6= 0
0 else

and thus what would be the derivative

lim
s→0

U(s)− 1
s

does not exist. If we have, however, a representation π:CCR → B(H) for some Hilbert
space H, we can ask for which ψ ∈ H we have existence of

lim
s→0

π(U(s))− π(U(0))

is
ψ

and use that as the domain of definition of the operator x in that representation. A
necessary condition on the representation is that the map

s 7→ π(U(S))

is continuous in the weak or strong (this is the same here) operator topology and similarly
for V (t). Such a representation is called regular. The usual representation where H =
L2(R) and π(U(s)) is the multiplication operator eisx and (π(V (t))ψ)(x) = ψ(x + t), i.e.
a translation operator is called the Schrödinger representation. It is obviously regular. A
famous theorem by Stone and von Neuman states that up to unitary equivalence, this is
the unique regular irreducible representation of CCR. And this in retrospect can be taken
as the explanation of why in introductory quantum mechanics nobody questions the role
of wave functions and the fact that the operators x and p act in the way they always act
(there is of course also the momentum representation but thanks to the Fourier transform
being unitary this representation is unitarily equivalent).
If one drops the requirement of regularity, there are other inequivalent representations but
they have at best marginal use in physics (the loop approach to quantum gravity, however,
is built on such representations).
This argument generalizes directly to higher dimensions with [xα, pβ ] = iδαβ and α, β ∈
{1, 2, . . . , n}. In infinite dimensions (or better: infinitely many degrees of freedom) is is,
however, explicitly wrong! In quantum field theory, there are many inequivalent represen-
tations of the canonical commutation relations. This also has a lot of relevance in quantum
statistical physics in the thermodynamic limit. There for example states (in infinite vol-
ume) with different finite particle density correspond to inequivalent representations as well
as systems with phase transitions. This will be the subject of the mathematical statistical
physics course in the summer.
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Problem 1:
Instead of two types of generators, one can also write the CCR algebra in terms of operators
W (z) for z ∈ C and

W (s+ it) = e−ist/2U(s)V (t)

with relations W (z1)W (z2) = ei=(z1z̄2)/2W (z1 + z2). (In fact, this can be defined for any
symplectic vector space, that is a real vector space with a non-degenerate anti-symmetric
bi-linear form σ. In this case only replace =(z1z̄2) by the symplectic form σ). Show that
all W (z) are unitary. Thus their spectrum has to be contained in the unit circle.
Then compute W (u)W (z)W (−u) and use this to argue that the spectrum of W (z) is either
empty (this is impossible) or it is all of the unit circle. You can use that the spectrum is
invariant under unitary conjugation.
This tells you about the spectrum of W (z)− 1. Finally conclude that for z 6= 0

‖W (z)− 1‖ = 2

.

Problem 2: Prove the Stone-von Neumann theorem. Assume that you have a regular
irreducible representations π:CCR→ B(H). Show first that

P :=
1

2π

∫
d2z π(W (z))e−|z|

2/4

(defined in terms of matrix elements) is an orthogonal projection. Show also that

Pπ(W (z))P = e−|z|
2/4P.

If Ω ∈ PH normalized, show that the span of all π(W (z)) for z ∈ C is invariant under
the action of all Weyl-operators W . From the irreducibility of the representation conclude
that PH is one dimensional.
Use this to construct the unitary equivalence to two regular irreducible representations of
CCR.

Problem 3: Irregular representations. Construct an irreducible representation of CCR
on a Hilbert space of functions ψ : R → C where π(U(s)) is the multiplication operator
eisx and (π(V (t))ψ)(x) = ψ(x + t), both act as unitary operators. Different from the
Schrödinger representation, let H contain the function that is 1 everywhere. Show that
this representation is inequivalent to the Schrödinger representation.
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Now, that we have some understanding of observables, it is time to look at the notion
of states of the theory. Informally, a state is an equivalence class of preparations of the
system where two preparations are thought of as preparing the same state if you cannot
distinguish with measurements which one was actually performed. Since we allow for the
possibility of probabilistic theories, this means specifically that the expectation values for
all observables should be the same in both preparations.
One might wonder why it is sufficient to consider only expectation values. After all, there
are also variances and higher moments. But those are already covered as they can be
expressed in terms of expectation values of an observable and its powers. For example the
variance of A is simply the expectation value of A2 minus the square of the expectation of
A.
So, in fact, we will write a state as a map that assigns to each observable its expectation
value: ω:A → C. In order for this to give sensible expectation values, we will require ω
to have three properties: First of all, it should be a linear map (or a functional from the
dual of A) as this is compatible with how we originally set up the linear structure on A.
Second, it should be normalized. This can be expressed as ω having the operator norm 1.
But in many practical situations it is advantageous to use the equivalent condition

ω(1) = 1.

Finally, besides the notion of self-adjoint elements, there is a notion of positive operators.
These are operators that can be written as A∗A for some A ∈ A. So as a last condition,
we require that ω is positive for all positive operators

ω(A∗A) ≥ 0.

Taking all this together, we define a state of a C*-algebra to be a normalized and positive
linear functional. The different nature of these three properties gives the set of all states
an interesting form: The set of all functionals is obviously a vector space. Then, the
requirement of positivity restricts us to a cone in that vector space (in a cone, the sum of
two elements as well as multiples by non-negative real numbers are also elements). Finally,
the normalization condition intersects this cone with an affine hyperplane of co-dimension
1.
The set of states is a convex space: With two states ω1/2 also their “mixture”

λω1 + (1− λ)ω2

is a state for λ ∈ [0, 1]. You could for example prepare this mixture by throwing an uneven
coin and depending on the outcome either prepare ω1 or ω2.
Let us also look at some examples of states for the different types of C*-algebras we
considered above. First of all, there is the traditional quantum mechanical notion of a
state, that is when A = B(H) for some Hilbert space H, we think of non-zero ψ ∈ H as
the states of the quantum system, or better actually, of the rays C×ψ. And indeed, such
a ray determines also a state in the new sense of expectation value functional:

ωψ(A) :=
〈ψ|A|ψ〉
‖ψ‖2

.
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At this point, it is worth pointing out that thanks to the positivity and normalization
conditions on states, there is no notion of “superposition of states”! This fits with the
observation that superpositions are not defined for rays in Hilbert space because the relative
phase of two elements matters when taking the sum. We will later find that this notion
of superposition is actually better thought of as a property of the algebra A than of the
states (for example by using a Hadamard-gate as time evolution and then viewing this in
the Heisenberg representation modifying the observables in the case of a qubit).
In the finite dimensional special case of A = Mat(N × N,C) we can even ask if we can
determine all states. We start by the observation that linearity of ω(A) implies that it has
to be a linear combination of the matrix elements of the matrix A:

ω(A) =
N∑

i,j=1

ρjiaij

for some coefficients ρji ∈ C. But those can also be grouped into an N ×N matrix ρ and
the above expression rewritten into

ω(A) = tr(ρA).

Next, we impose the normalization:

1 = ω(1) = tr(ρ1) = tr(ρ).

And finally, for the positivity, we can use the cyclicity of the trace:

0 ≤ ω(A∗A) = tr(ρA∗A) = tr(AρA∗).

If we think of A to be built from N row vectors v†i , then we can express this inequality as

0 ≤
∑
i

〈vi|ρvi〉.

This holds for all possible choices of vi exactly if the matrix ρ ≥ 0 is positive semi-definite
(or positive in the language of operators).
Taking everything together, in the finite dimensional case of N ×N matrices, all states are
of the form ω(A) = tr(ρA) for a positive semi-definite (and thus in particular self-adjoint)
matrix ρ of trace 1, in other words ρ is a density matrix. And those are indeed all the
states in quantum statistical mechanics!
One can try to go back to the potentially infinite dimensional case of B(H) and try to
argue a generalization to be true. And indeed, there is also the notion of a density operator
ρ: This is defined to be a trace-class operator on H (otherwise we could not talk about the
normalization) that is positive ρ ≥ 0 in the operator sense and normalized as tr(ρ) = 1.
And indeed this gives rise to a state on B(H) with the same expression

ωρ(A) = tr(ρA),
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where it is useful to recall an earlier homework that showed that the product of a trace
class operator with a bounded operator is again traceclass. There is only one complication
in infinite dimensions that is that the traceclass operators are not the topological dual of
B(H) which is the property that we used to find all the linear functionals. It is, however,
true in the other direction S1(H)∗ = B(H), that is, they are the pre-dual. But strictly
speaking, there are more states on B(H) than those that can be written in terms of
traceclass density operators. But this will not play a role in the rest of what we will be
concerned with.
It is worth noting, that of course the states arising from rays in Hilbert space are the
special case of density operators having rank one:

ρ =
|ψ〉〈ψ|
‖ψ‖2

.

Finally, let us also consider the commutative case of A = C0(X). Here, the easiest way to
assign a number to f : X → C ∈ C0(X) of course arises from points x ∈ X as

ωx(f) := f(x).

Clearly, this is linear, positive and normalized. And indeed, with the identification of X as
phase space, the points of phase space correspond to the states of Hamiltonian mechanics.
Furthermore, again, we can ask about all states in this case. Here, according to the Riesz-
Markov theorem, all linear functionals on C0(X) are measures µ on X (with the points
x ∈ X corresponding to the point measure concentrated at x). Normalization simply
means that

∫
X

1dµ = 1 and positivity translates into the measure being positive, that is
for all f ≥ 0 we have

∫
x
fdµ ≥= 0. So the states on the commutative C*-algebra can be

identified with the probability measures on X. Again, this is not much of a surprise as
these are exactly the states of classical statistical mechanics (if one thinks again of X as
phase space).
It is quite remarkable that the simple notion of “state” in this algebraic context manages
to unify the different looking notions of “state” in classical and quantum mechanics and
classical and quantum statistical mechanics!
Above, we noted that the set of states is a convex space. There is a special role of the
extremal points of this state space, that is, states that cannot be written as non-trivial
mixture of two states (a mixture is of course trivial if in ω = λω1 + (1 − λ)ω2 either
ω1 = ω2 = ω or λ ∈ {0, 1} that is ω = ω1 or ω = ω2). These extramal states are called
“pure states” and it is not hard to convince oneself that in the case A = B(H) the pure
states are the rank one states ωψ with ρ = |ψ〉〈ψ|/‖ψ‖2 and in the classical case are the
states ωx arising from points x ∈ X.
It is worth noting, that every state can be decomposed as a generalized mixture of pure
states (where the convex combination is generalized to a probability measure on the space
of pure states). The key difference, however, is that in the classical case C0(X) this
decomposition is unique (as the probability measure on X is trivially only expressed as
itself as a probability measure on the set of pure states) whereas in the quantum case
the decomposition is not unique which can easily be seen in the case of the qubit with
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H = C
2 and the state space being the Bloch sphere and the pure states being those on the

boundary of the Bloch sphere. Some people even argue that this non-uniqueness is the key
difference between classical and quantum physics as this turns the quantum theory to be
non-realist as there is no unique decomposition of states into probabilistic mixtures into
underlying “true states” in which the observables have well defined values.
As we noted above, the algebraic notion of “state” does not allow to define the superposition
of two states, even though that seems to be a crucial ingredient in quantum mechanics.
Even for states that are pure states arsising from rays in Hilbert space, there is no way
to superimpose ωψ1

and ωψ2
. The formalism only allows for mixtures but those are blind

to relative phases between ψ1 and ψ2. The thought experiment that shows most clearly
the difference between mixtures and superpositions is the double slit: In mixtures, the
classical probabilities add while the interference between the paths through the two slits
is only modelled by the superposition of the wave functions of the two possible paths.
In the algebraic framework, this is encoded in the non-commutativity of the observable
algebra: For example, if in the double slit experiment, the observable which measures
which slit the electron has taken is represented by the Pauli matrix σz with the two values
±1 corresponding two the two slits, the unitary operator

U =
1√
2

(
1 1
1 −1

)
(known as the Hadamard gate) prepares the state that is the superposition between the
two possible paths. Once more, this quantum feature of interference can be attributed to
the fact that Uσz 6= σzU . In a classical theory where all observables commute, creating
such superpositions is impossible.
As a last section of these notes, we want to connect all ingredients that we have introduced
so far, C*-algebras, states and representations on Hilbert spaces into one theorem. And
this is the “GNS construction” named after its inventors Gelfand, Naimark, and Segal.
It is related to highest weight representations in the representation theory of Lie algebras
and given a C*-algebra and a state constructs a Hilbert space and a representation where
this state is realized as a vector state.
Specifically, given a C*-algebra A and a state ω:A→ C, it constructs (Hω, πω,Ωω) where
Hω is a Hilbert space, πω:A → B(Hω) is a representation and Ωω ∈ Hω is normalized
such that it realizes ω as

ω(A) = 〈Ωω|πω(A)Ωω〉.

Furthermore, there is a simplicity property which is that Ωω is “cyclic, that is that πω(A)Ωω
is dense in Hω.
Before we can explain the GNS-construction in detail, we need a lemma that is a variant
of a Cauchy-Schwarz inequality. It is obtained from requiring positivity of a state for
elements of the form A+ λB for A,B ∈ A and λ ∈ C:

0 ≤ ω((A+ λB)∗(A+ λB)) = ω(A∗A) + λω(A∗B) + λ̄ω(B∗A) + λλ̄ω(B∗B).

This expression is positive and thus in particular real. The first and the last term are also
positive so the imaginary part of the sum of the second and third term has to vanish. This
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implies

ω(A∗B) = ω(B∗A).

Then, since the above inequality has to hold for all λ we can extremize with respect to it
(formally treating λ and λ̄ as independent). That yields

λ = −ω(B∗A)

ω(B∗B)

(if ω(B∗B) = 0 consider λA + B instead) and plugging this back in (using the above
equation for the complex conjugate of the state)

0 ≤ ω(A∗A)− ω(B∗A)ω(A∗B)

ω(B∗B)
− ω(A∗B)ω(B∗A)

ω(B∗B)
+
ω(A∗B)ω(B∗A)ω(B∗B)

ω(B∗B)2

or in other words the Cauchy-Schwarz style inequality

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B).

Now, we are equipped to approach the GNS construction. The first step is to define

J := {A ∈ A|ω(A∗A) = 0}

and observe that it is a right-ideal, that is if A ∈ A and J ∈ J we have AJ ∈ J as using
our Cauchy-Schwarz inequality

|ω((AJ)∗(AJ))|2 = |ω(J∗A∗AJ)|2 ≤ ω(J∗J)ω((A∗AJ)∗(A∗AJ) = 0.

Then we define H0 = A/J and denote the equivalence classes as A+J . Next we define a
map π0 from A to linear operators on H0 via

π0(A)(B + J ) := (AB) + J

which is well defined thanks to the fact that J is a right ideal. This already has the
property π0(A)π0(B) = π0(AB). Then, we are ready to define a sesqui-linear form on H0

using the state ω

〈A+ J |B + J 〉 := ω(A∗B).

Again this is independent of the choice of representatives thanks to the Cauchy-Schwarz
inequality. It is positive definite since we modded out the potential null space J . With this
scalar product on H0 comes a norm which we then use to define Hω to be the norm-closure
of H0 and extend π0 by continuity to πω:A → B(Hω) which is a representation as also
πω(A∗) = πω(A)†. As a last step, we define

Ωω := 1+ J
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and compute
〈Ωω|πω(A)Ωω〉 = 〈1+ J |πω(A)(1+ J )〉

= 〈1+ J |A+ J 〉
= ω(A).

Further π0(A)Ωω = A + J = H0 which is by definition dense in Hω.
This finishes the GNS construction. It connects the task to find representations of A to
the task of finding states of A. Clearly, if you already have a representation π:A→ B(H),
for every non-zero ψ ∈ H, you can then run the GNS-construction on ωψ and obtain a
representation which is equivalent to π(A)ψ which is all ofH if ψ is cyclic or π is irreducible.
Similarly, you can do the GNS construction for ωρ for ρ ∈ S1(H) a density matrix. Note
that in this case even mixed states are represented as vector states Ωωρ in Hωρ . This
shows that pure states are not the same as vector states when A is represented as a proper
sub-algebra of B(H).
With two states ω1/2 of A, you can ask if you can realize ω1 as a density operator in the
GNS-construction built on ω2. In that case, one says ω1 is in “the folium” of ω2. The
question of existence of inequivalent representations can then be formulated as the question
of existence of states beyond the folium of one representation.
Finally, the statement that any C*-algebra is equivalent to a closed sub-algebra of B(H)
for some (very large) Hilbert space H can now be phrased as the existence of a faithful
state, that is a state for which ω(A∗A) = 0 implies A = 0. This is then in fact constructed
using the Hahn-Banach theorem.
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