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1 Introduction
TheBose–Einstein condensation (BEC) has been an important topic in quantumphysics
for a long time since the first predictions in 1924 [11, 24], and especially after the
experimental observations in 1995 [2, 19]. Roughly speaking, BEC is the phenomenon
when many bosons occupy a common quantum states at very low temperatures, thus
allowing to observe in our macroscopic scales many interesting quantum phenomena
such as superfluidity and quantized vortices.

While the pioneer works of Bose and Einstein [11, 24] concern only the non-
interacting gas, in reality the particles do interact and the rigorous understanding
of interacting systems remains a very challenging problem in mathematical physics.
The theory of interacting Bose gases essentially started in 1947 when Bogoliubov
[10] proposed an approximation theory and used it to predict the excitation spectrum
of Bose gases. In particular, Bogoliubov’s theory gives a satisfactory explanation of
Landau’s criterion for superfluidity [32]. Since then, there have been several attempts to
justify Bogoliubov’s theory from first principles, namely frommany-body Schrödinger
equations, and some rigorous results will be reviewed below.

Heuristically, Bogoliubov’s theory based on the key assumption that the interaction
is sufficiently weak. In this case, the total interaction felt by each particle can be
effectively replaced by a one-body mean-field potential, in the spirit of the law of
large number in probability theory. This so-called mean-field approximation leads to
Hartree’s theory (or the Gross–Pitaevskii theory) which has been used widely to study
the condensate. Moreover, the weak interaction ansatz also allows to treat excited
particles by the second order perturbation method. Consequently, Bogoliubov’s theory
gives an effective description for the fluctuations around the condensate, as some sort
of the central limit theorem.
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In this review, we will focus on two specific scaling regimes where the interactions
are weak but still play a leading order role.

• The mean-field regime: the interaction range is long, but the interaction strength
is weak. Thus there are many but weak collisions, which is an ideal situation to
apply the mean–field approximation.

• The Gross–Pitaevskii regime: the interaction range is short, but the interaction
strength is strong. Thus there are few but strong collisions, making themean–field
behavior less obvious.

Although the mean-field and Gross–Pitaevskii regimes correspond to different
physical systems, it turns out that Bogoliubov’s arguments apply successfully to both
cases. In fact, thanks to a series ofworks bymany authors in the last 10 years, the validity
of Bogoliubov excitation spectrum has been proved in both regimes. In 2011, Seiringer
[55] for the first time justified Bogoliubov excitation spectrum in the mean-field regime
for the homogeneous Bose gas in the torus T3. Later his result was extended to general
trapped systems in R3 in [30, 36]; see also [21, 8, 49, 54, 52, 12, 46] for various
extensions. On the other hand, in the Gross–Pitaevskii regime, which is most relevant
to the physical setup in [2, 19], the analysis is significantly more challenging since
Bogoliubov’s theory admits a subtle correction. The correction to Bogoliubov’s theory
in the Gross–Pitaevskii regime was established by Boccato–Brennecke–Cenatiempo–
Schlein [7] for the homogeneous gas. Very recently, this result was finally extended to
general trapped systems in R3 in [50, 18].

In the following, I will explain in detail Bogoliubov’s theory and review the results
obtained in [36] and [50]. I will also discuss some possible extensions and open
problems in the end.

2 Bogoliubov’s theory
To make the idea transparent, let us start with a trapped system in the mean-field
regime. We consider a system of N bosons in R3 described by the Hamiltonian

HN =

N∑
i=1
(−∆xi + Vext(xi)) +

1
N − 1

∑
1≤i< j≤N

W(xi − xj) (2.1)

which acts on the symmetric space HN =
⊗N

sym L2(R3). Here xi ∈ R3 stands for the
coordinate of the i-th particle (we ignore the spin for simplicity) and HN consists of
functions in L2((R3)N ) satisfying

Ψ(x1, ..., xN ) = Ψ(xτ(1), ..., xτ(N )), ∀τ ∈ SN .

We assume that the external potential Vext : R3 → R satisfies

(Vext)− ∈ L3/2(R3) + L∞(R3), (Vext)+ ∈ L1
loc(R

3), lim
|x |→∞

Vext(x) = ∞ (2.2)
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and that the interaction potential W : R3 → R satisfies

W2 ∈ L3/2(R3) + L∞(R3). (2.3)

Under these conditions, HN is well-defined on the core domain
⊗N

sym C∞c (R
3) and it is

bounded from below. Consequently, HN can be extended to be a self-adjoint operator
on HN by Friedrichs’ method. The trapping condition lim |x |→∞ Vext(x) = ∞ ensures
that HN has compact resolvent, and hence it has eigenvalues

λ1(HN ) ≤ λ2(HN ) ≤ ..., lim
j→∞

λj(HN ) = ∞.

We are interested in the asymptotic behavior of the eigenvalues of HN when N →∞.
In the non-interacting gas, namely W = 0, the spectrum of HN can be computed

explicitly from the spectrum of the one-body operator −∆ + Vext as follows

σ(HN ) =
{∑
i≥1

niei | ei ∈ σ(−∆ + Vext), ni ∈ {0, 1, 2, ...},
∑
i≥1

ni = N
}
.

On the other hand, for the interacting gas, namelyW , 0, it is in general impossible
to compute the spectrum of HN when N becomes large, even numerically. Therefore, it
is important to derive effective theories, which are less precise (describing only some
collective properties of the system) but easier to deal with.

One of the most popular approximation methods used in computational quantum
physics and chemistry is the mean–field approximation, which was first introduced by
Curie and Weiss to describe phase transitions in statistical mechanics. Heuristically,
the mean–field theory is based on the assumption that the particles are independent,
leading to a replacement of the linear problem of N particles by a non-linear problem
of one particle. Mathematically, N independent and identical particles can be described
by the Hartree state

Ψ(x1, ..., xN ) = u⊗N (x1, ..., xN ) = u(x1)...u(xN )

where u is a normalized function in L2(R3). The energy per particle of the factorized
wave function u⊗N is given by the Hartree functional

EH(u) =
∫
R3

(
|∇u(x)|2 + Vext(x)|u(x)|2

)
dx +

1
2

∫
R3

∫
R3
|u(x)|2 |u(y)|2W(x − y)dxdy.

In Hartree’s theory, the lowest energy per particle is

eH = inf
‖u ‖

L2(R3)=1
EH(u).

It is not difficult show that eH has a minimizer u0 which is non-negative and solves the
self-consistent equation

Du0 = 0, D = −∆ + Vext + |u0 |
2 ∗W − ε0 (2.4)
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where ε0 ∈ R is a Lagrange multiplier associated with the mass constraint ‖u‖L2(R3) =

1. Thus the mean–field approximation suggests that the ground state energy of HN in
(3.7) satisfies

EN = NeH + o(N)N→∞ (2.5)

and that u0 describes the Bose–Einstein condensate. We refer to [34] and the reviews
[33, 53] for rigorous results on the validity of Hartree’s theory.

In this review, we are interested in the next order correction to Hartree’s theory,
which is given by Bogoliubov’s theory. We will give below two different heuristic
derivations of Bogoliubov’s theory: the first is obtained by applying the second order
perturbation method to the Hartree functional, and the second is obtained by manip-
ulating the many-body Hamiltonian in the second quantization language. While the
first is shorter and easier to access for a general audience, the second is closer to
Bogoliubov’s original argument [10] and easier to justify mathematically.

2.1 Bogoliubov’s theory from the second order perturbation
To describe the excited particles, namely the particles outside of the condensate, we can
apply the second order perturbation method to the Hartree functional. More precisely,
if u0 is a Hartree minimizer, then for v⊥u0 we have the Taylor expansion

EH

(
u0 + v√

1 + ‖v‖2
L2

)
= eH +

1
2

〈(
v

v

)
, E ′′H(u0)

(
v

v

)〉
+ o

(
‖v‖2

H1(R3)

)
(2.6)

with the Hessian matrix

E ′′H(u0) =

(
D + K K

K D + K

)
where K is the operator on L2(R3) with kernel

K(x, y) = u0(x)u0(y)w(x − y).

Roughly speaking, Bogoliubov’s theory suggests that we may lift the Taylor expansion
(2.6) to the many-body level, leading to the following refinement of (2.5)

σ(HN ) = NeH + σ(HBog) + o(1)N→∞ (2.7)

where the Bogoliubov HamiltonianHBog is the second quantization of 1
2E
′′
H(ϕ) that we

will introduce later.
Note that we always have E ′′H(ϕ) ≥ 0 since u0 is a Hartree minimizer (in particular

D ≥ 0 and u0 is a ground state of D). Moreover, it is known that if the Hessian matrix
is non-degenerate, namely

E ′′H(ϕ) ≥ η > 0 on H+ ⊕ H+ (2.8)
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with H+ = {u0}
⊥ ⊂ L2(R3) and a constant η > 0, then it can be diagonalized by a

symplectic matrix of the form

V =

(√
1 + s2 s

s
√

1 + s2

)
, V∗

(
1 0
0 −1

)
V =

(
1 0
0 −1

)
, (2.9)

namely

V∗E ′′H(ϕ)V =

(
E∞ 0
0 E∞

)
(2.10)

where E∞ is unitarily equivalent to
(
D1/2(D + 2K)D1/2

)1/2
. Consequently, up to a

constant, the Bogoliubov Hamiltonian HBog is unitarily equivalent to dΓ(E∞), the
quantization of E∞ (see (2.14) below). We refer to [48, 20] for general discussions
on the diagonalization procedure, in particular for the emergence of the symplectic
structure in (2.9). In summary, (2.8) implies that the excitation spectrum of HN can be
described by the spectrum of E∞ as folllows

σ(HN ) − λ1(HN ) ≈ σ(dΓ(E∞)) =

{∑
i≥1

niei | ei ∈ σ(E∞), ni ∈ {0, 1, ...}

}
. (2.11)

2.2 Bogoliubov’s theory from the microscopic equation
Now we explain Bogoliubov’s theory from the microscopic description of the many-
body system, which is closer to the original argument in [10].

Let us recall the Fock space formalism. Let K be L2(R3) or a subspace of L2(R3).
We define the bosonic Fock space

F (K) =

∞⊕
n=0

K
n, K

n =

n⊗
sym

K. (2.12)

For g ∈ K, we define the creation and annihilation operators a∗(g), a(g) on F (K) by

(a∗(g)Ψ)(x1, . . . , xn+1) =
1

√
n + 1

n+1∑
j=1

g(xj)Ψ(x1, . . . , xj−1, xj+1, . . . , xn+1),

(a(g)Ψ)(x1, . . . , xn−1) =
√

n
∫
R3

g(xn)Ψ(x1, . . . , xn)dxn, ∀Ψ ∈ Kn, ∀n.

It is also convenient to define the operator-valued distributions

a∗x =
∞∑
n=1

fn(x)a∗( fn), ax =

∞∑
n=1

fn(x)a( fn), x ∈ R3,
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where { fn}∞n=1 is an orthonormal basis of K (the definitions of ax, a∗x are independent
of the choice of the basis). Equivalently, we have

a∗(g) =
∫
R3

g(x)a∗xdx, a(g) =
∫
R3

g(x)axdx, ∀g ∈ K.

These operators satisfy the canonical commutation relations (CCR)

[a(g1), a(g2)] = [a∗(g1), a∗(g2)] = 0, [a(g1), a∗(g2)] = 〈g1, g2〉, ∀g1, g2 ∈ K,

[a∗x, a
∗
y] = [ax, ay] = 0, [ax, a∗y] = δ(x − y), ∀x, y ∈ R3. (2.13)

It turns out that many important operators on Fock space can be expressed in the second
quantization form using the creation and annihilation operators. For example, for any
one-body self-adjoint operator A we can write its second quantization as

dΓ(A) :=
∞⊕
n=0

(
n∑
i=1

Axi

)
=

∬
R3

A(x, y)a∗xaydxdy (2.14)

where A(x, y) is the kernel of A. Similarly, the Hamiltonian in (2.1) can be extended
to be an operator on F (L2(R3)) as

HN =

∫
R3

a∗x(−∆x + Vext(x))axdx +
1

2N

∫
R3

∫
R3

W(x − y)a∗xa∗yaxaydxdy. (2.15)

Roughly speaking, Bogoliubov’s theory [10] contains three key steps.

Step 1 (c-number substitution). From the assumption on the complete condensation
on the Hartree minimizer u0, namely

〈ΨN, a∗(u0)a(u0)ΨN 〉 = N + o(N), (2.16)

and the commutation relation

[a(u0), a∗(u0)] = 1 � 〈ΨN, a∗(u0)a(u0)ΨN 〉 = N0 ≈ N,

we see that a(u0) and a∗(u0) ‘mostly commute’. Pushing this idea further, we may
heuristically think of a(u0) and a∗(u0) as the scalar number N1/2

0 . Put differently, we
may factor out the contribution of the condensate as a scalar field as

ax ≈ N1/2
0 u0(x) + cx (2.17)

where ax , cx are annihilation operators on F (H), F (H+), respectively, where H =
L2(R3) and H+ = {u0}

⊥ ⊂ H. This allows us to focus on the Fock space F (H+) which
corresponds to excited particles.
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Step 2 (Quadratic reduction). Inserting (2.17) in (2.15) and expand to second order,
we obtain

HN ≈ NeH + HBog + o(1)N→∞ (2.18)

where

HBog = dΓ(D) +
1
2

∫
R3

∫
R3

W(x − y)u0(x)u0(y)(2c∗xcy + c∗xc∗y + cxcy)dxdy. (2.19)

Here we have ignored all terms containing more than 2 operators cx or c∗x thanks to
the BEC (heuristically cx � N1/2 ≈ N1/2

0 ). Moreover, the terms containing only one
operator cx or c∗x are canceled due to the Hartree’s equation (2.4).

Note that the Bogoliubov Hamiltonian in (2.19) can be rewritten as

HBog =

∫
R3

c∗x(D + K)xcxdx +
1
2

∫
R3

∫
R3

K(x, y)(c∗xc∗y + cxcy)dxdy

which is exactly the second quantized version of the Hessian energy

1
2

〈(
v

v

)
, E ′′H(ϕ)

(
v

v

)〉
=

∫
v(x)(D+K)v(x)dx+

1
2

∬
K(x, y)(v(x)v(y)+v(x)v(y))dxdy

via the simple rules v(x)| 7→ a∗x , v(x) 7→ ax .

Step 3 (Diagonalization). The Bogoliubov Hamiltonian HBog in (2.18) can be diago-
nalized by a unitary operator on F (H+) of the form

T = exp
(∫
R3

∫
R3
(k(x, y)c∗xc∗y − h.c.)dxdy

)
with an appropriate kernel k(x, y). The actions of T are characterized by

T∗c(v)T = c(
√

1 + s2v) + c∗(sv), T∗c∗(v)T = c∗(
√

1 + s2v) + c(sv), ∀v ∈ H+
where

s = sh(k) =
ek − e−k

2
with k being the operator with kernel k(x, y). If we choose the operator s as in (2.10),
then a simple computation using the CCR (2.13) leads to the identity

T∗HBogT =
1
2

TrH+(E∞ − D − K) + dΓ(E∞). (2.20)

Thus from (2.18) we deduce that, up to a unitary transformation,

HN ≈ NeH +
1
2

TrH+(E∞ − D − K) + dΓ(E∞) + o(1)N→∞, (2.21)

which is consistent with the prediction in (2.11) for the excitation spectrum.
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3 Validity of Bogoliubov’s theory

3.1 The mean–field regime
In this subsection we focus on the mean–field regime, namely we consider the Hamil-
tonian in (2.1),

HN =

N∑
i=1
(−∆xi + Vext(xi)) +

1
N − 1

∑
1≤i< j≤N

W(xi − xj),

with time-independent potentials Vext,W .
From the heuristic discussion in Section 2, we can easily extract two natural condi-

tionswhich are necessary to justify Bogoliubov’s prediction for the excitation spectrum.

• The Hartree minimizer is unique. This is the necessary and sufficient condi-
tion to have the complete Bose-Einstein condensation in (2.16) for low-lying
eigenfunctions of HN ; see e.g. [34, 33, 53].

• The non-degeneracy (2.8) holds true. This condition ensures that the Taylor
expansion in (2.6) makes sense, namely the Hessian dominates the error term,
and that the Bogoliubov Hamiltonian in (2.19) is bounded from below and
diagonalizable; see [48, 20].

In joint work with M. Lewin, S. Serfaty and J. P. Solovej [36], we proved that
Bogoliubov’s prediction is indeed correct under those general conditions on the Hartree
minimizer. More precisely, we have

Theorem 3.1 (Validity of Bogoliubov excitation spectrum [36]). Consider the Hamil-
tonian HN in (2.1) where Vext and W satisfy (2.2) and (2.3). Assume that the Hartree
minimizer u0 is unique and non-degenerate. Then for every j ∈ N , the j-th eigenvalue
of HN satisfies

lim
N→∞
(λj(HN ) − NeH) = λj(HBog)

where the Bogoliubov Hamiltonian is an operator on F (H+) defined in (2.19).

The result in [36] holds in a more general setting; in particular, it holds in all
dimensions and the external potential Vext may vanish at infinity which is relevant to
unconfined systems. In the later case, some particles may escape to infinity and we
have to add the assumption that any minimizing sequence of the Hartree functional is
pre-compact in L2(R3), which is the necessary and sufficient condition for the complete
BEC to holds (see [34]).

Our result in [36] was inspired by the pioneer works of Seiringer [55] and Grech–
Seiringer [30]who have for the first time derived theBogoliubov excitation spectrum for
a class of trapped bosons in the mean-field model. In [55, 30], the interaction potential
W is assumed to be bounded and of positive type, namely its Fourier transform satisfies

0 ≤ Ŵ ∈ L1(R3).
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Under this condition, we have∫
R3

∫
R3

f (x) f (y)W(x − y)dxdy =
∫
R3

∫
R3
| f̂ (k)|2Ŵ(k)dk ≥ 0. (3.1)

Therefore, the uniqueness of the Hartree minimizer is an easy consequence of the
convexity of |u|2 7→ EH(u) (the convexity of the kinetic part follows from the diamag-
netic inequality |∇u(x)| ≥ |∇|u|(x)|). Moreover, (3.1) also implies that the operator K
with kernel u0(x)u0(y)W(x − y) is a positive operator, and hence the non-degeneracy
condition (2.8) holds true.

Note that thanks to (2.20), the spectrum of HBog is known explicitly in terms of
the spectrum of the one-body operator E∞ given in (2.11). For the homogeneous gas
studied in [55], when particles are confined on the torus [0, L]3 with periodic boundary
condition and Vext = 0, the eigenvalues of E∞ are simply given by

ep = (|p|4 + 2|p|2Ŵ(p))1/2, p ∈ (2π/L)Z3\{0}.

As already mentioned by Bogoliubov [10], the fact that the elementary excitation
ep behaves linearly for small |p| corresponds to Landau’s criterion for superfluidity
[32]. More precisely, it implies the wedge-like shape of the joint spectrum of the
Hamiltonian-momentum, which in particular guarantees that adding a drop with a
small velocity will not change the ground state of the system, namely the drop canmove
without friction. Strictly speaking, the mean-field regime discussed in this subsection
corresponds to the choice L ∼ 1 and |p| is not very small. However, the same picture
holds true in the large volume limit L = LN → ∞; see [21] for rigorous results (the
results in [8, 7], up to a suitably scaling argument, are also relevant to the large volume
limit).

Ingredients of the proof. Now let us explain the main ideas of the proof in [36]. Our
important tool is an excitation operator which implements Bogoliubov’s c-number
substitution. Thanks to the isomorphism of Fock spaces

F (L2(R3)) = F (Span(u0) ⊕ {u0}
⊥) ≈ F (Span(u0)) ⊗s F (H+)

we can decompose any function ΨN ∈ H
N uniquely as

ΨN = u⊗N0 ξ0 + u⊗N−1
0 ⊗s ξ1 + u⊗N−2

0 ⊗s ξ2 + ... + ξN

with ξk ∈ Hk
+. Recall that for two functions Ψk ∈ H

k and Ψ` ∈ H` , we define the
symmetric tensor product by

Ψk ⊗s Ψ`(x1, ..., xk+`) =
1√

k!`!(k + `)!

∑
τ∈SN

Ψk(xτ(1), ..., xτ(k))Ψ`(xτ(k+1), ..., xτ(k+`)).

As proved in [36], the operator

U : ΨN → (ξ0, ξ1, ..., ξN ) (3.2)
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is a unitary transformation from HN to the truncated Fock space

F ≤N (H+) = 1N+≤NF (H+)

where N+ = dΓ(1H+) is the number operator on the excited Fock space F (H+). The
operator U essentially maps a(u0) and a∗(u0) to

√
N − N+, namely

ax 7→
√

N − N+u0(x) + cx

where cx is the annihilation operator on F (H+). More precisely, we have on F ≤N (H+)

UHNU∗ = 1N≤N
(

4∑
i=0
Li

)
1N≤N (3.3)

where

L0 = NeH +
N+(N+ + 1)

2N

(∫
|u0 |

2(W ∗ |u0 |
2)

)
,

L1 =
√

N − N+

∫ ((
−∆ + Vext + |u0 |

2 ∗W
)

u0

)
(x)cxdx + h.c.

+
N+
√

N − N+
N − 1

∫ (
(|u0 |

2 ∗W)u0

)
(x)cxdx + h.c.,

L2 =

∫
c∗x(D + K)xcxdx +

1 − N+
N − 1

∫
c∗x(|u0 |

2 ∗W + K)xcxdx

+

√
(N − N+)(N − N+ − 1)

2(N − 1)

∬
K(x, y)cxcydx dy + h.c.,

L3 =

√
N − N+
N − 1

∬
W(x − y)ϕ(x)c∗ycxcydxdy + h.c.,

L4 =
1

N − 1

∬
W(x − y)c∗xc∗ycxcydxdy.

By formally taking the limit N →∞, we obtain immediately the desired convergence

UHNU∗ − NeH → HBog. (3.4)

Rigorously, we proved in [36, Proposition 5.1] that for every 1 ≤ M ≤ N ,

±1N+≤M (UHNU∗ − NeH − HBog)1N+≤M ≤ C

√
M
N
(HBog + C) (3.5)

as quadratic forms on F ≤M (H+). This justifies the convergence (3.4) in the sectors of
low excitations, namely N+ � N . The contribution of the sectors of high excitations,
namely N+ ∼ N , is negligible thanks to the complete BEC (2.16). Using (3.5), we
can derive the convergence of quadratic forms in (3.5), which in turns implies the
convergence of eigenvalues by the min-max principle.

As a by product of our method, we also obtain the information for eigenfunctions.
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Theorem 3.2 (Norm approximation for eigenfunctions [36]). Under the same condi-
tions in Theorem 3.1, the ground state ΨN of HN is simple and satisfies

lim
N→∞




UΨN − Φ





F(H+)

= 0 (3.6)

where Φ ∈ F (H+) is the unique ground state of the Bogoliubov Hamiltonian HBog. A
similar convergence holds for the higher eigenfunctions (possibly up to subsequences
of N →∞ in case of degenerate eigenvalues).

The norm approximation (3.6) is much stronger than the complete BEC (2.16). In
fact, while (2.16) describes a macroscopic property, (3.6) really contains microscopic
information: changing the behavior of a single particle can change the many-body state
in norm to the leading order. In particular, (3.6) implies that in the non-interacting
case (W . 0), ΨN is never close to u⊗N0 in norm, namely the fluctuations around the
Hartree state u⊗N0 are nontrivial.

3.2 The Gross–Pitaevskii regime
In this subsection, we consider the N-body Hamiltonian

HN =

N∑
i=1
(−∆xi + Vext(xi)) +

∑
1≤i< j≤N

N2V(N(xi − xj)) (3.7)

on HN =
⊗N

sym L2(R3) with time-independent potentials Vext,V . For simplicity, we
assume that the external and interaction potentials satisfy

0 ≤ Vext(x) ≤ CeC |x | for some constant C > 0, lim
|x |→∞

Vext(x) = ∞, (3.8)

0 ≤ V ∈ L1(R3), V is radially symmetric and compactly supported. (3.9)

In this so-called Gross–Pitaevskii regime, the system is very dilute and the strong
correlation between particles at short distances leads to a subtle correction to the
leading order which is captured by the scattering length

8πa0 = inf
{∫
R3
(2|∇ f (x)|2 + V(x)| f (x)|2)dx, lim

|x |→∞
f (x) = 1

}
. (3.10)

More precisely, the Hartree functional has to be replaced by the Gross–Pitaevskii
functional

EGP(u) =
∫
R3

(
|∇u(x)|2 + Vext(x)|u(x)|2 + 4πa0 |u(x)|4

)
dx. (3.11)

Note that by simply restricting to the Hartree states u⊗N and using N3V(N ·) ≈ V̂(0)δ0,
we would obtain a wrong functional with 8πa0 replaced by its first Born approximation
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V̂(0). It is not difficult to prove that the Gross–Pitaevskii functional has a unique
normalized minimizer ϕ which is positive and exponentially decay (see [39]).

In [39], Lieb–Seiringer–Yngvason proved that the ground state energy of HN in
(3.7) satisfies

lim
N→∞

λ1(HN )

N
= inf
‖u ‖

L2(R3)=1
EGP(u). (3.12)

Later, in [37, 38], Lieb–Seiringer proved that if ΨN is an approximate ground state,
namely 〈ΨN,HNΨN 〉 = λ1(HN ) + o(N), then the complete BEC on the Gross–
Pitaevskii minimizer ϕ holds

〈ΨN, a∗(ϕ)a(ϕ)ΨN 〉 = N + o(N). (3.13)

Recently, the BEC with optimal rate

〈ΨN, a∗(ϕ)a(ϕ)ΨN 〉 = N +O(1) (3.14)

was obtained in [6, 9, 31] (the homogeneous case) and [47, 17] (the general trapped
case).

Since there are only finitelymany excited particles due to (3.14), it is still reasonable
to predict the excitation spectrum by Bogoliubov’s approximation. A straightforward
application of the heuristic arguments in Section 2 predicts that the elementary excita-
tions are eigenvalues of the one-body operator(

D1/2(D + 2V̂(0)ϕ2)D1/2
)1/2

,

where D is the mean-field operator associated with the Gross–Pitaevskii equation,

Dϕ = 0, D = −∆ + Vext + 8πa0 − ε0.

However, as mentioned already by Bogoliubov [10] (which goes back to a remark of
Landau), the number V̂(0) should be replaced by the scattering length 8πa0, similarly
to the leading order correction. Therefore, to put Bogoliubov’s theory in a good use,
after the three steps written in Section 2.2, we need an important modification:

Step 4 (Landau’s correction). V̂(0) should be replaced by 8πa0 everywhere, with a0
the scattering length of V .

It is Step 4 that makes the implementation of Bogoliubov’s arguments in the Gross–
Pitaevskii regime much more challenging than that of the mean-field regime.

In [7], Boccato–Brennecke–Cenatiempo–Schlein solved this problem for the ho-
mogeneous gas. Recently, in joint work with A. Triay [50], we extended the result for
general trapped systems. We have

Theorem 3.3 (Bogoliubov’s theory in the Gross–Pitaevskii regime [50]). Consider the
Hamiltonian HN in (3.7). Let λ1(HN ) be the ground state energy of the Hamiltonian
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HN in (3.7). Then the spectrum of HN − λ1(HN ) below an energy Λ ∈ [1, N1/12] is
equal to finite sums of the form∑

i≥1
niei + O(Λ3N−1/12), ni ∈ {0, 1, 2, ...}

where {ei}∞i=1 are the positive eigenvalues of
(
D1/2(D + 16πa0ϕ

2)D1/2
)1/2

.

Independently to us, a result similar to Theorem 1 was obtained by Brennecke–
Schlein–Schraven in [18]. While our overall approach is similar to that of [7, 18], the
detailed implementations are different. In fact, in [50] we introduced several conceptual
simplifications and generalizations, which could be helpful for the study of dilute gases
in the future. Let us explain some key ideas below.

Ingredients of the proof. Our proof is based on the rigorous approximation

T∗2 T∗cT∗1 UHNU∗T1TcT2 ≈ λ1(HN ) + dΓ(E∞) + o(1)N→∞ (3.15)

on the excited Fock spaceF+ = F (H+)withH+ = {ϕ}⊥ = QL2(R3)withQ = 1−|ϕ〉〈ϕ|.
Here U is the same transformation in (3.2), which factors out the condensation

described by the Gross–Pitaevskii minimizer u0. Consequently, the excited particles
are captured by the Hamiltonian in (3.3). Unlike the mean–field regime where L3
and L4 are of order o(1), in the Gross–Pitaevskii regime L4 ∼ N and L3 ∼ O(1).
Therefore, these terms have to be renormalized by the unitary transformations T1 and
Tc , respectively.After that,we obtain a quadraticHamiltonianwhich can be diagonaized
by the final unitary transformation T2.

To define the quadratic transformation T1, we need to capture the correlation struc-
ture of particles. Let 0 ≤ f ≤ 1 be the scattering solution

−2∆ f + V f = 0 in R3, lim
|x |→∞

f (x) = 1. (3.16)

We denote ω = 1 − f and for every 0 < ` � 1 introduce the truncated functions

ω`,N (x) = χ(x/`)ω(N x), ε`,N = 2∆(ω`,N (x) − ω(N x)) (3.17)

where 0 ≤ χ ≤ 1 is a smooth function satisfying χ(t) = 1 if |x | ≤ 1/2 and χ(x) = 0
if |x | ≥ 1. By choosing T1 such that

T∗1 a∗(g)T1 = a∗(
√

1 + s2
1g) + a(s1g), ∀g ∈ H (3.18)

where
s1 = Q⊗2 s̃1 ∈ H

2
+, s̃1(x, y) = −Nω`,N (x − y)ϕ(x)ϕ(y),

we can replace the short range potentialV(N(x− y)) inL2 by the longer range potential
ε`,N (x − y). Note that ε`,N is supported in {`/2 ≤ |x | ≤ `} and

N3
∫
R3
ε`,N = 8πa0. (3.19)
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When ` grows slowly, we are essentially placed in the mean-field regime.
The idea of renormalizing the short-range potential by a Bogoliubov transformation

was introduced by Benedikter–de Oliveira–Schlein [4] to derive the Gross–Pitaevskii
dynamics on Fock space. In [16], Brennecke–Schlein adapted the approach in [4]
to study the quantum dynamics on HN , where the used a generalized Bogoliubov
transformation on F ≤N+ of the form

exp
(
1
2

∬
K1(x, y)b∗xb∗ydxdy − h.c.

)
with bx =

√
1 − N/Nax . (3.20)

The transformation (3.20) has been also an essential tool in the study of the spectral
problem in a series of papers [8, 6, 9, 7, 17, 18]. Our choice of T1 in (3.18) is different
from (3.20) in three aspects.

• First, the operator bx in (3.20) is not an exact annihilation operator, and hence T̃1
only satisfies an approximate form of (3.18). Here our T1 is a proper Bogoliubov
transformation and the exact formula (3.18) simplifies several computations.

• Second, the truncated scattering solution in [4, 16] is defined using Neumann
boundary condition on |x | = `N . Here our choice of ω`,N in (3.17) is simpler
and works for a larger class of potentials.

• Third, and most importantly, we take ` � 1 instead of ` ∼ 1 as in [4, 16, 7].
Thus T1 renormalizes L2 efficiently but and leaves the cubic terms L3 invariant.

To remove the cubic term L3, we introduce a cubic transformation of the form

Tc = eS, S = θM

∬
kc(x, y, y′)a∗xa∗yaydxdy − h.c.

where θM ≈ 1(N ≤ M) and kc(x, y, y′) is the kernel of the operator kc : H → H2

defined by

kc = Q⊗2 k̃cQ, k̃c(x, y, y′) = −N1/2ϕ(x)ω`,N (x − y)δy,y′

with k̃c(x, y, y′) is the kernel of the operator kc : H→ H2. The projectionsQ : H→ H+

and Q⊗2 : H2 → H2
+ ensure that kc : H+ → H2

+, namely the cubic kernel S acts only on
excited particles. The cut-off parameter 1 � M � N in θM allows us to control the
number of excitations. Consequently, we have the simple expansion

T∗c ATc ≈ A − [S, A] +
1
2
[S, [S, A]]

and the above choice of S comes from the cancelation

L3 − [S, dΓ(−∆) + L4] ≈ 0.
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Here our cubic transformation is slightly simpler than that of [7] since we did not
change L3 in the previous step. The idea of using a cubic generator goes back to the
work of Yau–Yin [56] on the Lee–Huang–Yang formula in the thermodynamic limit.
The choice ` � 1 is again very helpful to separate high and low momenta.

Finally we end up with the quadratic Hamiltonian

dΓ(D) +
1
2

∫
N3ε`,N (x − y)ϕ(x)ϕ(y)(2a∗xay + a∗xa∗y + axay)dxdy

which can be diagonalized similarly as in the mean-field regime. We find that

T∗2 T∗cT∗1HT1TcT2 ≈ const + dΓ(E) (3.21)

where

E = (D1/2(D + 2K)D1/2)1/2, K = QK̃Q, K̃(x, y) = ϕ(x)N3ε`,N (x − y)ϕ(y).

Since ` � 1, we have N3εN,` → 8πδ0, which implies that E → E∞ in an appropriate
sense. This completes the overview of our proof of Theorem 3.3.

4 Further results and open problems

Excitation spectrum. In the mean-field regime, the validity of Bogoliubov’s theory for
the ground state energy and the excitation spectrumwere extended in various directions,
including the large volume setting [21], multiple-condensations [49, 54], mixture of
Bose gases [41], and higher order expansions [52, 42, 12, 46]. The intermediate
regime between the mean-field and the Gross–Pitaevskii was studied in [8]. The regime
beyond the Gross–Pitaevskii was studied in [14] (see also [27, 1] for results on the
BEC). It is an interesting open problem to extend the results in the Gross–Pitaevskii
regime (or beyond) to trapped systems in bounded domains with Neumann or Dirichlet
boundary conditions, since this will have interesting implications to systems in the
thermodynamic limit.

Quantum dynamics. In the mean–field regime, the method in [36] was developed
in [35] to derive the norm approximation for the many-body Schrödinger dynamics.
Higher order expansions in the mean–field regime were also obtained in [13]. The
validity of Bogoliubov’s theory for the quantum dynamics with singular interaction
potentials of the form N3βW(Nβx) with 0 < β < 1 was obtained in [43, 44, 45, 15].
When β = 1, theGross–Pitaevskii dynamicswas derived in [26, 25], but the justification
of Bogoliubov’s theory for the dynamics remains open. We refer to the reviews [5, 51]
for further discussions on the dynamical problem.

Positive temperatures. As discussed in Section 3, Bogoliubov’s theory holds true for
eigenvalues belonging an interval of order 1 above λ1(HN ). This implies the validity
of Bogoliubov’s theory for the free energy of a temperature of order 1, see e.g. [36,
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Theorem 2.3] for an explicit statement. It is an open problem to extend the analysis to
higher temperatures. For the homogeneous gas in a unit torus, the critical temperature
where we see the BEC phase transition is of order N2/3. In this case, the validity of
the Gross–Pitaevskii theory has been understood [22], but the validity of Bogoliubov’s
theory remains unknown.

Thermodynamic limit. In the thermodynamic limit, Bogoliubov’s theory is consistent
with the Lee–Huang–Yang formula on the ground state energy of dilute Bose gases.
In this problem, the leading order behavior is already difficult: the upper bound was
proved in 1957 [23] but the lower bound was obtained only some 40 years later [40].
The second order, which requires a correction to Bogoliubov’s theory similar to that in
the Gross–Pitaevskii regime, was proved recently in [56, 3] (upper bound) and [28, 29]
(lower bound). While the second order lower bound in [29] covers a large class of
interaction potentials, including the hard core case, extending this universality to the
second order upper bound remains an open problem. The excitation spectrum seems to
be completely out of reach by current techniques; a simple reason is that the existence
of the BEC in the thermodynamic limit remains a major open problem in mathematical
physics.
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