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Problem Overview (you do not have to include this page in your submission).

Problem 1 (10 points). Let {un}∞n=0 ⊂ L1
loc(Rd) satisfy that

−∆un(x) = |x|2e−n|x|2 in D′(Rd), ∀n = 1, 2, ...

and un → u0 in L1
loc(Rd) when n→∞. Prove that u0 is a harmonic function in Rd.

Problem 2 (15 points). Let R2
+ = {x = (x1, x2) ∈ R2 |x2 > 0}. Let g ∈ C1

c (R) and

u(x) =
x2

π

ˆ
R

g(y)

(x1 − y)2 + x2
2

dy, ∀x = (x1, x2) ∈ R2
+.

Prove that f = ∂x1u is harmonic in R2
+ and limx2→0+ f(x1, x2) = g′(x1), ∀x1 ∈ R.

Problem 3 (10+10 points). Let B = B(0, 1) be the unit open ball in Rd (d ≥ 1). Let
g ∈ C(∂B) be an odd function, namely g(x) = −g(−x) for all x ∈ ∂B.
(a) Let T > 0 and let u ∈ C2(B × [0, T ]) be a solution of the wave equation

∂2
t u(x, t)−∆xu(x, t) = 0 in (x, t) ∈ B × (0, T ),

u(x, t) = ∂tu(x, t) = 0 in (x, t) ∈ B × {t = 0},
u(x, t) = g(x) on ∂B × [0, T ].

Prove that u(0, t) = 0, ∀t ∈ [0, T ]. (Hint: Uniqueness of the wave equation is helpful.)

(b) Let v ∈ C4(B) satisfy 
∆(∆v) ≥ 0 in B,

∆v ≤ 0 on ∂B,

v = g on ∂B.

Prove that v(0) ≥ 0. (Hint: You may consider f = ∆v.)

Problem 4 (10+15 points). Let g ∈ L2(Rd) (with d ≥ 1). Consider the solutions of
the heat and Schrödinger equations (with i2 = −1)

u(x, t) = (et∆g)(x), v(x, t) = (eit∆g)(x), x ∈ Rd, t > 0.

(a) Prove that if g ∈ H1(Rd), then there exists a constant C = C(g) > 0 such thatˆ
Rd

|v(x, t)− g(x)|2dx ≤ Ct, ∀t > 0.

(b) Let g ∈ C∞c (Rd) be an odd function, namely g(x) = −g(−x) for all x ∈ Rd. Prove that
there exists a constant C = C(g) > 0 such thatˆ

Rd

|u(x, t)|2dx ≤ C

t1+d/2
, ∀t > 0.

(Hint: You may work on Fourier space. For b), the value of ĝ(0) is important.)

Problem 5 (10+20 points). Let S2 be the unit sphere in R3. Define

δS2(ϕ) =

ˆ
S2
ϕ(x)dω(x), ∀ϕ ∈ C∞c (R3)

where ω is the usual Lebesgue measure on S2 (recall
´
S2 dω = |S2| = 4π).

(a) Prove that δS2 ∈ D′(R3) but δS2 6∈ L1
loc(R3).

(b) Prove that there exists a function u ∈ L1
loc(R3) such that −∆u = δS2 in D′(R3).

(Hint: Guess u by formally using Green’s function and Newton’s theorem. Then justify.)
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Solutions

Problem 1. We have −∆un = |x|2e−n|x|2 → 0 in L1(Rd) sinceˆ
Rd

|x|2e−n|x|2dx =
1

n1+d/2

ˆ
Rd

|y|2e−|y|2dy =
C

n1+d/2
→ 0 as n→∞

by changing the variables y = x/
√
n. Consequently, −∆un → 0 in D′(Rd). Moreover, since

un → u0 in L1
loc(Rd) we have un → u0 in D′(Rd), and hence −∆un → −∆u0 in D′(Rd)

(by Homework E4.1). Thus −∆u0 = 0 in D′(Rd), namely u0 is a harmonic function in Rd
(by Weyl’s lemma).

Remark: Alternatively the argument can be written as follows, for every ϕ ∈ C∞c (Rd),

(∆u)(ϕ) = u(∆ϕ) = lim
n→∞

un(∆ϕ) = lim
n→∞

(∆un)(ϕ) = lim
n→∞

ˆ
Rd

−ϕ(x)|x|2e−n|x|2dx = 0.

where we used un → u0 in L1
loc(Rd) for the second equality and used Dominated Conver-

gence for the last equality.

Problem 2. By changing the variables we can write

u(x) =
x2

π

ˆ
R

g(y)

(x1 − y)2 + x2
2

dy =
x2

π

ˆ
R

g(x1 − y)

y2 + x2
2

dy.

Therefore,

f(x) = ∂x1u(x) = lim
h→0

u(x1 + h, x2)− u(x1, x2)

h

= lim
h→0

x2

π

ˆ
R

g(x1 + h− y)− g(x1 − y)

h
· 1

y2 + x2
2

dy.

For every fixed x = (x1, x2) ∈ R2
+, we have

lim
h→0

g(x1 + h− y)− g(x1 − y)

h
· 1

y2 + x2
2

= g′(x1 − y)
1

y2 + x2
2

, ∀y ∈ R

and ∣∣∣g(x1 + h− y)− g(x1 − y)

h
· 1

y2 + x2
2

∣∣∣ ≤ ‖g′‖L∞
1

y2 + x2
2

∈ L1(R, dy)

Thus by Dominated Convergence

f(x) =
x2

π

ˆ
R

g′(x1 − y)

y2 + x2
2

dy =
x2

π

ˆ
R

g′(y)

(x1 − y)2 + x2
2

dy.

Put differently,

f(x) =
x2

π

ˆ
R
g′(y)

( 1

(x1 − y)2 + x2
2

)
dy =

ˆ
∂R2

+

g′(y)K(x, y)dy

where

K(x, y) =
x2

π

1

|x− y|
is exactly Poisson’s kernel for R2

+. Here we identify R and ∂R2
+. Since g′ ∈ Cc(R), by a

theorem on Poisson’s equation in R2
+, we find that f ∈ C2(R2

+) and it solves{
∆f = 0 in R2

+,

limx2→0+ f(x1, x2) = g′(x1), ∀x1 ∈ R.

Remark: If at the beginning we do not change the variables, then

f(x) = ∂x1u(x) =
x2

π

ˆ
R
g(y)∂x1

( 1

(x1 − y)2 + x2
2

)
dy
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by Dominated Convergence (need to justify). We can proceed using the identity

∂x1

( 1

(x1 − y)2 + x2
2

)
= (−∂y)

( 1

(x1 − y)2 + x2
2

)
dy

and the integration by parts,

f(x) =
x2

π

ˆ
R
g′(y)

( 1

(x1 − y)2 + x2
2

)
dy =

ˆ
∂R2

+

g′(y)K(x, y)dy

Problem 3. a) Denote ũ(x, t) = u(x, t) + u(−x, t). Then ũ(x, t) satisfies the same
equation, but with all 0 boundary conditions:

∂2
t ũ(x, t)−∆xũ(x, t) = 0 in (x, t) ∈ B × (0, T ),

ũ(x, t) = ∂tũ(x, t) = 0 in (x, t) ∈ B × {t = 0},
ũ(x, t) = 0 on ∂B × [0, T ]

where we have used g(x) + g(−x) = 0 on ∂B. By the uniqueness of the wave equation, we
have ũ(x, t) = 0 on B × [0, T ]. In particular, 2u(0, t) = ũ(0, t) = 0 for all t ∈ [0, T ].

b) The function f = ∆v ∈ C2(B) satisfies{
∆f ≥ 0 in B,

f ≤ 0 on ∂B.

Hence, f ≤ 0 in B by maximum principle. Thus{
∆v ≤ 0 in B,

v = g on ∂B.

Similarly to a), we define ṽ(x) = v(x) + v(−x). Then since g(x) + g(−x) = 0 on ∂B, we
have {

∆ṽ ≤ 0 in B,

ṽ = 0 on ∂B.

Hence, ṽ ≥ 0 in B by maximum principle. In particular, 2v(0) = ṽ(0) ≥ 0.

Problem 4. Recall the Fourier transform

û(k, t) = e−t|2πk|
2
ĝ(k), v̂(k, t) = e−it|2πk|

2
ĝ(k).

a) This is similar to Homework E11.1 c). By Plancherel theorem,ˆ
Rd

|v(x, t)− g(x)|2dx =

ˆ
Rd

|v̂(k, t)− ĝ(k)|2dk =

ˆ
Rd

|e−it|2πk|2 − 1|2|ĝ(k)|2dk.

Note that

|eiθ − 1|2 = | cos(θ)− 1|2 + | sin(θ)|2 ≤ C min(1, |θ|2) ≤ C|θ|, ∀θ ∈ R.

Therefore,ˆ
Rd

|v(x, t)− g(x)|2dx =

ˆ
Rd

|e−it|2πk|2 − 1|2|ĝ(k)|2dk ≤
ˆ
Rd

Ct|2πk||ĝ(k)|2dk ≤ Ct‖g‖2H1 .

b) Since g is odd, we have ĝ(0) =
´
Rd g = 0. Hence

|ĝ(k)| = |ĝ(k)− ĝ(0)| ≤ |k|‖∇kĝ‖L∞ ≤ |k|‖|2πx|g‖L1 ≤ C|k|

where we have used ∂kj ĝ(k) = F((−2πixj)g(x)) and ‖f̂‖L∞ ≤ ‖f‖L1 . Therefore,ˆ
Rd

|u(x, t)|2dx =

ˆ
Rd

e−2t|2πk|2 |ĝ(k)|2dk ≤ C
ˆ
Rd

e−2t|2πk|2 |k|2dk



5

=
C

t1+d/2

ˆ
Rd

e−2|2πξ|2 |ξ|2dξ ≤ C

t1+d/2
, ∀t > 0

where we changed the variables k = ξ/t1/2.

Problem 5. a) Let us check that δS2 ∈ D′(R3). Let ϕn → ϕ in D(R3) as n → ∞. Then
in particular, we have

max
x∈R3

|ϕn(x)− ϕ(x)| → 0.

Hence

|δS2(ϕn)− δS2(ϕ)| =
∣∣∣ ˆ

S2
(ϕn(y)− ϕ(y))dω(y)

∣∣∣ ≤ max
x∈S2
|ϕn(x)− ϕ(x)|

ˆ
S2

dω(y)→ 0.

Thus δS2 ∈ D′(R3).
Next, let us show that δS2 /∈ L1

loc(R3). Assume by contradiction that δS2 = g ∈ L1
loc(R3).

Then for every n > 1, there exists a function ϕn ∈ C∞c (R3) such that

ϕn(x) = 1 if |x| = 1, ϕn(x) = 0 if ||x| − 1| ≥ 1/n.

Then for all ϕ ∈ C∞c (R3) we have (1 − ϕn)ϕ ∈ C∞c (R3) and (1 − ϕn)ϕ(x) = 0 if |x| = 1,
and hence ˆ

R3

g(1− ϕn)ϕ = δS2((1− ϕn)ϕ) =

ˆ
S2

(1− ϕn(y))ϕ(y)dω(y) = 0.

Thus by the fundamental lemma of calculus of variations, g(1−ϕn) = 0 a.e. Consequently,
since 1 − ϕn(x) = 1 for ||x| − 1| ≥ 1/n, we find that g(x) = 0 for a.e. ||x| − 1| ≥ 1/n.
Taking n → ∞, we conclude that g(x) = 0 for a.e. x ∈ R3. But clearly δS2 6= 0. So this
contradiction shows that δS2 /∈ L1

loc(R3).
b) Formally using Green’s function G(x) = 1/(4π|x|) we guess

u(x) = (G ∗ δS2)(x) = δS2(G(x− y)) =

ˆ
S2
G(x− y)dω(y) =

1

max(1, |x|)
.

Here we used Newton’s theorem in the last identify.
It remains to check that u satisfies the desired properties. Clearly |u| ≤ 1, and hence

u ∈ L∞(R3) ⊂ L1
loc(R3). Next, from the definition

u(x) =

ˆ
S2
G(x− y)dω(y),

for every ϕ ∈ C∞c (R3) we can write by Fubini’s theorem

(∆u)(ϕ) =

ˆ
R3

u(x)(∆ϕ)(x)dx =

ˆ
R3

(ˆ
S2
G(x− y)dω(y)

)
(∆ϕ)(x)dx

=

ˆ
S2

(ˆ
R3

G(x− y)∆ϕ(x)dx

)
dω(y) =

ˆ
S2

(G ∗ (∆ϕ))(y)dω(y).

Here the use of Fubini’s theorem is allowed since G(x − y)|∆ϕ(x)| ∈ L1(R3 × S2), as
∆ϕ(x) ∈ Cc(R3). We also used G(x− y) = G(y − x) for the convolution form.

We know that f = G ∗ ϕ is the solution to Poisson’s equation −∆f = ϕ. Actually in a
theorem in Chapter 3 we proved that −G ∗ (∆ϕ) = −∆(G ∗ ϕ) = ϕ for all ϕ ∈ C∞c . Thus
we conclude that

(∆u)(ϕ) =

ˆ
S2

(G ∗ (∆ϕ))(y)dω(y) = −
ˆ
S2
ϕ(y)dω(y) = −δS2(ϕ), ∀ϕ ∈ C∞c (R3),

namely ∆u = −δS2 in the distributional sense.
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Remark: We can also use u(x) = 1/max(1, |x|) and compute for every ϕ ∈ C∞c (R3)

(∆u)(ϕ) =

ˆ
R3

u(x)(∆ϕ)(x)dx =

ˆ
|x|≤1

(∆ϕ)(x)dx+

ˆ
|x|>1

∆ϕ(x)

|x|
dx.

By integration by partsˆ
|x|≤1

(∆ϕ)(x)dx =

ˆ
|x|≤1

div(∇ϕ)(x)dx =

ˆ
S2
∇ϕ(x) · ~nxdω(x) =

ˆ
S2

∂ϕ

∂n
(x)dω(x)

andˆ
|x|>1

∆ϕ(x)

|x|
dx = −

ˆ
|x|>1

∇ϕ(x) · ∇(|x|−1)dx−
ˆ
S2

∂ϕ

∂n
(x)|x|−1dω(x)

=

ˆ
|x|>1

ϕ(x)(∆|x|−1)dx+

ˆ
S2
ϕ(x)

∂

∂n
(|x|−1)dω(x)−

ˆ
S2

∂ϕ

∂n
(x)|x|−1dω(x)

= 0−
ˆ
S2
ϕ(x)dω(x)−

ˆ
S2

∂ϕ

∂n
(x)dω(x).

Here in the last line we used −∆|x|−1 = 0 in {|x| > 1} and ∂
∂n(|x|−1) = −1 on S2. Thus

we conclude that

(∆u)(ϕ) = −
ˆ
S2
ϕ(x)dω(x) = −δS2(ϕ), ∀ϕ ∈ C∞c (R3),

namely ∆u = −δS2 in the distributional sense.


