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thequantized radiation fielis [Miyao-Spohn 2009]

Hi=1/(o-(—iVx®@1+eA)2+1+1®Hs.
It is acting in the Hilbert spack?(R?, C?) @ .#, where.Z is the
bosonic Fock spage

_@@@Lsym ((RE x Z2)").

» o: vector of Pauli matrices.
» A: quantized, UV cutoff vector potentiad;> 0.
o Hi = Z f[Ra|k|aA ay (k) dk : radiation field energy.
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Previous results in exterior potential
Thm (M.-Stockmeyer '10, Kdnenberg-M.-S. '11, K.-M. "1X)

For alle, x > 0 andy € [0, 2/x|, there is a distinguished
self-adjoint realization of

H, :=H—-~/[x|.
If v € (0,2/«], then infa(H,) is a (degenerate) eigenvalue.
If @ is a corresponding eigenvector, aad- O satisfies
1-(1-a2)" < info(H)—info(H,), then X e ?2.7.
For~ > 2/x, the quadratic form off., is unbounded below.

* NR case: Bach-@hlich-Sigal 1999, Griesemer-Lieb-Loss
2001.
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Theorem (Kdnenberg-M.)

Lete,x > 0, letV : R® — [0, c0) be a small form perturbation
of v1— A, and assumg'l — A — 1 — V has negative
eigenvalue®, < e < ... < 0. Thenthe binding energy is
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Lete,x > 0, letV : R® — [0, c0) be a small form perturbation
of v1— A, and assumg'l — A — 1 — V has negative
eigenvalue®, < e < ... < 0. Thenthe binding energy is
iIncreasedn presence of the quantized radiation field, i.e.

info(H) —info(H—V) > |e]. ()

Remarks.
 For non-zero 0< V € L¥*(R®) N L3(R?%) one observes
enhanced bindinin the quantized radiation field at
arbitrarye, x > 0.
* NR case: Catto, Chen, Exner, Hainzl, Hiroshima, Linde,
Spohn, Vougalter, Wugalter.

o (&) with > has been shown first by Hiroshima-Sasaki,
2010.
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Intuitive picture:

A moving electrons surrounded by a cloud ebft photongi.e.
photons of low energy. The electron together with its photon
cloud behaves like a particle havingeager masthan the
electron alone. Heavier particles yield higher bindingrgies.

Aim
Study the electron and its photon cloud more precisely using
Pizzo’s iterative analytic perturbation thedBizzo 2003].

We shall establish results recently obtained in the
non-relativistic case by [Chen-Bhlich, 2007],
[Chen-Fbhlich-Pizzo, 2009], [Fshlich-Pizzo, 2010].
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Fiber Hamiltonians

The semi-relativistic Pauli-Fierz Hamiltonian is unitgri
equivalent to alirect integra|

D
&~ / H(P)d®P,
[R3

of fiber Hamiltonians

HP)=(oc-(P—pr+eA)2+1+H, PcR e>

acting in the fiber Hilbert spade? @ .#
e Hi = Z fRsyk‘aA ay(k )dsk

® Pr= f[R3ka>\ k) an (k) d*%k
0.1

A=
— 1 * d3k
* A= G Aglﬁkm ex(k) (a5 (k) +ax(k)) e
k > 0.

0,
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Define themass shell ground state energigs

E(P) :=info(H(P)), PcR>.

Theorem (Kénenberg-M.)

For all x,p > 0, there exists eq > 0 such that, for all ¢ € (0, ¢],
the ground state energy E is twice continuously differentiable
and strictly convexon B, := {P € R3: |P| < p}.

Moreover, E(0) = minE.

e NR case: Fohlich-Pizzo 2010.

» Bounds orE” in the NR case: Bach-Chen#tilich-Sigal
2007, Chen 2008.
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Strategy

~ Introduce IR cutoff fiber Hilbert space6? @ .%;, j € Ny,

@@Lsym "4]><ZZ )7 Aj = {|k|>/€(l/2)j}>

and defineH;(P) in the same way ad (P), but on the IR cutoff
space,

= H (1/2)J on Lgym(('Aj X Zz)n)'
= Ife> 0 is small, depending off?| andx, then
» E(P) :=info(H;(P)) is an isolated, two-fold degenerate
eigenvalue.

» gap := inf {o(H;(P) — )\N{0}} = (Y2)i/
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How to treat the square root?

The two-fold direct sum of

T:=+/(o-(P—pr+eh))?+

can be written as

T@sz:Tlergo/T (1+iy(D—iy)1)w%y

for¢ € D(D), where

Di=a - (P—pi+eA)+ 3.

a1, oz, aiz, andg are the Dirac matrices.
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So,E;(P) is an eigenvalue dfij(P). Let
I = Ii(P) := Tg ey (H;(P))

be the corresponding spectral projection.
Since gap> 0, the resolvent

R =RE(P) = (Hi(P) I(P)* — E(P)) " IL(P)*

is well-defined.
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Forj € No, Hellmann-Feynmaformulas are valid,

8th = Tr[HJ- ath HJ‘]/Z,
ORE; = Tr[IL; OFH; I1j] /2 — ||(R;") V00 H; 11| s

Use these formulas to show that
E=Ey+ Z(Em —Ej) converges absolutely iG2(1,) .
j=0

More precisely, show

(Y2)), v=0,1,

SUp|OVE. 1 — OVE | < ce(1l+ce) _

SinceEy(P) = VP2 + 1, this impliesE € C?, E” > 0, onB,.



Strategy

Strategy

To compare operators acting in theme Hilbert spage
C? ® %1, we introduce

HIF(P) i= /(o (P— pU™ + e AD))2 1 1 4+ HOPY.



Strategy

Strategy

To compare operators acting in theme Hilbert spage
C? ® %1, we introduce

HIF(P) i= /(o (P— pU™ + e AD))2 1 1 4+ HOPY.

= Ej(P) = info(H**(P)) is again an isolated, two-fold
degenerate eigenvalue Idf“(P) and

OhE = TrIE ™ onHI 114 /2,

where . i |
™ = TWH(P) = 1 e (HT(P))

and similarly foroZE;
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Strategy: The dressing transform
In order to find a good bound aQtyE;.1(P) — oy E;(P)|, for
P £ 0, we must not compars;,;(P) directly with I *(P),
which is of the form

H(P) = (P) & Py,

P+1 := projection onto the vacuum sector in
]

T = Co P Ln(([Anr \ A x Z2)") .
n=1
(Recall.Fi, 1 = F © F/1)
In fact, if the total system is moving with total momentum
P # 0, then theslectron should be dressed irdeloud of
soft photons Hence,H}“(P) is not a good approximation of

II;11(P), since it contains no photons with frequences in
A\ A
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Strategy: The dressing transform

~ Define adressing transforr(compare [Chen-Fhlich,
2007]),

UJ(P) — g ieww(fi(P ))
w(f) = 21/2 Z/ fi(P;k, \) (a*(k) — a(k)) K,

A=0,1 'AH-l\AJ
1 1 ek VE(P)
(2m)%2 k|2 |k| —k - VE(P)’

(P, ) =
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Strategy: The dressing transform
~ Define adressing transforr(compare [Chen-Fhlich,
2007)),

UJ(P) — g ieww(fi(P ))

o ( j = / P k,\) (a"(k) —a(k)) d3k,
2/2 AZM 'AH-l\AJ

1 1 eyk)- VEJ-(P)

WEIA) = o k7 W -k VEP)

and seek for a bound on
|Tj2(P) — I (P)

where
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Strategy

It turns out that

T, — IH e (Y2) | R} VH T || g + c e (Y2)l.

HHS\ .

Guiding theme in Pizzo's iterative perturbation theory:
(Note that||R;"|| ~ 2.) ~ Estimate expressions like

K= [(RE VH T s, K o= [|RyE VH T,

by relating them to their precessors at sgalel.
It turns out that

<(A+ce)KY +ce,
<ce(12)2 (K'Y +1),
<ce(l+ce) (Y2).

K,
KT — K

(IUTEEt iy
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It turns out that

T, — IH e (Y2) || Ri" VH ITj|| g + c e (Y2)'.

s <

Guiding theme in Pizzo's iterative perturbation theory:
(Note that||R;"|| ~ 2.) ~ Estimate expressions like

K= [(RE VH T s, K o= [|RyE VH T,

by relating them to their precessors at sgalel.
It turns out that

K()1< (1+ce)K-(l)—|—ce
‘Kji/i 1/2 ‘ <ce 1/2>1/2( )+1)
s — T < ce (2 o) (3

This implies the desired bounds @¥E;.1(P) — O¢E;(P)|. B
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Existence and multiplicity of ground states
Define operators on thariginal fiber Hilbert spacef? ® .#

H>®(P) :=v/(o - (P —pr + ¢AV))2 + 1 + H,

H®(P) := W(P)H=(P)W(P)",  Wi(P):= [ ui(P),

H(P) := norm-res. I|mH°°(P)

j—o0

Theorem (Kénenberg-M.)

For all p, x > 0, there exist eg, ¢ > O such that, for all P € B,
and e € (0, ¢o], the ground state energy E(P) is an exactly
two-fold degenerate eigenvalue of H(P), and

| Lee) (H(P)) — Lemy (HX(P))|| < ce (1+ ce)l (Y2).

(Noticethat H(O) — H(O) )
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Absence of ground states at non-zero moment:
However:
Theorem (Kénenberg-M.)

For all p, x > O, there exists ¢; > 0 such that, for all
PeB,\ {0} ande € (0, ¢o], the ground state energy E(P) is
not an eigenvalue of H(P).

This follows from the bound

Lij<
Hax(k)@'(P) +efi(Pk, ) ¢1(F’)H e =r, ke A,

~ K| ~¥2
for every normalized ground state eigenvecip(P), of H;(P).

* NR case: [Schroer, 1963], [6nlich 1973],
[Chen-Fbhlich, 2007], [Hasler-Herbst, 2008].
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Related results

Coherent state representation space
The unitariesV; (P) do not have limit.

However, consider (as in [Bhlich 1973]) thencomplete direct
product spacin the sense of von Neumann,

Qp i+l
%’en::cz®ﬁo®®ﬂp{gjj+ :

jeN
containing thecoherent state
D =ve W U;P)URUIPPe...,

wherev may be any vector it?2. One can construct a unitary
mapW(P)* : C? ® .# — J73°", so that

WP)'veQ =0, W(P)alg)W(P) =a(g)—e(glf),
whereg; € L?((Aj41 \ A) x Z2).
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Related results

Coherent state representation space

Define
H™"(P) := W(P)* H(P) W(P) .

ThenE(P) is an exactly two-fold degenerate eigenvalue of
H""(P) and

lim Tr[1gp) (HX(P)) Al = Tr[1gp) (H™®(P)) mp(A)] ,

]*)OO
for every
AcB(C*® %)= B(C*® %)®1 C B(C*® %),

andrp : B(C? ® %) — B(4°") is a natural embedding.



Related results

On the renormalized electron mass

Theorem (Kénenberg-M.)

Let k,e > O bearbitrary. If E istwice continuously
differentiable near 0, then the renormalized electron massis
strictly larger than its bare mass, i.e.

1/02E(0) > 1, lh| =1.



Related results

Thank you for your attention!
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