Edge statistics in dimension 1

F. Klopp

IMJ - UPMC

Spectral Days München, 11/04/2012

Klopp (IMJ - UPMC)

11/04/2012 1 / 10

Outline:

- The prototypical example
 - The Anderson model
 - Renormalized (unfolded) eigenvalues
 - The bulk statistics
 - The edge statistics
 - Bulk vs edge
 - Enhanced Wegner and Minami
- The Poisson and the Anderson model
 - Lifshitz tails
 - Joint statistics
 - Another point of view
 - Applications

The prototypical example : the Anderson model

$$\operatorname{On} \mathbb{C}^{L}, \operatorname{consider} M_{L}(\omega) = \begin{pmatrix} \omega_{1} & 1 & 0 & \cdots & 0 & 0 \\ 1 & \omega_{2} & 1 & 0 & \cdots & 0 \\ 0 & 1 & \omega_{3} & 1 & \cdots & 0 \\ \vdots & & & \ddots & & \vdots \\ 0 & \cdots & 0 & 1 & \omega_{L-1} & 1 \\ 0 & 0 & \cdots & 0 & 1 & \omega_{L} \end{pmatrix} \text{ where } (\omega_{j})_{1 \leq j \leq L} \text{ i.i.d.}$$

Consider eigenvalues of $M_L(\omega): E_1(\omega,L) \leq E_2(\omega,L) \leq \cdots \leq E_L(\omega,L)$.

Question : statistics of the eigenvalues of $M_L(\omega)$ when $L \to +\infty$?

Renormalized (unfolded) eigenvalues : define N to be the integrated density of states :

$$N(E) := \lim_{L \to +\infty} \frac{\#\{\text{e.v. of } M_L(\omega) \text{ less than E}\}}{L}.$$

The limit exists a.s., is a.s. constant and defines probability distribution on \mathbb{R} .

Renormalized eigenvalues : $N(E_1(\omega, L)) \le N(E_2(\omega, L)) \le \cdots \le N(E_L(\omega, L))$.

Bulk statistics:

Fix E_0 such that $\frac{dN}{dE}(E_0) > 0$.

Consider the point process $\Xi(E_0, \omega, L) = \sum_{i=1}^{L} \delta_{L \cdot [N(E_j(\omega, L)) - N(E_0)]}$.

Theorem (Molchanov, Minami, Germinet-K.)

If the r.v. are "regular", as $L \to +\infty$, $\Xi(E_0, \omega, L)$ converges weakly to the Poisson process on \mathbb{R} with intensity 1.

Edge statistics: consider the point process $\Xi_{-}(\omega,L) = \sum_{i=1}^{L} \delta_{L \cdot N(E_{j}(\omega,L))}$.

Theorem (Germinet-K.)

If the r.v. are "regular", as $L \to +\infty$, $\Xi_{-}(\omega, L)$ converges weakly to the Poisson process on \mathbb{R}^+ with intensity 1.

Note that $\Xi_{-}(\omega, L) = \Xi(E_0, \omega, L)$ if $N(E_0) = 0$.

One can equivalently consider $\Xi_+(\omega, L) = \sum_{i=1}^L \delta_{L \cdot [1-N(E_j(\omega, L))]}$.

Bulk vs edge: basic analysis of bulk

• Localization: for some $\alpha > 0$, with proba $1 - L^{-q}$, if φ e.v. of $M_L(\omega)$ ass. to E, then $\exists n_E$ s.t. $|\varphi(n)| \leq L^q e^{-\alpha |n-n_E|}$;

[Kunz-Souillard, Fröhlich-Spencer, Aizenman-Molchanov, Germinet-Klein, etc]

- Wegner estimate : $\mathbb{E}(\{\operatorname{tr}(\mathbf{1}_I(M_L(\boldsymbol{\omega})))\}) \leq C|I|L$; [Wegner, many others]
- Minami estimate : $\mathbb{E}(\{\operatorname{tr}(\mathbf{1}_I(M_L(\omega)))(\operatorname{tr}(\mathbf{1}_I(M_L(\omega)))-1)\}) \leq C(|J|L)^2$. [Minami, Bellissard-Hislop-Stolz, Graf-Vaghi, Combes-Germinet-Klein]

The analysis : pick (small) interval I and L s.t. need $1 \ll |N(I)|L \lesssim |I|L$

- pick cube of size L
- find the localization centers
- cut cube into small cubes of size $\ell \ll L$
- possible problems :
 - ► multiple centers in small cubes probability is small due to Minami's estimate : $\ell^2 |I|^2 (L/\ell) = \ell L |I|^2$
 - centers not localized well in cube probability is small due to Wegner's estimate : $l \cdot |I|$

• if $L|N(I)| \gg 1$ and $\ell L|I|^2 \ll 1$, with good prob

So with good probability, e.v. of big cube given by e.v. of small cubes i.e. i.i.d.

Klopp (IML-HPMC)

Edge statistics in dimension

11/04/2012

5 / 10

Bulk vs edge: basic analysis (continued)

So analysis works if $1 \ll |N(I)|L \lesssim |I|L$ and $\ell L|I|^2 \ll 1$.

Compute distributions of e.v. in small cubes:

- proba. to have e.v. in small cube $\sim |N(I)|\ell + O((|I|\ell)^2)$
- distr. of this (renorm.) e.v. (cond. on its existence) : if I = [a,b]

$$\mathbb{P}(\text{e.v. in } [x,y]) \sim \frac{N(a+x|I|) - N(a+y|I|)}{|N(I)|} + O\left(\frac{|I|^2 \ell}{|N(I)|}\right).$$

Bulk : $|I| \simeq |N(I)|$ (as typically $\frac{dN}{dE}(E_0) > 0$).

Edge: typical Lifshitz tails: $|N(I)| \sim e^{-|I|^{-1/2}} \quad \Rightarrow \quad |N(I)| \ll |I|$.

At edge, standard Wegner and Minami insufficient!

Enhanced Wegner and Minami:

Theorem (Germinet-K.)

Fix $\xi \in (0,1)$. For I compact interval in loc. region s.t. $|N(I)| \ge \exp(-L^{\xi}/C)$

- $\mathbb{E}\left[\operatorname{tr}\mathbf{1}_{I}(M_{L}(\boldsymbol{\omega}))(\operatorname{tr}\mathbf{1}_{I}(M_{L}(\boldsymbol{\omega}))-1)\right] \leq 2|N(I)||I|L^{2}.$

The Poisson and the Anderson model

On $L^2(\mathbb{R})$, consider the following random operators $H^{\bullet}_{\omega} = -\frac{d^2}{dx^2} + V^{\bullet}_{\omega}(x)$:

- $V^P(x) = \int_{\mathbb{R}} v(x-y) d\mu(y, \omega)$ where $\mu(\cdot, \omega)$ is a random Poisson point process i.e.
- $V^A(x) = W(x) + \sum_{n \in \mathbb{Z}} \omega_n v(x-n)$ where W is \mathbb{Z} -periodic and $(\omega_n)_{n \in \mathbb{Z}^d}$ are i.i.d. non trivial.

For simplicity $v : \mathbb{R} \to \mathbb{R}^+$ continuous and compact support

For L>1, consider $H^{\bullet}_{\omega|L}$ to be H^{\bullet}_{ω} restricted to [-L/2,L/2] with, say, Dirichlet b.c. Consider eigenvalues of $H^{\bullet}_{\omega|L}: E_1(\omega,L) \leq E_2(\omega,L) \leq \cdots \leq E_n(\omega,L) \leq \cdots$.

Renormalized (unfolded) eigenvalues: define N to be the integrated density of states:

$$N^{\bullet}(E) := \lim_{L \to +\infty} \frac{\#\{ \text{e.v. of } H^{\bullet}_{\omega|L} \text{ less than E} \}}{L}.$$

The limit exists and is indep. of ω a.s.; it is continuous and defines distribution of a positive measure on \mathbb{R} . Its support is the a.s. spectrum of H^{\bullet}_{ω} . Let $\sigma_{-}=\inf(\sigma(H^{\bullet}_{\omega}))$. Assume $\sigma_{-}=0$.

Renormalized eigenvalues : $N(E_1(\omega,L)) \le N(E_2(\omega,L)) \le \cdots \le N(E_n(\omega,L)) \le \cdots$

Klopp (IMJ - UPMC)

Edge statistics in dimension 1

11/04/2012

7 / 10

Lifshitz tails

Theorem

One has $\log N^{\bullet}(E) = -c^{\bullet} E^{-1/2} (1 + o(1))$ where

- $c^P = \pi$ [Sznitman, Pastur, etc.]
- $c^A = \pi |\log p| \sqrt{m}$ for $(\omega_n)_n$ Bernoulli s.t. $p := P(\omega_0 = \inf(\omega_0))$ and m is the effective mass of $H^A_{\overline{\inf(\omega_0)}}$ at 0.

Joint statistics: Localization centers: for some $\alpha \in (0,1)$, with prob. $1-L^{-q}$, if φ e.v. of $H_{\omega|L}^{\bullet}$ ass. to E, then $\exists x_E$ s.t. $|\varphi(x)| \leq L^q e^{-|x-x_E|^{\alpha}}$.

This description holds [Bourgain-Kenig, Germinet-Klein-Hislop, Germinet-Klein].

Define
$$\Xi^{\bullet}(\omega,L) = \sum_{j} \delta_{L \cdot N(E_{j}(\omega,L))}$$
 and $\Xi_{2}^{\bullet}(\omega,L) = \sum_{j} \delta_{L \cdot N(E_{j}(\omega,L))} \otimes \delta_{L^{-1} \cdot x_{E_{j}(\omega,L)}}$.

Theorem

For $\bullet \in \{A, D\}$, as $L \to +\infty$, $\Xi^{\bullet}(\omega, L)$ (resp $\Xi_{2}^{\bullet}(\omega, L)$) converges weakly to the Poisson process on \mathbb{R}^+ (resp. $\mathbb{R}^+ \times [-1/2, 1/2]$) with intensity 1.

Related work : [Grenkova-Molchanov-Sudarev] (sum of δ potentials).

UPNC SORBONNE UNIVERSITÉS

Another point of view

Consider the random operator H^{\bullet}_{ω} on the whole space.

Localization : ω -a.s., the spectrum is pure point and $\exists \alpha \in (0,1)$ s.t. for q > 0 large,

if *E* e.v. assoc. to
$$\varphi$$
 normalized $|\varphi(n)| \leq C_{\omega} (1 + |x_E|^2)^{q/2} e^{-|x-x_E|^{\alpha}}$.

Moreover, for $E_0 \in \mathbb{R}$, the number of eigenvalues E of H^{\bullet}_{ω} in $(-\infty, E_0]$ s.t. $|x_E| \le L/2$ is bounded by $N(E_0)L(1+o(1))$.

Enumerate the finitely many eigenvalues of H_{ω}^{\bullet} less than 1 with localization center in $[-L/2, L/2] : \tilde{E}_1(\omega, L) \leq \tilde{E}_2(\omega, L) \leq \cdots \leq \tilde{E}_n(\omega, L) \leq \cdots$.

Define
$$\tilde{\Xi}_2^{\bullet}(\omega,L) = \sum_j \delta_{L \cdot N(\tilde{E}_j(\omega,L))} \otimes \delta_{L^{-1} \cdot n_{\tilde{E}_j(\omega,L)}}$$
 and $\tilde{\Xi}^{\bullet}(\omega,L) = \sum_j \delta_{L \cdot N(\tilde{E}_j(\omega,L))}.$

Theorem

For $\bullet \in \{A, D\}$, as $L \to +\infty$,

- $\tilde{\Xi}^{\bullet}(\omega,L)$ converges weakly to the Poisson process on \mathbb{R}^+ with intensity 1;
- $\tilde{\Xi}_2^{\bullet}(\omega, L)$ converges weakly to the Poisson process on $\mathbb{R}^+ \times [-1/2, 1/2]$ with intensity 1.

Klopp (IMJ - UPMC

Edge statistics in dimension

11/04/2012

0 / 10

Applications

• Parabolic Anderson model : large time asymptotics of $\begin{cases} \partial_t u_t + H_\omega^{\bullet} u_t = 0, \\ u_{t|t=0} \equiv 1. \end{cases}$

Intermittency: study $u_t(0)$ (as potential homogeneous) formally

$$u_{t}(0) = \sum_{j} e^{-tE_{j}(\omega)} \varphi_{j}(0) \int \varphi_{j}(y) dy \approx \sum_{j} e^{-tE_{j}(\omega)} e^{-|x_{E_{j}(\omega)}|}$$
$$\approx \sum_{j} e^{-tN^{-1}(L^{-1}e_{j})} e^{-L|X_{j}|} + O(e^{-L/2}).$$

where (e_j, X_j) are Poisson distributed on $\mathbb{R}^+ \times [-1/2, 1/2]$.

Choice of scale L depends on what is to be computed.

• Study of the ground state of fermionic systems in a random potential : consider N copies $H_{\omega|L}^{\bullet}$ and on $\wedge_{j=1}^{N} L^{2}([-L/2,L/2])$, for some interaction potential W,

$$H_{\omega|L}^{N,ullet} = \sum_{i=1}^N \mathbf{1} \wedge \cdots \wedge H_{\omega|L}^{ullet} \wedge \cdots \wedge \mathbf{1} + W.$$

Study ground state: edge statistics gives description of free ground state (and (not too) excited states).

Only one model dependent parameter: the density of states N.

UPMC IMI SORBONNE UNIVERSITÉS