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The prototypical example : the Anderson model

((01 I 0 0 0 \
1 w 1 0
L ooy 1 0 N
On C*, consider My (w) = | . . .| where (®))1<j<z i.i.d.

01 @ 1
0 0 - 0 1w

Consider eigenvalues of My (®) : Ey(@,L) < E(w,L) < --- < Er(®,L).

Question : statistics of the eigenvalues of My (®) when L — o0 ?

Renormalized (unfolded) eigenvalues : define N to be the integrated density of states :

N(E):= lim #{e.v. of M (®) less than E}
Lo I3

The limit exists a.s., is a.s. constant and defines probability distribution on R.
Renormalized eigenvalues : N(Ej(w,L)) < N(Ex(w,L)) <--- < N(Er(w,L)).

............
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Bulk statistics :
) dN
Fix Ej such that T (Ep) > 0.

M-

Consider the point process E(Ey, ®,L) = 5L.[N(Ej(w,L))_N(EO)].

j=1

Theorem (Molchanov, Minami, Germinet-K.)

If the r.v. are “regular”, as L — +oo, E(E(y, ®,L) converges weakly to the Poisson
process on R with intensity 1.

—

Edge statistics : consider the point process Z_(w,L) = Z 5L.N(Ej(w’L)).

Theorem (Germinet-K.)

If the r.v. are “regular”, as L — +oo, E_ (@, L) converges weakly to the Poisson
process on Rt with intensity 1.

Note that £_(w,L) = E(Ey, w,L) if N(Ep) = 0.

One can equivalently consider . (@, L) Z 5L 1-N(Ej(@,L))]-

............
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Bulk vs edge : basic analysis of bulk

@ Localization: for some o > 0, with proba 1 — L9,

if @ e.v. of My () ass. to E, then 3ng s.t. |@(n)| < Lie~*—nel

[Kunz-Souillard, Frohlich-Spencer, Aizenman-Molchanov, Germinet-Klein, etc]
@ Wegner estimate : E({tr(1;(M.(w)))}) < C|I|L; [Wegner, many others]
o Minami estimate : [ ({tr(1;(M.(®))) (tr(1;(M.(®))) —1)}) < C(|J|L)*.
[Minami, Bellissard-Hislop-Stolz, Graf-Vaghi, Combes-Germinet-Klein]
The analysis : pick (small) interval [ and L s.t. need 1 < |[N(I)|L < |I|L

@ pick cube of size L

@ find the localization centers *

@ cut cube into small cubes of size ¢ << L .

@ possible problems :

» multiple centers in small cubes
probability is small due to Minami’s . .
estimate : £2|I|?(L/¢) = (L|I|? *

» centers not localized well in cube . .
probability is small due to Wegner’s estimate :
-1 .

e if L|N(I)| > 1 and ¢L|I|> < 1, with good prob

So with good probability, e.v. of big cube given by e.v. of small cubes i.e. i.i.d. ~
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Bulk vs edge : basic analysis (continued)
So analysis works if 1 < |[N(I)|L < |I|L and ¢L|I|> < 1.

Compute distributions of e.v. in small cubes :
@ proba. to have e.v. in small cube ~ |[N(I)|¢ 4 O((|1]£)?)
@ distr. of this (renorm.) e.v. (cond. on its existence) : if I = [a,b]
N(a+x|I)) =N(a+yll]) ( 11%¢ )
IN(1)] NI )

P(e.v.in [x,y]) ~
: dN
Bulk : |I| < |N(I)| (as typically d—E(Eo) > 0).

Edge : typical Lifshitz tails : |[N(I)| ~ e~ ~1/2

= [N < |I].
At edge, standard Wegner and Minami insufficient !
Enhanced Wegner and Minami :

Theorem (Germinet-K.)

Fix & € (0,1). For I compact interval in loc. region s.t. [N(I)| > exp(—L% /C)
@ E(tr1,(My(0))) < 2N(|L;
@ E[trl;(M(o))(trl(Mr(w))—1)] < 2IN(D)||I|L?.

v
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The Poisson and the Anderson model
d2

dx?

o VP(x)= / v(x —y)du(y, ) where i (-, ) is a random Poisson point process
R

n , consider the 1following random operators = + X) .
On L*(R ider the following random op H, Ve

1.e.
o VA(x)=W(x)+ Z ®,v(x —n) where W is Z-periodic and (@), 7« are i.i.d.
nez
non trivial.

For simplicity v : R — R™ continuous and compact support

For L > 1, consider Hg,, to be Hy, restricted to [—L/2,L/2] with, say, Dirichlet b.c.
Consider eigenvalues ofHC‘O’L Ey(o,L) <E(w,L)<---<E,(0,L)<---.
Renormalized (unfolded) eigenvalues : define N to be the integrated density of states :
#{e.v. of H? . less than E}

N°*(E) := Llim w'i
oo

The limit exists and is indep. of ® a.s. ; it is continuous and defines distribution of a
positive measure on R. Its support is the a.s. spectrum of H},. Let 6 = inf(c (H}))).
Assume o_ = 0.

Renormalized eigenvalues : N(E;(w,L)) < N(Ex(w,L)) <--- < N(E,(ow,L)) < yeme
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Lifshitz tails

Theorem
One has  1ogN*(E) = —c*E~"2(14+0(1)) where
o ¢’ = 1 [Sznitman, Pastur, etc.]

o A = n|logp|\/m for (®,), Bernoulli s.t. p := P(wy = inf(wy)) and m is the
effective mass of Hﬁl o) at 0.

Joint statistics : Localization centers :  for some a € (0, 1), with prob. 1 —L79,
if @ e.v. of Hy, ; ass. to E, then Jxg s.t. (@ (x)| < LieW—El"
This description holds [Bourgain-Kenig, Germinet-Klein-Hislop, Germinet-Klein].

Define E.((D,L) = ZSL-N(EJ'((O,L)) and EE((D,L) = ZSL-N(E]'((O,L)) X 6L_l'xEj(w,L)°
J J

Theorem

For e € {A,D}, as L — +oo0, E*(m,L) (resp E5(w,L)) converges weakly to the
Poisson process on R (resp. R™ x [—1/2,1/2]) with intensity 1.

Related work : [Grenkova-Molchanov-Sudarev] (sum of 6 potentials). ULl
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Another point of view
Consider the random operator Hg, on the whole space.

Localization : w-a.s., the spectrum is pure point and da € (0, 1) s.t. for ¢ > 0 large,
if E e.v. assoc. to ¢ normalized |@(n)| < Ce,(1+ |xE|2)‘1/2e*|x*xE‘a,

Moreover, for Ey € R, the number of eigenvalues E of HY, in (—oo, Eg] s.t. |xg| < L/2
is bounded by N(Ey)L(1+o0(1)).

Enumerate the finitely many eigenvalues of H, less than 1 with localization center in
[—L/2, L/2] :El(w L <EwlL)<- - <Eo, L) <

Theorem
For e € {A,D}, as L — oo,
° i'((:),L) converges weakly to the Poisson process on R* with intensity 1 ;

o =5(w,L) converges weakly to the Poisson process on R* x [—1/2,1/2] with

intensity 1.
v
110412012 9710
Applications

aﬂ/lt + H:Du; = O,

@ Parabolic Anderson model : large time asymptotics of { '
Utlr=0 = 1.

Intermittency : study ut(O) (as potential homogeneous) formally

— ZeftN e] —L|X| +0( L/Z).

where (e;,X;) are Poisson distributed on R* x [—1/2,1/2].

Choice of scale L depends on what is to be computed.
@ Study of the ground state of fermionic systems in a random potential : consider
N copies Hy,; and on ;VZILZ([—L /2,L/2]), for some interaction potential W,

Zl/\ AHy A AL+ W,
J=

a)|L

Study ground state : edge statistics gives description of free ground state (and
(not too) excited states).

. u~mcC
Only one model dependent parameter : the density of states .
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