Übungsblatt 6

- **6.1.** Für $m \ge 3$ sei $\Omega_m \subset \mathbb{R}^2$ ein regelmäßiges m-Eck. Für welche $\alpha \in \mathbb{R}$ ist die Funktion $x \mapsto (\operatorname{dist}(x, \partial\Omega))^{\alpha}$ subharmonisch bzw. superharmonisch in Ω ?
- **6.2.** Seien $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit $\partial \Omega \in C^2$ und $V : \Omega \to [0, \infty), \varphi : \partial \Omega \to \mathbb{R}$ stetige Funktionen. Beweise, dass die Lösung $u \in C^2(\Omega) \cap C(\overline{\Omega})$ des Randwertproblems

$$\begin{cases} (\Delta u)(x) = V(x)u(x), & \text{für alle } x \in \Omega \\ u(x) = \varphi(x), & \text{für alle } x \in \partial \Omega \end{cases}$$
 (1)

eindeutig ist.

6.3. Sei $\Omega:=(0,1)\times(0,1)\subset\mathbb{R}^2$. Beweise, dass für jedes $y\in\partial\Omega$ eine subharmonische Barrierefunktion $F_y\in C^2(\Omega)\cap C(\partial\Omega)$ existiert, sodass

$$\begin{cases} F_y(x) < 0, & \text{für alle } x \in \partial\Omega \setminus \{y\} \\ F_y(y) = 0 \end{cases}$$
 (2)

gilt.

Besprechung: Am Montag, den 10.12.2018.