Übungsblatt 12

12.1. Beweisen Sie, dass jede beschränkte Folge $(h_n)_{n\in\mathbb{N}}$ in einem separablen Hilbertraum \mathfrak{H} eine schwach konvergente Teilfolge besitzt.

Hinweis: Sei $(e_j)_{j\in\mathbb{N}}$ eine Orthonormalbasis für \mathfrak{H} .

- (a) Beweisen Sie Existenz einer Teilfolge $(h_{n_m})_{m\in\mathbb{N}}$, sodass für alle j der Limes $a_j := \lim_{m\to\infty} \langle e_j, h_{n_m} \rangle$ existiert.
- (b) Beweisen Sie, dass $\sum_{j=1}^{\infty} |a_j|^2$ konvergiert.
- (c) Beweisen Sie, dass $(h_{n_m})_{m\in\mathbb{N}}$ gegen $h:=\sum_{j=1}^\infty a_j e_j\in\mathfrak{H}$ schwach konvergiert.
- 12.2. Sei $\Omega \in \mathbb{R}^d$ ein Gebiet mit endlicher Breite $\delta(\Omega) < \infty$. Sei $V \in L^{\infty}(\Omega)$ eine nichtnegative Funktion und $f \in L^2(\Omega)$. Beweisen Sie, dass das Dirichletproblem für die Gleichung

$$-\Delta u + Vu = f$$

eine eindeutige schwache Lösung u besitzt, d.h. es existiert genau ein $u \in H_0^1(\Omega)$, sodass

$$\int_{\Omega} (\nabla h)(x) \cdot (\nabla u)(x) \, \mathrm{d}x + \int_{\Omega} V(x)h(x)u(x) \, \mathrm{d}x = \int_{\Omega} h(x)f(x) \, \mathrm{d}x$$

für alle $h \in H_0^1(\Omega)$ gilt.

Besprechung: Am Montag, den 5.02.2018.