Excercise Sheet 7 for 26.06.2017

7.1 (6 points). Prove the following result in two dimensions related to the Newton's theorem: for any finite non-negative radial Borel measure μ on \mathbb{R}^2 the inequality

$$\int_{\mathbb{R}^2} \frac{\mathrm{d}\mu(y)}{|x-y|} \geqslant \int_{\mathbb{R}^2} \frac{\mathrm{d}\mu(y)}{\max\{|x|,|y|\}}$$

holds for all $x \in \mathbb{R}^2$.

Hint: Prove that the map $x \mapsto |x|^{-1}$ is subharmonic on $\mathbb{R}^2 \setminus \{0\}$.

7.2 (6 points). Let μ be a finite, compactly supported, non-negative Borel measure on \mathbb{R}^3 . Prove that

$$u(x) := \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{\mathrm{d}\mu(y)}{|x - y|}$$

is the unique distributional solution of $-\Delta u = \mu$ satisfying $u(x) \underset{|x| \to \infty}{\longrightarrow} 0$.

7.3 (6 points). For Z > 0 let

$$\mathcal{E}(u) := \int_{\mathbb{R}^3} |\nabla u|^2 \, \mathrm{d}x - \int_{\mathbb{R}^3} \frac{Z \big| u(x) \big|^2}{|x|} \, \mathrm{d}x + \frac{1}{2} \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{\big| u(x) \big|^2 \big| u(y) \big|^2}{|x - y|} \, \mathrm{d}x \, \mathrm{d}y$$

be the Hartree functional and let $E(\lambda) := \inf \left\{ \mathcal{E}(u) : u \in H^1(\mathbb{R}^3), \int_{\mathbb{R}^3} |u(x)|^2 dx = \lambda \right\}$. Prove that if u_0 is a minimizer of $E(\lambda)$, then it satisfies

$$-\Delta u_0 - \frac{Z}{|x|}u_0 + (|u_0|^2 * |x|^{-1})u_0 = \mu u_0$$

with $\mu \leq 0$.