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Suggested Solutions

Exercise 1. (a) Let G be a finite group and let H ≤ G be a p-subgroup for a prime
number p. Show that if H is a normal subgroup of G, then H is contained in every
Sylow p-subgroup of G.

Suggested solution. Let P be any Sylow p-subgroup of G. Since U ≤ G is a p-
subgroup, Sylow II implies that there exists g ∈ G such that

gUg−1 ≤ P.

Because U is normal in G, we have gUg−1 = U . Thus

U ≤ P.

Hence every normal p-subgroup of G is contained in every Sylow p-subgroup of G.

(b) Let GLn(F) be the group of invertible (n × n)-matrices over a finite field F of
characteristic p > 0, and set q := |F|. Show that the group of upper triangular
matrices whose diagonal entries are all equal to 1 forms a Sylow p-subgroup of
GLn(F).
Hint: You may use the formula from Exercise Sheet 2, Exercise 2. You may also
use without proof that if F is a finite field of characteristic p, then |F| = q = pk for
some k ≥ 1.

Suggested solution. Let Un(F) denote the group of upper triangular matrices over F
whose diagonal entries are all equal to 1 (the unitriangular group). There are n(n−1)

2

free entries above the diagonal, each of which may be chosen arbitrarily in F. Hence

|Un(F)| = q
n(n−1)

2 .

By Exercise Sheet 2, Exercise 2, we may use the formula

|GLn(F)| =
n−1∏
i=0

(
q n − q i

)
.

Rewrite each factor as q i(q n−i − 1) to obtain

|GLn(F)| =
n−1∏
i=0

qi
n−1∏
i=0

(qn−i − 1) = q
n(n−1)

2

n∏
i=1

(q i − 1).
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We now use (without proof) that every finite field F of characteristic p has q = pr

elements for some r ≥ 1. Thus,

|Un(F)| = p r
n(n−1)

2 .

Moreover, each term qk − 1 = prk − 1 is not divisible by p, since prk − 1 ≡ −1

(mod p). Therefore the p-part of |GLn(F)| is p r
n(n−1)

2 .

We conclude that

|Un(F)| = p r
n(n−1)

2 and |GLn(F)| = p r
n(n−1)

2 ·m, p ∤ m.

Hence Un(F) is a Sylow p-subgroup of GLn(F).

Exercise 2. (a) Show that every group of order 30 has a non-trivial normal Sylow
subgroup.

Suggested solution. Let G be a group of order 30, i.e. |G| = 2 · 3 · 5. We denote as
usual by np the number of Sylow p-subgroups of G. If np = 1, then by Sylow II
(and the remark following it) this unique Sylow p-subgroup is normal. Thus, let us
analyse the concrete situation.

By Sylow III we have

n3 | 10 and n3 ≡ 1 (mod 3).

Since n3 | 10, we have n3 ∈ {1, 2, 5, 10}, and the congruence condition forces n3 ∈
{1, 10}.
Analogously,

n5 | 6 and n5 ≡ 1 (mod 5),

hence n5 ∈ {1, 6}.
Suppose for contradiction that n5 = 6 and n3 = 10. Every element of order 5 lies
in a Sylow 5-subgroup. Each Sylow 5-subgroup has 4 non-trivial elements, and two
distinct Sylow 5-subgroups intersect only in the identity. Therefore, there are

6 · 4 = 24

elements of order 5.

By the same argument, each Sylow 3-subgroup has 2 non-trivial elements, and
two distinct Sylow 3-subgroups intersect only in the identity. Hence the Sylow
3-subgroups contribute

10 · 2 = 20

elements of order 3.

Thus G would contain at least
24 + 20 = 44

distinct non-identity elements, which is impossible since |G| = 30.

2
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(b) Show that every group of order 56 has a non-trivial normal Sylow subgroup.

Suggested solution. Now let G be a group of order 56 = 23 · 7. We want to show
that n2 = 1 or n7 = 1.

By Sylow III we have

n7 | 8 and n7 ≡ 1 (mod 7),

and therefore n7 ∈ {1, 8}.
If n7 = 1, we are done. So assume n7 = 8. Then there exist 8 different Sylow
7-subgroups, which intersect pairwise only in the identity. Each Sylow 7-subgroup
contains 6 non-trivial elements of order 7, so altogether they contribute

8 · 6 = 48

distinct elements of order 7.

This already forces n2 = 1, because

|G| = 56 = 48 + 8,

and a Sylow 2-subgroup has 8 elements, which are obviously different from all ele-
ments in the Sylow 7-subgroups.
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