

Prof. Dr. Fabien Morel Laurenz Wiesenberger

TUTORIAL SHEET 5 ALGEBRA

Winter term 25/26 November 17, 2025

- **Exercise 1.** (a) Let G be a finite group and let $H \leq G$ be a p-subgroup for a prime number p. Show that if H is a normal subgroup of G, then H is contained in every Sylow p-subgroup of G.
 - (b) Let $GL_n(\mathbb{F})$ be the group of invertible $(n \times n)$ -matrices over a finite field \mathbb{F} of characteristic p > 0, and set $q := |\mathbb{F}|$. Show that the group of upper triangular matrices whose diagonal entries are all equal to 1 forms a Sylow p-subgroup of $GL_n(\mathbb{F})$.

Hint: You may use the formula from Exercise Sheet 2, Exercise 2. You may also use without proof that if \mathbb{F} is a finite field of characteristic p, then $|\mathbb{F}| = q = p^k$ for some k > 1.

- Exercise 2. (a) Show that every group of order 30 has a non-trivial normal Sylow subgroup.
 - (b) Show that every group of order 56 has a non-trivial normal Sylow subgroup.

Remark. If we finish the exercises quickly, I will provide some additional problems, either further ones on the Sylow theorems, or we will begin with the classification of all subgroups of SO(3).

Bonus Exercise (Not relevant for the final exam). Let \mathcal{C} and \mathcal{D} be two categories and $F: \mathcal{C} \to \mathcal{D}$ a functor. Then for every object $A \in \mathcal{C}$, the functor F induces a group action on $F(A) \in \mathcal{D}$.

Recall from the lecture that in a category C, an operation of G on an object C in C is a group homomorphism

$$G \longrightarrow \operatorname{Aut}_{\mathcal{C}}(C)$$
.

Note that this is indeed a generalisation of the (abstract) definition, since in the category **Set** we have $\operatorname{Aut}_{\mathbf{Set}}(X) = S_X$, the symmetric group of all bijections $X \to X$.

Now let us return to the situation above. Consider the group $G := \operatorname{Aut}_{\mathcal{C}}(A)$. Now show that

$$G \longrightarrow \operatorname{Aut}_{\mathcal{D}}(F(A)), \quad q \mapsto F(q),$$

is a well-defined group action on F(A).