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SUGGESTED SOLUTIONS

Exercise 1. Let X be a G-set and Y C X be a subset. Then
Y is G-invariant <= Y is a disjoint union of orbits.

Suggested solution. “=" Let Y be G-invariant. For any y € Y, consider the orbit G - y.
Since Y is G-invariant, we have G -y C Y. In particular,

UG-y:Y.
yey

Now consider the distinct orbits; then

UGWZK

and hence Y is a disjoint union of orbits.

Alternative argument. As Y is G-invariant, it follows from the lecture that Y is a
G-set, and hence a disjoint union of orbits.

“«<" For the converse, let Y be a disjoint union of orbits. We know from the lecture that
orbits are G-invariant, and by the definition of G-invariance, it is straightforward to check
that arbitrary unions of G-invariant sets are again G-invariant. Thus Y is G-invariant.

O
Exercise 2. Let G be a finite group acting on itself by conjugation, i.e.
GxG— G, (g,x)— grg "

(a) The corresponding orbit decomposition yields the class equation:

Gl=12(@)+ Y |G-,

|G-z|>1

where Z(G) denotes the center of G, and the sum runs over the disjoint, non-trivial
orbits G - x.

Suggested solution. From the lecture, we know that

G:|_|G-x

for the distinct orbits, and hence

Gl =) 1G4l
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where the sum runs over all disjoint orbits.

Now consider the orbits of cardinality 1. Then we have
G-z|=1 += G-2={2} < grg'=aforallge G < € Z(G).

Therefore,

ZG) = || G=,

|G-z|=1

that is, the union of all disjoint orbits of cardinality 1. Hence,

Gl=12(@)|+ Y |G- zl.

|G-z|>1

]

Let G be a group such that |G| = p” for some prime number p and r > 1. Show
that Z(G) is non-trivial.

Suggested solution. Let |G| = p" for some prime number p and integer r > 1. We
may assume, without loss of generality, that Z(G) C G. Solet x € G\ Z(G). Then,
by part (a), we have |G - x| > 1, and by the Orbit-Stabilizer Theorem,

|G- z| =[G : L]
Hence, by Lagrange’s Theorem, |G - x| divides |G|, and therefore
|G - x| =p™ forsomel<r, <r.

In particular, p divides |G - z| for all x € G\ Z(G). Since p divides |G|, the class

equation yields
pl(1Z@))+ Y 1G-al).

|G-z|>1

As p divides each |G - x| in the sum and p | |G|, it follows that

p|1Z(G)]

Consequently, |Z(G)| # 1.

Let G be a group such that |G| = p?. Show that G is abelian.
Note: You already proved this result in Exercise Sheet 3.

Suggested solution. It is well known from the lecture that Z(G) < G is a subgroup.
By Lagrange’s Theorem and part (b), we have |Z(G)| = p? or |Z(G)| = p.
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In the first case, Z(G) = G, and hence G is abelian. Now consider the second case
and let x € G\ Z(G). Then, by definition, Z(G) C I, (since Z(G) C I, x € I,
but = ¢ Z(G)). As I, < G is a subgroup, Lagrange’s Theorem gives

|I.|=p or |[x|:p2.

Since Z(G) C I, < G, it follows that |I,|] = p? and therefore I, = G. This,
however, means that x commutes with every element of G, i.e. x € Z(G), which is
a contradiction. Hence, we conclude that |Z(G)| = p?, that is, Z(G) = G.

]

Exercise 3 (Burnside’s Lemma). (a) Let G be a finite group acting on a finite set X.
For each g € G, let
X' ={zreX|g-z=u0}
denote the set of elements fixed by g. Show that the number of orbits of G on X is
given by

1
X/G1 = g D 1X

geG

Suggested solution. This exercise requires a few additional ideas, which is why we
discussed it together in the tutorial. First, one should notice that there is a certain
similarity between the sets X9 and the subgroups I,. The set X9 consists of all
x € X that are fixed under the group element ¢, while I, denotes the set of all g € G
such that x is fixed under the action of ¢g. This observation suggests considering the
disjoint union (the coproduct in the category of sets) to express their similarity. We

obtain a bijection
[Mx = ][

gelG zeX

This allows us to conclude that

Yo IX =Y L.

geG zeX

We can proceed with the next step. By the Orbit—Stabilizer Theorem, we know that

G|
|G$| = 17
||
and hence al
I, = )
|| Gl
Therefore,

1
MLl =161 Gal
zeX

zeX
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The next step is to split the sum into separate parts corresponding to the distinct
orbits. We can write

1 1
2eal T A s T 2 T e

SeG/X xS SeG/X

Hence,

> IX = |Gl 1x/Gl.

geG

]

In this exercise, we determine the number of distinct colorings of the vertices of a
square using two colors (e.g. blue and green), up to rotation.

Let r denote the rotation of the square by 90° counterclockwise. Label the vertices in
counterclockwise order by 1,2,3,4. This rotation can be represented by the 4-cycle

r=(1234) €5,

Hence, the cyclic group
G=(r)={enrr*r}

acts on the set

X ={0,1}*,

which represents all possible colorings of the four vertices of the square with two
colors (encoded by 0 and 1). The action is defined by

r- (513'1,332,1'3,334) = (3:47:1:173:27333)7

and extended to all of G = {e,r, 7%, 73} by iteration. Use Burnside’s Lemma to
compute the number of distinct colorings up to rotation.

Suggested solution. First, observe that | X /G| is precisely the number of distinct
colorings of the vertices of a square using two colors, counted up to rotation. By
Burnside’s Lemma,

1
[ X/G| = @ZIXQI-

geG
Hence, it suffices to determine |XY| for each g € G.
To determine XY, it may be helpful to draw some pictures (that is what the exercise

is about, drawing pictures).

If g = e =Y every vertex remains fixed, and there are 2% possible colorings: for

each of the four vertices, one can independently choose between blue or green. Thus,
| X€| = 16.

If we act with » on X, this corresponds to a rotation of 90° counterclockwise. For
(1, T, T3, x4) to satisfy r - (z1, X9, 3, x4) = (21, 29, T3, T4), Wwe must have

T, = Tg = T3 = T4.

4
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Hence, there are only two possible colorings: all blue or all green. Therefore, | X"| =
2.

If we act with 72, this corresponds to a rotation by 180° counterclockwise. In this
case,

r?. ($1,332,x37$4) = (903,354,551,952)7

and the equality r? - (z1, To, 13, 74) = (21, T2, T3, 74) implies
xr1 = T3, To = T4.

Thus, there are four possible colorings, and we obtain | X""| = 4.

If we act with 73, we rotate the square by 270° counterclockwise. Here,
703 : (mla X2, X3, x4) = (x27 X3, T4, .I'1>,
and the condition 73 - (1, 9, x3,74) = (71, T2, T3, T4) again forces
T1 = T2 = T3 = Ty,

so there are two possible colorings. Hence, [X"’| = 2.

Finally, by Burnside’s Lemma, we conclude:

1
|X/G|=1(16+2+4+2)=6.



