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Suggested Solutions

Exercise 1. Let X be a G-set and Y ⊆ X be a subset. Then

Y is G-invariant ⇐⇒ Y is a disjoint union of orbits.

Suggested solution. “⇒” Let Y be G-invariant. For any y ∈ Y , consider the orbit G · y.
Since Y is G-invariant, we have G · y ⊆ Y . In particular,⋃

y∈Y

G · y = Y.

Now consider the distinct orbits; then⊔
G · y = Y,

and hence Y is a disjoint union of orbits.
Alternative argument. As Y is G-invariant, it follows from the lecture that Y is a
G-set, and hence a disjoint union of orbits.

“⇐” For the converse, let Y be a disjoint union of orbits. We know from the lecture that
orbits are G-invariant, and by the definition of G-invariance, it is straightforward to check
that arbitrary unions of G-invariant sets are again G-invariant. Thus Y is G-invariant.

Exercise 2. Let G be a finite group acting on itself by conjugation, i.e.

G×G −→ G, (g, x) 7−→ gxg−1.

(a) The corresponding orbit decomposition yields the class equation:

|G| = |Z(G)|+
∑

|G·x|>1

|G · x|,

where Z(G) denotes the center of G, and the sum runs over the disjoint, non-trivial
orbits G · x.

Suggested solution. From the lecture, we know that

G =
⊔

G · x

for the distinct orbits, and hence

|G| =
∑

|G · x|,
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where the sum runs over all disjoint orbits.

Now consider the orbits of cardinality 1. Then we have

|G · x| = 1 ⇐⇒ G · x = {x} ⇐⇒ gxg−1 = x for all g ∈ G ⇐⇒ x ∈ Z(G).

Therefore,
Z(G) =

⊔
|G·x|=1

G · x,

that is, the union of all disjoint orbits of cardinality 1. Hence,

|G| = |Z(G)|+
∑

|G·x|>1

|G · x|.

(b) Let G be a group such that |G| = pr for some prime number p and r ≥ 1. Show
that Z(G) is non-trivial.

Suggested solution. Let |G| = pr for some prime number p and integer r ≥ 1. We
may assume, without loss of generality, that Z(G) ⊊ G. So let x ∈ G\Z(G). Then,
by part (a), we have |G · x| > 1, and by the Orbit–Stabilizer Theorem,

|G · x| = [G : Ix].

Hence, by Lagrange’s Theorem, |G · x| divides |G|, and therefore

|G · x| = prx for some 1 ≤ rx ≤ r.

In particular, p divides |G · x| for all x ∈ G \ Z(G). Since p divides |G|, the class
equation yields

p |
(
|Z(G)|+

∑
|G·x|>1

|G · x|
)
.

As p divides each |G · x| in the sum and p | |G|, it follows that

p | |Z(G)|.

Consequently, |Z(G)| ≠ 1.

(c) Let G be a group such that |G| = p2. Show that G is abelian.

Note: You already proved this result in Exercise Sheet 3.

Suggested solution. It is well known from the lecture that Z(G) ≤ G is a subgroup.
By Lagrange’s Theorem and part (b), we have |Z(G)| = p2 or |Z(G)| = p.
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In the first case, Z(G) = G, and hence G is abelian. Now consider the second case
and let x ∈ G \ Z(G). Then, by definition, Z(G) ⊊ Ix (since Z(G) ⊆ Ix, x ∈ Ix,
but x /∈ Z(G)). As Ix ≤ G is a subgroup, Lagrange’s Theorem gives

|Ix| = p or |Ix| = p2.

Since Z(G) ⊊ Ix ≤ G, it follows that |Ix| = p2, and therefore Ix = G. This,
however, means that x commutes with every element of G, i.e. x ∈ Z(G), which is
a contradiction. Hence, we conclude that |Z(G)| = p2, that is, Z(G) = G.

Exercise 3 (Burnside’s Lemma). (a) Let G be a finite group acting on a finite set X.
For each g ∈ G, let

Xg := {x ∈ X | g · x = x }

denote the set of elements fixed by g. Show that the number of orbits of G on X is
given by

|X/G| = 1

|G|
∑
g∈G

|Xg|.

Suggested solution. This exercise requires a few additional ideas, which is why we
discussed it together in the tutorial. First, one should notice that there is a certain
similarity between the sets Xg and the subgroups Ix. The set Xg consists of all
x ∈ X that are fixed under the group element g, while Ix denotes the set of all g ∈ G
such that x is fixed under the action of g. This observation suggests considering the
disjoint union (the coproduct in the category of sets) to express their similarity. We
obtain a bijection ∐

g∈G

Xg ∼=
∐
x∈X

Ix.

This allows us to conclude that∑
g∈G

|Xg| =
∑
x∈X

|Ix|.

We can proceed with the next step. By the Orbit–Stabilizer Theorem, we know that

|G · x| =
|G|
|Ix|

,

and hence
|Ix| =

|G|
|G · x|

.

Therefore, ∑
x∈X

|Ix| = |G|
∑
x∈X

1

|G · x|
.
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The next step is to split the sum into separate parts corresponding to the distinct
orbits. We can write∑

x∈X

1

|G · x|
=

∑
S∈G/X

∑
x∈S

1

|S|
=

∑
S∈G/X

1 = |X/G|.

Hence, ∑
g∈G

|Xg| = |G| |X/G|.

(b) In this exercise, we determine the number of distinct colorings of the vertices of a
square using two colors (e.g. blue and green), up to rotation.

Let r denote the rotation of the square by 90◦ counterclockwise. Label the vertices in
counterclockwise order by 1, 2, 3, 4. This rotation can be represented by the 4-cycle

r = (1 2 3 4) ∈ S4.

Hence, the cyclic group
G = ⟨r⟩ = {e, r, r2, r3}

acts on the set
X = {0, 1}4,

which represents all possible colorings of the four vertices of the square with two
colors (encoded by 0 and 1). The action is defined by

r · (x1, x2, x3, x4) = (x4, x1, x2, x3),

and extended to all of G = {e, r, r2, r3} by iteration. Use Burnside’s Lemma to
compute the number of distinct colorings up to rotation.

Suggested solution. First, observe that |X/G| is precisely the number of distinct
colorings of the vertices of a square using two colors, counted up to rotation. By
Burnside’s Lemma,

|X/G| = 1

|G|
∑
g∈G

|Xg|.

Hence, it suffices to determine |Xg| for each g ∈ G.

To determine Xg, it may be helpful to draw some pictures (that is what the exercise
is about, drawing pictures).

If g = e = r0, every vertex remains fixed, and there are 24 possible colorings: for
each of the four vertices, one can independently choose between blue or green. Thus,
|Xe| = 16.

If we act with r on X, this corresponds to a rotation of 90◦ counterclockwise. For
(x1, x2, x3, x4) to satisfy r · (x1, x2, x3, x4) = (x1, x2, x3, x4), we must have

x1 = x2 = x3 = x4.
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Hence, there are only two possible colorings: all blue or all green. Therefore, |Xr| =
2.

If we act with r2, this corresponds to a rotation by 180◦ counterclockwise. In this
case,

r2 · (x1, x2, x3, x4) = (x3, x4, x1, x2),

and the equality r2 · (x1, x2, x3, x4) = (x1, x2, x3, x4) implies

x1 = x3, x2 = x4.

Thus, there are four possible colorings, and we obtain |Xr2| = 4.

If we act with r3, we rotate the square by 270◦ counterclockwise. Here,

r3 · (x1, x2, x3, x4) = (x2, x3, x4, x1),

and the condition r3 · (x1, x2, x3, x4) = (x1, x2, x3, x4) again forces

x1 = x2 = x3 = x4,

so there are two possible colorings. Hence, |Xr3| = 2.

Finally, by Burnside’s Lemma, we conclude:

|X/G| = 1

4
(16 + 2 + 4 + 2) = 6.
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