
Prof. Dr. Fabien Morel Tutorial sheet 3 Winter term 25/26
Laurenz Wiesenberger Algebra November 10, 2025

Suggested Solutions

Exercise 1. (a) Let C := {z ∈ C× | |z| = 1}. Consider the map

ϕ : R → C×, ϕ(x) := e2πix.

Prove that R/Z ∼= C.

Suggested solution. Consider the map

φ : R −→ C×, x 7−→ e2πix.

Since
φ(x+ y) = e2πi(x+y) = e2πix e2πiy = φ(x)φ(y),

the map φ is a group homomorphism. It is a basic fact (see, for instance, Analysis I)
that φ maps R surjectively onto the unit circle C. Furthermore,

φ(x) = 1 ⇐⇒ e2πix = 1 ⇐⇒ x ∈ Z.

Hence ker(φ) = Z. By the fundamental theorem of homomorphisms, we obtain

R/Z ∼= C.

(b) We denote, as usual, by ζp := exp(2πi/p) a primitive p-th root of unity. Consider
the map

ψ : Z −→ C×, ψ(k) := ζkp .

Show that Z/pZ ∼= { 1, ζp, ζ2p , . . . , ζp−1
p }.

Suggested solution. Consider the map

ψ : Z −→ C×, k 7−→ ζkp .

Then ψ is a group homomorphism, since

ψ(k + k′) = ζk+k′

p = ζkp ζ
k′

p = ψ(k)ψ(k′).

Now let k ∈ Z be arbitrary. By the division algorithm, there exist unique integers
m, r ∈ Z such that x = mp+ r with 0 ≤ r < p. Then

ψ(k) = ζmp+r
p = (ζpp )

mζrp = ζrp .
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Hence ψ maps Z surjectively onto the subgroup

⟨ζp⟩ = { ζrp | 0 ≤ r < p } ⊆ C×.

Furthermore,
ψ(k) = 1 ⇐⇒ ζkp = 1 ⇐⇒ p | k.

Thus ker(ψ) = pZ.
By the fundamental theorem of homomorphisms, we obtain an isomorphism

Z/pZ ∼= ⟨ζp⟩.

Alternative argument. ⟨ζp⟩ is a cyclic group of order p. By Exercise sheet 1,
Exercise 1, Z/pZ ∼= ⟨ζp⟩.

(c) Let k be a field. Consider the map

det : GLn(k) → k×.

Show that GLn(k)/SLn(k) ∼= k×.

Suggested solution. Consider the map

det : GLn(k) −→ k×, A 7−→ det(A).

Since the determinant is multiplicative, this is a group homomorphism.

To see that det is surjective, note that for any x ∈ k×, the matrix

A = (aij) with a11 = x, aii = 1 for i ≥ 2, and aij = 0 for i ̸= j,

belongs to GLn(k) and satisfies det(A) = x.

By definition,
A ∈ ker(det) ⇐⇒ det(A) = 1,

so the kernel of the determinant map is precisely

SLn(k) = {A ∈ GLn(k) | det(A) = 1 }.

Hence, by the fundamental theorem of homomorphisms, we obtain

GLn(k)/ SLn(k) ∼= k×.

Exercise 2. (a) Let f : G→ H be a homomorphism of finite groups such that |G| and
|H| are coprime. Show that f is trivial, i.e. im(f) = {eH}.
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Suggested solution. Let f : G→ H be a group homomorphism between finite groups
and assume gcd(|G|, |H|) = 1. By the fundamental theorem of homomorphisms we
have

G/ ker(f) ∼= im(f),

hence
| im(f)| = [G : ker(f)]

By Lagrange’s theorem the subgroup im(φ) ≤ H satisfies | im(φ)| | |H|, and the
index [G : ker(f)] | |G|. Therefore

| im(f)| | gcd(|G|, |H|) = 1.

Consequently | im(f)| = 1, i.e. im(f) = {eH} is trivial.

Note: This generalizes the statement of Tutorial Sheet 1, Exercise 2(c).

(b) Let G be a finite group and let N ⊴ G be a normal subgroup. Show that if n := |N |
and |G/N | are coprime, then N is the only subgroup of G of order n.

Suggested solution. Let U ⊴ G be a normal subgroup of order n and consider the
composition

U ↪−→ G
π−→ G/N.

By part (a), this homomorphism is trivial. Hence U ⊆ N and as |U | = |N | we have
equality.

Please don’t worry about Exercise 3. In the tutorial, we will mainly focus on Exercises 1
and 2. If time permits, I will also explain Exercise 3 to help you to gain a better under-
standing of Exercise 4 from Exercise Sheet 2.

Exercise 3. In this exercise, we become familiar with (integral) group rings.
Let Z be the ring of integers and G a group. The (integral) group ring Z[G] is the set of
all finite formal linear combinations∑

g∈G

agg, ag ∈ Z,

i.e. ag = 0 for all but finitely many g ∈ G (note that this is the same definition as given
in Exercise Sheet 2 ).
The set Z[G] becomes a ring with the operations

+Z[G] : Z[G]× Z[G] → Z[G],
∑
g∈G

agg +Z[G]

∑
g∈G

bgg :=
∑
g∈G

(ag +Z bg)g,

·Z[G] : Z[G]× Z[G] → Z[G],
∑
g∈G

agg ·Z[G]

∑
g∈G

bgg :=
∑
g∈G

cgg,
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where
cg :=

∑
g1,g2∈G
g1·Gg2=g

ag1 ·Z bg2 .

The additive identity in Z[G] is the formal linear combination in which all coefficients ag
are zero, and the multiplicative identity is given by 1Z[G] = 1Z · eG.
Note that there is no need to restrict ourselves to Z; we can define the group ring R[G]
in an analogous way for any commutative ring R.

(a) Let G be the cyclic group of order 3, say G = {eG, g, g2}. Write down some elements
in the ring Z[G] and compute:

(5 + 2g + 7g2) +Z[G] (3 + 4g − 479g2),

(4 + 3g) ·Z[G] (11 + 4g + 15g2).

Suggested solution.

(5 + 2g + 7g2) + (3 + 4g − 479g2) = (5 + 3) + (2 + 4)g + (7− 479)g2

= 8 + 6g − 472g2.

Next, we compute:

(4 + 3g)(11 + 4g + 15g2) = (44 + 45) + (16 + 33)g + (60 + 12)g2

= 89 + 49g + 72g2.

(b) Show that Z[G] is a commutative ring if and only if G is abelian. It suffices to prove
that multiplication in Z[G] is commutative if and only if G is abelian.

Suggested solution. “⇒” Let Z[G] be a commutative ring and let g, h ∈ G be arbi-
trary elements. Then we have

gh = g ·Z[G] h = h ·Z[G] g = hg.

Thus G is an abelian group.

“⇐” For the converse, let G be an abelian group. Then for

a =
∑
g∈G

agg and b =
∑
g∈G

bgg,

we have
ab =

∑
g∈G

cgg, cg =
∑

g1,g2∈G
g1g2=g

ag1bg2 .
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Since G is abelian, the condition g1g2 = g is equivalent to g2g1 = g, and hence

cg =
∑

g1,g2∈G
g2g1=g

bg2ag1 .

Therefore,
ab = ba.

Thus Z[G] is commutative.

From now on, we will use some basic concepts from ring theory, such as ideals
or the fundamental theorem on homomorphisms. If you are already familiar with
these notions, the following exercises are a good opportunity to practise working
with group rings. If not, there is no need to worry, these concepts will be covered
in detail later in the lecture, and we can return to these exercises once they have
been discussed. You may also view them as optional “fun exercises” for those who
already know this material.

(c) Let G be the cyclic group of order m. Show that

C[G] ∼= C[X]/(Xm − 1).

Hint: Consider the homomorphism C[X] → C[G],
∑n

i=0 aiX
i 7−→

∑n
i=0 aig

i.

Suggested solution. Let g be a generator of G, i.e. ⟨g⟩ = G. Consider the map

ψ : C[X] −→ C[G],
n∑

i=0

aiX
i 7−→

n∑
i=0

aig
i.

By the definition of addition and multiplication in C[G], the map ψ is a ring homo-
morphism. Furthermore, ψ is surjective by the definition of C[G].

Hence it suffices to determine ker(ψ). Since C[X] is a principal ideal domain (PID),
the kernel ker(ψ) is generated by a single polynomial f of minimal (non-negative)
degree such that ψ(f) = 0. Because ord(g) = m, where m is the smallest natural
number satisfying gm = eG, we obtain f = Xm − 1. Therefore, the kernel of ψ is

ker(ψ) = (Xm − 1).

By the homomorphism theorem (for rings), we obtain C[G] ∼= C[X]/(Xm − 1).

(d) Let G be the cyclic group of order 2. Show that

C[G] ∼= C× C.

Hint: You may use the Chinese Remainder Theorem.
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Suggested solution. By part (c), we have

C[G] ∼= C[X]/(X2 − 1) = C[X]/(X + 1)(X − 1).

Applying the Chinese Remainder Theorem, we obtain

C[X]/(X2 − 1) ∼= C[X]/(X + 1)× C[X]/(X − 1) ∼= C× C.

Here we use that

C[X]/(X + 1) ∼= C and C[X]/(X − 1) ∼= C.

(e) Let R be a (not necessarily commutative) ring and f : R → S a ring homomorphism.
Show that ker(f) ⊆ R is a two-sided ideal.

Hence, we can conclude that the kernel of the augmentation map

ε : Z[G] → Z,
∑
g∈G

agg 7−→
∑
g∈G

ag,

which we denote by I(G), is a two-sided ideal. We call I(G) the augmentation ideal.

Suggested solution. Let r1, r2 ∈ R be arbitrary elements and x ∈ ker(φ). Then we
have

φ(r1xr2) = φ(r1)φ(x)φ(r2) = φ(r1) 0φ(r2) = 0.

Thus r1xr2 ∈ ker(φ), and therefore ker(φ) is a two-sided ideal of R.
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