
Prof. Dr. Fabien Morel Repetition week 5 Winter term 25/26
Laurenz Wiesenberger Algebra

Before we start with the actual content, let me mention two preliminary notational re-
marks. In last week’s repetition sheet I used the notation XG for the set of all fixed
points. Since we are consistently working with left actions, I should have written GX, as
you did in the lecture.
Similarly, for the quotient I wrote X/G, but in the context of left actions the correct
notation would have been G\X.
Sorry for the inconsistency.

More about Group Action on a Set

Lemma. Let X be a G-set and let (x, y) ∈ X2 be two elements in the same orbit
of the action. Then Ix, Iy ≤ G are conjugate groups.

You will prove this in exercise sheet 4, exercise 1.

For a G-set X, we have the following decomposition:

X = GX ⊔

 ⊔
α∈G\X
|α|≥2

α

 .

To see this, note that

|G · x| = 1 ⇐⇒ g · x = x for all g ∈ G ⇐⇒ x ∈ GX.

Let n ≥ 1 and σ ∈ Sn. Consider the cyclic group ⟨σ⟩ ≤ Sn generated by σ. As Sn acts
on {1, . . . , n} (see last repetition sheet), ⟨σ⟩ acts as well on {1, . . . , n}:

⟨σ⟩ × {1, . . . , n} −→ {1, . . . , n}, (σs, i) 7−→ σs(i),

where s ∈ {1, . . . , r} and r = ord(σ).
We analyse the decomposition into orbits:

{1, . . . , n} =
⊔

α∈⟨σ⟩\{1,...,n}

α = ⟨σ⟩{1, . . . , n} ⊔

 ⊔
α∈⟨σ⟩\{1,...,n}

|α|≥2

α

 .
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Note that
⟨σ⟩{1, . . . , n} = { i ∈ {1, . . . , n} | σ(i) = i }.

In this case we have
⟨σ⟩{1, . . . , n} = σ{1, . . . , n}.

We set
supp(σ) := {1, . . . , n} \ σ{1, . . . , n}

and call it the support of σ.
We now want to characterize the orbits of σ with cardinality ≥ 2. So let α ∈ ⟨σ⟩\{1, . . . , n}
be an orbit with |α| ≥ 2. Let i ∈ α. Then

α = { i, σ(i), σ2(i), . . . , σlα−1(i) }, lα := |α|.

Indeed, we know ⟨σ⟩ ∼= Z/rZ (cyclic group of order r), and by the orbit–stabilizer theorem
We have an isomorphism

⟨σ⟩ /Ii
∼−→ α, σs 7−→ σs(i),

Now let α1, . . . , αs be the distinct orbits of ⟨σ⟩ on {1, . . . , n} that have at least two ele-
ments. We set lj := lαj

. For each j ∈ {1, . . . , s} let ij ∈ αj and consider the corresponding
cycle

γj := (ij, σ(ij), . . . , σ
lj−1(ij)).

Note that supp(γj) = αj.

Lemma. (i) For all (j1, j2) ∈ {1, . . . , s}2 we have

γj1 ◦ γj2 = γj2 ◦ γj1 .

(ii)
σ = γ1 ◦ γ2 ◦ · · · ◦ γs.

This is called the decomposition of σ into a product of cycles with pairwise
disjoint supports.

You will apply the next corollary in the exercises.

Corollary.
r = ord(σ) = lcm(l1, . . . , ls).

Before we start with the next subsection, we give a characterization for normal subgroups.
Let G act on itself by conjugation. This induces a left action of G on the set U(G) of
subgroups of G (see last repetition sheet). Let H ∈ U(G). Then, by definition, the
isotropy subgroup is given by

IH = { g ∈ G | gHg−1 = H } ⊆ G.
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We also call IH the normalizer of H in G and denote it by NG(H).

Furthermore, we obtain

H ∈ GU(G) ⇐⇒ H is normal in G ⇐⇒ IH = G

and set N(G) := GU(G), the set of normal subgroups of G.

Finite Groups and Sylow Theorems

We begin by recalling some results from the last repetition sheet.
Let G be a finite group acting on a finite set X. Then G\X is finite, and for all x ∈ X
we have

G/Ix ∼= G · x.
In particular, recall that they are not only bijective, but in fact isomorphic as G-sets. By
Lagrange’s theorem we obtain

|G · x| = |G|/|Ix|,
which yields

|X| =
∑

|G · x| =
∑ |G|

|Ix|
,

where the sum runs over the disjoint orbits.

Corollary. Let G be a group such that |G| = pr for some r ≥ 1, and let X be a
finite G-set. Then

|X| ≡ |GX| (mod p).

Definition. Let p be a prime number. A (finite) p-group G is a group whose order
is pr for some r ≥ 0.

Example.
Z/pZ, Z/prZ, D4 = Z/4Z ⋊ Z/2Z, . . .

Using the corollary, we can now easily prove the following theorem.

Theorem. Let G be a non-trivial finite p-group. Then Z(G) ̸= 1.

To prove this theorem using the above corollary, observe that
GG = Z(G),

where G acts on itself by conjugation. This then already suffices, since in every group we
always have |Z(G)| ≥ 1. Note that this proof is shorter and easier than the proof using
the class equation from the tutorials.

As an immediate corollary, and using the fact that subgroups of a p-group are again
p-groups (by Lagrange’s theorem), we obtain:
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Corollary. A finite p-group is nilpotent (and hence solvable).

Recall that for a group G we define inductively

G[0] := G, G[i+1] := G[i]/Z(G[i]).

A group is called nilpotent if there exists r ≥ 1 such that G[r] = 1.

Theorem (Cauchy). Let G be a finite group and p a prime number dividing |G|.
Then there exists an element g ∈ G of order p.

Definition. Let G be a group and let p be a prime number such that

|G| = prm, p ∤ m.

A Sylow p-subgroup of G is a subgroup U ≤ G such that

|U | = pr.

Example. 1) Consider S3. Since |S3| = 3! = 6 = 2 · 3, we have

1 −→ A3 −→ S3
sgn−−→ {±1} −→ 1,

and therefore
S3/A3

∼= {±1}.

(We already proved this in the tutorials, using the fundamental theorem of
homomorphisms.) Hence A3 is the Sylow 3-subgroup of S3. For any transpo-
sition τ ∈ S3, ⟨τ⟩ is a Sylow 2-subgroup of S3.

2) Consider S4. Since |S4| = 4! = 24 = 3 · 23, we have that

⟨(1 2 3)⟩ ≤ S4

is a Sylow 3-subgroup. Moreover,

D4 ≤ S4

has order 8 = 23, hence D4 is a Sylow 2-subgroup of S4.

We now turn to the important Sylow theorems.

Theorem (Sylow I). Let G be a group of order |G| = prm with p ∤ m. Then, for
all 1 ≤ s ≤ r, there exists a subgroup U ≤ G such that

|U | = ps.
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In particular, there exists a Sylow p-subgroup of G (namely of order pr).

Note that, as a special case, we obtain Cauchy’s theorem.

Theorem (Sylow II). Let G be a group such that |G| = prm with p ∤ m. Let P be
a Sylow p-subgroup of G and let U ≤ G be a subgroup such that |U | = ps for some
1 ≤ s ≤ r. Then there exists g ∈ G such that

gUg−1 ≤ P.

Remark. (i) If s = r, then U is itself a Sylow p-subgroup, and Sylow II yields that
Sylow p-subgroups are unique up to conjugation.

(ii) A Sylow p-subgroup P is the only Sylow p-subgroup of G if and only if P ⊴ G.
Indeed, if P ⊴ G, then gPg−1 = P for all g ∈ G (as we have already proved in the
lecture), so no other conjugate Sylow p-subgroups can appear.

Theorem (Sylow III). Let G be a group with |G| = prm and p ∤ m, and let np be
the number of Sylow p-subgroups of G. Then

np | m and np ≡ 1 (mod p).

5


