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Before we start with the actual content, let me mention two preliminary notational re-
marks. In last week’s repetition sheet I used the notation X for the set of all fixed
points. Since we are consistently working with left actions, I should have written X, as
you did in the lecture.

Similarly, for the quotient I wrote X/G, but in the context of left actions the correct
notation would have been G\ X.

Sorry for the inconsistency.

More about Group Action on a Set

Lemma. Let X be a G-set and let (z,y) € X? be two elements in the same orbit
of the action. Then I,, I, < G are conjugate groups.

You will prove this in exercise sheet 4, exercise 1.

For a G-set X, we have the following decomposition:

X=%u||] e
aeG\X
la|>2
To see this, note that
G 2]=1 <= g-x=2x forallge G — z € “X.

Let n > 1 and o € S,. Consider the cyclic group (o) < S, generated by . As S, acts
on {1,...,n} (see last repetition sheet), (o) acts as well on {1,...,n}:

(o) x{1,...,n} — {1,...,n}, (0°,1) — o°(1),

where s € {1,...,r} and r = ord(o).

We analyse the decomposition into orbits:
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Note that
i1, oony={ie{l,....n}|o(i)=1i}.
In this case we have
@1, on)=°{1,... n}.
We set
supp(o) :={1,...,n}\{1,...,n}
and call it the support of o.

We now want to characterize the orbits of o with cardinality > 2. Solet a € (o)\{1,...,n}
be an orbit with |a| > 2. Let i € a. Then

a={io(i),c%@),...,0°7 i)}, lo:=lal.

Indeed, we know (o) = Z/rZ (cyclic group of order r), and by the orbit—stabilizer theorem
We have an isomorphism

(o) /I — o, T 0°(i),
Now let ay, ..., as be the distinct orbits of (o) on {1,...,n} that have at least two ele-
ments. We set [; := [,,. For each j € {1,..., s} let i; € a; and consider the corresponding

cycle
Vi = (2]7 O-(Z])’ s 7O-lj_1(ij))'

Note that supp(v;) = «;.

Lemma. (i) For all (ji,J2) € {1,...,s}* we have
Vi1 © Ve = Vi2 © Vir-

(i)
O=710720""-0%.

This is called the decomposition of ¢ into a product of cycles with pairwise
disjoint supports.

You will apply the next corollary in the exercises.

Corollary.
r =ord(c) =lem(ly,...,l).

Before we start with the next subsection, we give a characterization for normal subgroups.

Let G act on itself by conjugation. This induces a left action of G' on the set U(G) of
subgroups of G (see last repetition sheet). Let H € U(G). Then, by definition, the
isotropy subgroup is given by

In={9geG|gHg'=H}CQG.
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We also call Iy the normalizer of H in G and denote it by Ng(H).
Furthermore, we obtain

H € “U(G) <= Hisnormalin G <= Iy =G
and set N(G) := “U(G), the set of normal subgroups of G.

Finite Groups and Sylow Theorems

We begin by recalling some results from the last repetition sheet.

Let G be a finite group acting on a finite set X. Then G\ X is finite, and for all z € X
we have

G/, =G -x.
In particular, recall that they are not only bijective, but in fact isomorphic as G-sets. By
Lagrange’s theorem we obtain

|G- x| = |G/ ] L],

G
|X|=Z|G'w|=ZH

where the sum runs over the disjoint orbits.

which yields

Corollary. Let G' be a group such that |G| = p" for some r > 1, and let X be a
finite G-set. Then
IX| =|°X| (mod p).

Definition. Let p be a prime number. A (finite) p-group G is a group whose order
is p” for some r > 0.

Example.
Z/pZ, Z/p'Z, Dy=7/AZ % Z)2Z, ...

Using the corollary, we can now easily prove the following theorem.

Theorem. Let G be a non-trivial finite p-group. Then Z(G) # 1.

To prove this theorem using the above corollary, observe that
‘G =7(0),

where GG acts on itself by conjugation. This then already suffices, since in every group we
always have |Z(G)| > 1. Note that this proof is shorter and easier than the proof using
the class equation from the tutorials.

As an immediate corollary, and using the fact that subgroups of a p-group are again
p-groups (by Lagrange’s theorem), we obtain:
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Corollary. A finite p-group is nilpotent (and hence solvable).

Recall that for a group G we define inductively
GO.=qa, G .=Gglz(GM).
A group is called nilpotent if there exists r > 1 such that GI'l = 1.

Theorem (Cauchy). Let G be a finite group and p a prime number dividing |G].
Then there exists an element g € G of order p.

Definition. Let G be a group and let p be a prime number such that
|G| =p"m, ptm.
A Sylow p-subgroup of G is a subgroup U < G such that

U] =p".

Example. 1) Consider S;. Since |S5| = 3! =6 = 2 - 3, we have
1—>A3—>Sgsg—n>{:|:1}—>17

and therefore
S/ As = {£1}.

(We already proved this in the tutorials, using the fundamental theorem of
homomorphisms.) Hence Aj is the Sylow 3-subgroup of S3. For any transpo-
sition 7 € S3, () is a Sylow 2-subgroup of Ss.

2) Consider S,. Since |Sy| = 4! = 24 = 3- 23, we have that
((123)) < 54
is a Sylow 3-subgroup. Moreover,
Dy <S4

has order 8 = 23, hence D, is a Sylow 2-subgroup of S;.

We now turn to the important Sylow theorems.

Theorem (Sylow I). Let G be a group of order |G| = p"m with p 4 m. Then, for
all 1 < s <r, there exists a subgroup U < G such that

|U| =p°.
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In particular, there exists a Sylow p-subgroup of G (namely of order p").

Note that, as a special case, we obtain Cauchy’s theorem.

Theorem (Sylow II). Let G be a group such that |G| = p"m with ptm. Let P be
a Sylow p-subgroup of G and let U < GG be a subgroup such that |U| = p® for some
1 < s < r. Then there exists g € G such that

gUg™ ' < P.

Remark. (i) If s = r, then U is itself a Sylow p-subgroup, and Sylow II yields that
Sylow p-subgroups are unique up to conjugation.

(ii) A Sylow p-subgroup P is the only Sylow p-subgroup of G if and only if P < G.
Indeed, if P < G, then gPg~! = P for all g € G (as we have already proved in the
lecture), so no other conjugate Sylow p-subgroups can appear.

Theorem (Sylow III). Let G be a group with |G| = p"m and p { m, and let n, be
the number of Sylow p-subgroups of G. Then

n,|m and n,=1 (mod p).




