
Prof. Dr. Fabien Morel Repetition week 4 Winter term 25/26
Laurenz Wiesenberger Algebra

Group Action on a Set

We begin by presenting two equivalent definitions of a group action on a set.

Definition (Abstract Definition). Let G be a group and X a set. A (left) group
action of G on X is a group homomorphism

G −→ S(X),

where S(X) denotes the symmetric group of all bijections X → X.

Definition (Concrete Definition). Let G be a group and X a set. A (left) group
action of G on X is a map

G×X −→ X, (g, x) 7−→ g · x,

such that the following axioms hold:

(a) eG · x = x for all x ∈ X;

(b) g · (h · x) = (g ·G h) · x for all g, h ∈ G and x ∈ X.

In this case, the set X is called a G-set.

Remark. (i) Note that the abstract and the concrete definitions are equivalent.

(ii) Category of G-sets: Let G be a fixed group. The objects of the category G-Set
are precisely all G-sets X. For two G-sets X and Y , a morphism

f : X −→ Y

is a map satisfying

f(g · x) = g · f(x) for all g ∈ G and x ∈ X.

We denote by HomG-Set(X, Y ) the set of all morphisms between X and Y . To-
gether with the usual composition of maps, this defines a category. The elements of
HomG-Set(X, Y ) are called G-equivariant maps.
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Example (Examples of Group Actions).

1) The n-th symmetric group Sn operates on the left on {1, . . . , n}, via:

Sn × {1, . . . , n} → {1, . . . , n}, (σ, n) 7−→ σ(n).

2) Let H ⊆ G be a subgroup. Then the map

G×G/H −→ G/H, (g, α) 7−→ gα

defines a left action of G on the set G/H. Note that this map is well defined.
Indeed, let α1 = α2, i.e. α−1

1 α2 ∈ H. But then we also have

α−1
1 eGα2 = α−1

1 g−1gα2 = (gα1)
−1(gα2) ∈ H,

and hence gα1 = gα2.

3) For any field k, the general linear group GLn(k) acts (on the left) on kn via

GLn(k)× kn −→ kn, (M,x) 7−→ Mx.

4) The map
G× S −→ S, (g, x) 7−→ x

is the trivial operation of G.

5) The group G operates in two ways on the underlying set of G:{
(g, h) 7−→ gh (translation),

(g, h) 7−→ ghg−1 (conjugation).

6) Let G be a group and P(G), the set of all subsets of G. Define the action

θ : G× P(G) −→ P(G), (g, S) 7−→ g · S := { gs | s ∈ S }.

Let U(G) denote the set of all subgroups of G. Then G acts on U(G) by

G× U(G) −→ U(G), (g,H) 7−→ gHg−1.

Definition. Let X be a G-set.

a) Let x ∈ X be an element. Then

Gx := Ix := { g ∈ G | g · x = x } ⊆ G

is called the isotropy subgroup of x (with respect to the given action). Some-
times we write Ix := StabG(x) and call it the stabilizer of x.
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b) For x ∈ X, the set
G·x := { g · x | g ∈ G } ⊆ X

is called the orbit of x.

Remark. Note that the isotropy subgroup Gx of x is a subgroup of G.

Theorem. Let ∅ ≠ X be a G-set. Then the relation

x ∼G y ⇐⇒ ∃ g ∈ G : y = g · x

on X is an equivalence relation. The equivalence classes are precisely the orbits of
X. We denote by

X/G

the quotient set of X modulo this equivalence relation.

In particular, we have the disjoint union

X =
⊔

G·x,

where the union runs over distinct orbits.

Lemma (Orbit–stabilizer theorem). Let X be a G-set and x ∈ X. Then the
surjective map

G ↠ G·x, g 7−→ g · x,

induces a bijection
G/Ix

∼−→ G·x.

In particular, if G is finite, the orbit–stabilizer theorem states that

|G·x| = |G/Ix| =
|G|
|Ix|

,

where the last equality follows from Lagrange’s theorem.
In the tutorials, we will treat and see some applications of the so-called class equation.
We consider the following situation:
Let G be a finite group acting on itself by conjugation, i.e.

G×G −→ G, (g, x) 7−→ gxg−1.

(See also Example 5 from the beginning.) Then the corresponding orbit decomposition
yields the class equation:

|G| = |Z(G)|+
∑

|G·x|>1

|G·x|,

where Z(G) denotes the center of G, and the sum runs over the disjoint, non-trivial orbits
G·x.

3



Algebra Repetition week 4

Definition. Let X be a G-set.

(a) Let g ∈ G. Then Xg is the set of points fixed by g, i.e.

Xg := {x ∈ X | g · x = x}

.(b) We say that an element x ∈ X is a fixed point if g · x = x for all g ∈ G, i.e.
Ix = G. We denote by

XG ⊆ X

the subset of all fixed points of the action.

In the tutorials, we will get to know Burnside’s lemma:
Let G be a finite group acting on a set X. Then

|X/G| = 1

|G|
∑
g∈G

|Xg|,

We will also see an application of this result in the tutorials.

Definition. Let X be a G-set. We say that the action is transitive if X ̸= ∅ and
for all (x, y) ∈ X2 there exists a g ∈ G such that y = g · x. In other words, there is
only one orbit, i.e. |G/X| = 1.

Example. Sn acts transitive on {1, . . . , n}, see Example 1 from the beginning.

Definition. Let X be a G-set and Y ⊆ X be a subset. We say that Y is G-invariant
(or G-stable) if

g · Y = Y for all g ∈ G.

Example. Let Y ⊆ X be a G-invariant subset. Then Y is automatically a G-set
via the restricted action

G× Y −→ Y, (g, y) 7−→ g · y,

and the inclusion map Y ↪→ X is G-equivariant.

For instance, for any x ∈ X, the orbit G · x ⊆ X is G-invariant.

We now consider some further examples illustrating the notions and properties of group
actions introduced so far.

Example. 1) For every x ∈ X, the bijection

G/Ix
∼−→ G·x
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is G-equivariant. Note that, by Example 2 from the beginning, G/Ix is itself
a G-set.

2) Let Y ⊆ X be a subset. Then

Y is G-invariant ⇐⇒ Y is a disjoint union of orbits.

We will prove this statement in the tutorials.

3) Let f : X → Y be a G-equivariant map. Then f induces a map on the fixed
points,

fG : XG −→ Y G, x 7−→ f(x),

and a map on the orbit spaces,

f/G : X/G −→ Y/G, G · x 7−→ G · f(x).

As a short homework, and to get used to the new definitions, prove that the
above maps are well-defined.

4) Let Sn operate on {1, . . . , n} as we have already seen earlier. Then this
action is transitive (see also Example 3 from the beginning). Thus, for all
i ∈ {1, . . . , n} there exists a canonical Sn-equivariant bijection (see again the
orbit–stabilizer theorem)

Sn/Ii
∼−→ {1, . . . , n} = Sn · i.

Furthermore, Ii ∼= Sn−1, which implies

Sn/Sn−1
∼−→ {1, . . . , n}.

5) Let k be a field and n ≥ 1. Then GLn(k) operates on kn (the same operation
as in Example 3 from the beginning). It follows from linear algebra that

kn/GLn(k) = {0, e}.

Hence,
kn = {0} ⊔ (kn \ {0}),

and in particular, kn \ {0} is a transitive GLn(k)-set.

6) This example is more of an outlook. Let G ⊆ Autfield(L) a finite subgroup.

One can show that

K := LG = { a ∈ L | ∀g ∈ G, g(a) = a }

is a subfield of L, and that [L : K] := dimK(L) = |G|. (We will see this later,
when we discuss Galois theory.)
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Note that the group action is given by

G× L −→ L, (σ, x) 7−→ σ(x),

and hence
LG = { a ∈ L | g(a) = a for all g ∈ G }.

Let P ∈ K[X]. Then the set RP (L) of roots of P in L is finite and G-invariant,
that is, RP (L) is a G-invariant subset of L.

Furthermore,
RP (L) = RP (K) ⊔

⊔
orbits α
|α|≥2

α.

Assume now that P ∈ L[X] splits into a product of linear factors and that P
is monic, i.e.

P =
n∏

i=1

(X − αi), αi ∈ L.

Assume also that L = K[α1, . . . , αn]. Then there is a group homomorphism

G −→ SRP (L)
∼= Sn.
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