

Algebra 2025/2026: Exercise sheet 13

Exercise 1.

Let $K \subset \mathbb{C}$ be the splitting field of $X^4 - 2$ over \mathbb{Q} .

Show that $K = \mathbb{Q}[i, \sqrt[4]{2}]$. Conclude that $[K : \mathbb{Q}] = 8$. And finally prove that $K \cap \mathbb{R} = \mathbb{Q}[\sqrt[4]{2}]$.

Exercise 2.

Let p be a prime number and $\zeta_p := \exp^{\frac{2i\pi}{p}} \in \mathbb{C}$.

- 1) Prove that ζ_p has degree $p - 1$ over \mathbb{Q} . (You may use Ex 3 of sheet 12).
- 2) Prove that $X^p - 2 \in \mathbb{Q}[X]$ is irreducible.

Let $K \subset \mathbb{C}$ be the splitting field (in \mathbb{C}) of $X^p - 2$ over \mathbb{Q} .

- 3) Prove that $K = \mathbb{Q}[\zeta_p, \sqrt[p]{2}]$ and compute $[K : \mathbb{Q}]$.
- 4) As K is a Galois extension of \mathbb{Q} , we know that $\mathbb{Q}[\zeta_p] \subset K$ is also a Galois extension. Show that $\text{Gal}(K|\mathbb{Q}[\zeta_p])$ is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ and give the list of all the conjugates of $\sqrt[p]{2}$.

Exercise 3.

Let p be a prime number $\neq 2$ and $\zeta_p := \exp^{\frac{2i\pi}{p}} \in \mathbb{C}$.

- 1) Prove that ζ_p has degree $p - 1$ over \mathbb{Q} . (You may use Ex 3 of sheet 12).

Let $K = \mathbb{Q}[\zeta_p]$.

- 2) Prove that $\cos(\frac{2\pi}{p}) \in K$ and that ζ_p has degree ≤ 2 over $\mathbb{Q}[\cos(\frac{2\pi}{p})]$. [Hint: observe that $2\cos(\frac{2\pi}{p}) = \zeta_p + (\zeta_p)^{-1} \dots$]
- 3) Conclude that for $p > 2$, $\cos(\frac{2\pi}{p})$ has degree $\frac{p-1}{2}$ over \mathbb{Q} , and give the list of all the conjugates of $\cos(\frac{2\pi}{p})$.

Exercise 4.

Let $n \geq 2$ be an integer.

- 1) We denote by $\phi(n)$ the number of generators of the group $\mathbb{Z}/n\mathbb{Z}$, in other words, of elements of order n . Let $d|n$ be a divisor of n . Show that the number of elements of order d in the group $\mathbb{Z}/n\mathbb{Z}$ is $\phi(d)$. Conclude that $\phi(n) = \sum_{d|n} \phi(d)$.
- 2) Let G be a finite group of order n . Assume that for any divisor d of n , the number of elements $x \in G$ such that $x^d = e_G$ is less than d . Show that the number of elements of order d in G is 0 or $\phi(d)$. Conclude that G is cyclic of order n .
- 3) Let K be a field and let $G \subset K^\times$ be a finite subgroup. Show that G is cyclic.