Exercise sheet 2

Exercise 1.

Denote by $\mathcal{F} \subset Set$ the full subcategory of finite sets. Show that a functor $F: \mathcal{F} \to Set$ which takes finite limits to finite limits is pro-representable. Let $S \in Set$ be a set; how would you define its profinite completion \hat{S} ?

Denote by $\mathcal{FG}r \subset \mathcal{G}r$ the full subcategory of the category of groups consisting of finite groups. Show that a functor $F: \mathcal{FG}r \to Set$ which takes finite limits to finite limits is pro-representable. Let $G \in \mathcal{G}r$ be a group; how would you define its profinite completion \hat{G} ?

Give an example!

Exercise 2.

Let (C, T) be a site endowed with a Grothendieck topology. Let P be a presheaf of sets on C. Let C/P be the category whose objects are pairs (C, x) with C an object of C and $x \in P(X)$ and whose morphisms $(C, x) \to (D, y)$ are morphisms $\phi : C \to D$ in C such that $P(\phi)(y) = x$. We have the obvious (forgetful) functor $(C/P)^{op} \to Pshv(C), (C, x) \mapsto C$ (by which we mean $C \in PShv(C)$ is the presheaf $Hom_{C}(-, C)$ represented by C). Show that the obvious morphism:

$$colim_{(C,x)\in\mathcal{C}/P}C\to P$$

is an isomorphism.

Exercise 3.

Let $(\mathcal{C}, \mathcal{T})$ be a site endowed with a Grothendieck topology. Let $f: F \to G$ be a morphism in $Shv_{\mathcal{T}}(\mathcal{C})$.

Show that:

 $(f \text{ is an epimorphism}) \le (f \text{ is an effective epimorphism}) \le (f \text{ is a universal effective epimorphism})$

[Hint: consider the diagram $F \times_G F \rightrightarrows F \to G$ also in the category of presheaves and use a remark of the lecture concerning monomorphisms of presheaves...]