Minlog - A Tool for Program Extraction Supporting Algebras and Coalgebras

Ulrich Berger ${ }^{1}$, Kenji Miyamoto ${ }^{2 *}$, Helmut Schwichtenberg ${ }^{2}$, and Monika Seisenberger ${ }^{1}$

${ }^{1}$ Swansea University, Wales
${ }^{2}$ Ludwig Maximilian University, Munich

* Supported by the Marie Curie Initial Training Network in Mathematical Logic - MALOA - From

MAthematical LOgic to Applications, PITN-GA-2009-238381
30.08.2011

CALCO-tools 2011

Contents of this talk

- Introduction
- Proof Assistant Minlog [Min]
- Theory of Computable Functionals (TCF in short) [SW11]
- Demo of Program Extraction Case Studies on Minlog
- Parser
- Input: a string of parentheses
- Output: True and the parse tree if the input is balanced False and the empty parse tree if the input is not balanced
- Translator
- Input: a rational number
- Output: a real number representation of the input

Proof Assistant Minlog

- Implementation of TCF
- Program extraction supporting (co)induction
- Written in Scheme Language (R5RS)
- User's work in Minlog is in Scheme as well

Example of a Minlog Proof
(load "~/minlog/init.scm")
(add-pvar-name "A" "B" (make-arity))
(set-goal "A -> B -> A")
(assume "HypA" "HypB")
(use "HypA")
(save "theorem")

Theory of Computable Functionals (TCF)

- First order minimal natural deduction
- Classical Logic as an Fragment of Minimal Logic
- Goedel's T with extensions
- Semantics
- Scott-Ershov model of partial continuous functionals
- Free algebras as base types
- Algebras are domains of Scott's information systems
- Program Extraction
- Kreisel's modified realizability interpretation
- A-Translation and Dialectica Interpretation available for classical proofs

Examples of Free Algebras

(1) Par (Parentheses)

$$
L^{\mathrm{Par}}, R^{\mathrm{Par}}
$$

(2) \mathbb{N} (Natural Numbers)

$$
0^{\mathbb{N}}, S^{\mathbb{N} \rightarrow \mathbb{N}}
$$

(3) $\mathbb{L}(\rho)$ (List of type ρ)

$$
\operatorname{Nil}_{\rho}^{\mathbb{L}(\rho)}, \operatorname{Cons}_{\rho}{ }^{\rho \rightarrow \mathbb{L}(\rho) \rightarrow \mathbb{L}(\rho)}
$$

(4) \mathbb{I} (Interval $[-1,1])$

$$
I^{\mathbb{I}}, C_{-1}{ }^{\mathbb{I} \rightarrow \mathbb{I}}, C_{0}^{\mathbb{I} \rightarrow \mathbb{I}}, C_{1}{ }^{\mathbb{I} \rightarrow \mathbb{I}} \text { (Whole Interval, Left, Middle, Right) }
$$

(5) (Ordinal, non-finitary)

$$
\text { Zero }^{\mathbb{D}}, \text { Succ }^{\mathbb{O} \rightarrow \mathbb{O}}, \operatorname{Sup}^{(\mathbb{O} \rightarrow \mathbb{O}) \rightarrow \mathbb{O}}
$$

Totality and Cototality

Total ideals of a base type are in a finite constructor expression.

- True, False
- 0, S(S(S0))
- Nil, L::R:

Cototal ideals of a base type are total or in a non-wellfounded constructor expression.

- True, False
- 0, S(S(S0)), S(S(S(S)S(S(S(...
- Nil, L::R:, L::R::L::R::L::R::. . .
f of a higher type $\sigma \rightarrow \delta$ is total if: For any total $x^{\sigma}, f x$ is total.

Case Study on Parser

- Prove $\forall x(S x \vee \neg S x)$
- x is a list of parentheses
- $S x$ says that x is balanced, predicate S inductively defined
- Extract a program from proofs
- Experiments

Extracted Parser in Goedel's T

```
[x0]
    Test 0 x0@
    (Rec list par=>algState=>algS=>algS)
        x 0
        ([st1,b2][if st1 b2 ([b3,st4]CInitS)])
        ([par1, x2,f3, st4,b5]
            [if par1
            (f3 (CApState b5 st4) CInitS)
            [if st4 CInitS
                ([b6,st7]f3 st7(CApS b6(CParS b5)))]])
    CInitState
    CInitS
```


Experiments

- Input $L:: L:: R:: R$:
(pp (nt (mk-term-in-app-form parser-term (pt "L::L::R::R:")))
\Longrightarrow True@CApS CInitS(CParS(CApS CInitS(CParS CInitS)))
- Input R :: L :
(pp (nt (mk-term-in-app-form parser-term (pt "R::L:")))
\Longrightarrow False@CInitS

Computational Content from (Co)Inductively Defined Predicates

- Defining $S x$ to tell that x is balanced
- $S($ Nil $)$
- $\forall x(S x \rightarrow S(L x R))$
- $\forall x y(S x \rightarrow S y \rightarrow S(x y))$
- Algebra ι_{S} for parse trees obtained from S
- CInitS ${ }^{\iota s}$ from $S\left(\mathrm{Nil}^{\prime}\right)$
- $\mathrm{CParS}^{\iota s \rightarrow t s}$ from $\forall x(S x \rightarrow S(L x R))$
- $\mathrm{CApS}^{\iota s \rightarrow \iota s \rightarrow \iota s}$ from $\forall x(S x \rightarrow S y \rightarrow S(x y))$

In the next case study, we obtain the interval algebra from a coinductively defined predicate.

Signed Digit Stream Representation of Real Numbers

- Representing real numbers in SDS [CDG06]
- SDS is a stream (or non-wellfounded list) of signed digits $-1,0,1$
- Example. - 1 :: 0 :: 1 :: 0 :: 1 :: 0 :: 1 :: ...
- Represented as a cototal ideal in TCF
- SDS tells how to compute rational intervals as accurate as required
- A real number represented by -1 :: 0 :: $1:: 0$:: $1:: 0$:: $1::$...

An approximation of $-\frac{1}{3}$.

Idea for the Translator

We construct an SDS from a real number.

- Take an appropriate signed digit for the given $x \in[-1,1]$
(1) If x is in the left, take -1 and let the next x be $2 x+1$
(2) If x is in the middle, take 0 and let the next x be $2 x$
(3) If x is in the right, take 1 and let the next x be $2 x-1$
- Since $x \in[-1,1]$, we can repeat it as many as required

Example. $-\frac{1}{3}$ in SDS

We obtain an SDS -1 :: $0:: 1::$. .

Case Study on Translator

- Theorem: if rational $a \in[-1,1], a$ is approximable in SDS.
- Proof by coinduction
- Extracting a program from the proof
- Experiments

We describe the theorem in the following formula:

$$
\forall_{a}\left(Q a \rightarrow^{c o} \mid a\right)
$$

Q a holds if $a \in[-1,1] .{ }^{c o} I$ is defined coinductively.

Coinductively Defined Predicate ${ }^{\text {co } /}$

A predicate P to say that a is approximable.

- If P a holds
(1) a is left and $P(2 a+1)$ or
(2) a is middle and $P(2 a)$ or
(3) a is right and $P(2 a-1)$

Such a predicate can be defined by coinduction.

$$
\begin{aligned}
{ }^{c o} \mid a \rightarrow a=0 & \vee \exists_{b}\left(\left.a=\frac{b+1}{2} \wedge^{c o} \right\rvert\, b\right) \\
& \vee \exists_{b}\left(\left.a=\frac{b}{2} \wedge^{c o} \right\rvert\, b\right) \\
& \vee \exists_{b}\left(\left.a=\frac{b-1}{2} \wedge^{c o} \right\rvert\, b\right)
\end{aligned}
$$

This formula is also used as a coclosure axiom, written ${ }^{c o} I^{-}$.

Coinduction

Coinduction axiom ${ }^{c o} I^{+}$is yielded from the definition of ${ }^{c o} \Omega$. Set theoretically,

$$
X \subseteq \Phi(X) \rightarrow X \subseteq \nu \Phi \quad \text { (coinduction) }
$$

where Φ a monotone operator, ν the greatest fixed point operator. In our setting, we give a GFP axiom:

$$
\begin{aligned}
& \forall a(P a \rightarrow a=0 \vee \exists_{b}\left(a=\frac{b+1}{2} \wedge P(b)\right) \\
& \vee \exists_{b}\left(a=\frac{b}{2} \wedge P(b)\right) \\
&\left.\vee \exists_{b}\left(a=\frac{b-1}{2} \wedge P(b)\right)\right) \\
& \rightarrow P a \rightarrow^{c o} I a
\end{aligned}
$$

P is an arbitrary predicate.

Proof Sketch

We show $\forall a\left(Q a \rightarrow{ }^{c o} I a\right)$. Assume a. We prove $Q a \rightarrow{ }^{c o l}$ a by means of the following GFP axiom with substituting Q for P.

$$
\begin{aligned}
& \forall a\left(Q a \rightarrow a=0 \vee \exists_{b}\left(a=\frac{b+1}{2} \wedge Q(b)\right)\right. \\
& \left.\qquad \vee \exists_{b}\left(a=\frac{b}{2} \wedge Q(b)\right) \vee \exists_{b}\left(a=\frac{b-1}{2} \wedge Q(b)\right)\right) \\
& \rightarrow Q a \rightarrow{ }^{c o} I a
\end{aligned}
$$

What we have to show is the first premise

$$
\begin{aligned}
\forall a(Q a \rightarrow a & =0 \vee \exists_{b}\left(a=\frac{b+1}{2} \wedge Q(b)\right) \\
& \left.\vee \exists_{b}\left(a=\frac{b}{2} \wedge Q(b)\right) \vee \exists_{b}\left(a=\frac{b-1}{2} \wedge Q(b)\right)\right)
\end{aligned}
$$

It is done by the case distinction on a

$$
a \in[-1,0] \text { or } a \in\left[-\frac{1}{2}, \frac{1}{2}\right] \text { or } a \in[0,1]
$$

Coinduction on Minlog

```
input> (set-goal "allnc a^(Q a^ -> CoI a^)")
;?_1:allnc a^(Q a^ -> CoI a^)
input> (assume "a^0")
;ok, we now have the new goal
;?_2:Q a^0 -> CoI a^0 from
    {a^0}
input> (coind)
;ok, ?_2 can be obtained from
;?_3:allnc a^(
    Q a^ ->
    a^ eqd 0 orr
    exr a^0(a^ eqd(a^0-1)/2 & (CoI a^0 ord Q a^0)) ord
    exr a^0(a^ eqd a^0/2 & (CoI a^0 ord Q a^0)) ord
    exr a^0(a^ eqd(a^0+1)/2 & (CoI a^0 ord Q a^0))) from
    {a^0} 1:Q a^0
```


Program Extraction via Realizability Interpretation

- Decoration of Logical Connectives
- $\rightarrow^{c}, \longrightarrow^{n c}, \forall^{c}, \forall^{n c}$
- ${ }^{c}$ stands for computational, ${ }^{n c}$ for non-computational
- Logically same, Computationally different
- Modified Realizability Interpretation
- $t \mathbf{r}\left(A \rightarrow^{\mathrm{c}} B\right):=\forall_{x}(x \mathbf{r} A \rightarrow t \times \mathbf{r} B)$
- $t \mathbf{r}\left(A \rightarrow{ }^{\mathrm{nc}} B\right):=\forall_{x}(x \mathbf{r} A \rightarrow t \mathbf{r} B)$
- $t \mathbf{r} \forall_{x}^{c} A:=\forall_{x}(t \times \mathbf{r} A)$
- $t \mathbf{r} \forall_{x}^{\mathrm{nc}} A:=\forall_{x}(t \mathbf{r} A)$
- Extracted Term
- et $\left(\left(\lambda_{u} M\right)^{A \rightarrow{ }^{c} B}\right):=\lambda_{x_{u}} e t(M)$
- et $\left(\left(\lambda_{u} M\right)^{A \rightarrow{ }^{\mathrm{nc}} B}\right):=e t(M)$
- et $\left(l_{i}^{+}\right):=C_{i}$ (constructor)
- et $\left(I^{-}\right):=\mathcal{R}$ (recursion operator)
- et $\left({ }^{\text {co }} \boldsymbol{I}^{-}\right):=\mathcal{D}$ (destructor)
- et $\left({ }^{c o} I^{+}\right):={ }^{\text {co }} \mathcal{R}$ (corecursion operator)
(Soundness) Let M be a proof of formula A, et $(M) \mathbf{r} A$ holds.

Unfolding Corecursion Operator

- From our GFP axiom the following corecursion operator extracted

$$
\begin{aligned}
& { }^{\mathrm{co}} \mathcal{R}_{\mathbb{I}}^{\tau}:(\tau \rightarrow \mathbb{U}+\tau+\tau+\tau) \rightarrow \tau \rightarrow \mathbb{I} \\
& { }^{\mathrm{co}} \mathcal{R}_{\mathbb{I}}^{\tau} M N \mapsto\left[\lambda_{-} \mathbf{I}, \lambda_{x}\left(\mathbf{C}_{-\mathbf{1}}\left({ }^{\mathrm{co}} \mathcal{R}_{\mathbb{I}}^{\tau} M x\right)\right),\right. \\
& \left.\quad \lambda_{x}\left(\mathbf{C}_{\mathbf{0}}\left({ }^{\mathrm{co}} \mathcal{R}_{\mathbb{I}}^{\tau} M x\right)\right), \lambda_{x}\left(\mathbf{C}_{\mathbf{1}}\left({ }^{\mathrm{Co}} \mathcal{R}_{\mathbb{I}}^{\tau} M x\right)\right)\right](M N)
\end{aligned}
$$

- Function $M^{\tau \rightarrow \mathbb{U}+\tau+\tau+\tau}$ determines which constructor should be output.
(1) If $(M N)^{\mathbb{U}+\tau+\tau+\tau}$ is the injection of $\mathbb{U},{ }^{\text {co }} \mathcal{R}_{\mathbb{I}} M N \mapsto \mathbf{I}$
(2) If $(M N)^{\mathbb{U}+\tau+\tau+\tau}$ is the injection of some τ, ${ }^{\text {co }} \mathcal{R}_{\mathbb{I}} M N \mapsto \mathbf{C}_{d}\left({ }^{\text {co }} \mathcal{R}_{\mathbb{I}} M N^{\prime}\right)$ for the corresponding d

Extracted Translator

[algQ0]
(CoRec algQ=>intv) algQO
([algQ1]
[if algQ1
([a2]
[if (a2-(IntN 1\#3))
([k3,p4]
[if k3
([p5]
[if (a2-(1\#3))
([k6,p7])))))))))

Unfolding Corecursion Operator to Normalize

```
input> (pp
    (nt
                (undelay-delayed-corec
            (make-term-in-app-form translator
                                    (pt "CGenQ(IntN 1#3)"))
            5)))
;CIntN
; (CIntZ
; (CIntP
    (CIntZ
        (CIntP
            ((CoRec algQ=>intv)(CGenQ(1#3))
            ([algQO]
                    [if algQ0 ......... ]))))))
```

Output is $-1:: 0$:: $1:: 0$:: $1::$...., which we already saw.

Conclusion

- TCF and its implementation Minlog
- Coinductive reasoning
- Program extraction
- Two Case Studies on Program Extraction
- Parsing Balanced Parentheses
- Translating a rational number into a real number representation

Related Work

- Other Systems
- Coq has a different program extraction [Coq][Let03]
- Isabelle has a program extraction after Minlog [Isa]
- Agda has an experimental program extraction [Agd][Chu11]
- Our Case Study
- Cauchy Reals
- Extracted Flip Function on $\mathbb{I}, f: x \mapsto-x$
- Extracted Average Function on $\mathbb{I}, f:(x, y) \mapsto \frac{x+y}{2}$

Future Work

- Extracting Uniformly Continuous functions of $\mathbb{I}^{n} \rightarrow \mathbb{I}$ [BS10]
- Improving exact real arithmetic [BH08]

References

[Agd] Agda. http://wiki.portal.chalmers.se/agda/.
[BH08] U. Berger and T. Hou.
Coinduction for exact real number computation.
Theory of Computing Systems, 43:394-409, 2008.
[BS10] U. Berger and M. Seisenberger.
Proofs, programs, processes.
Programs, Proofs, Processes, CiE 2010, LNCS 6158, pp. 39-48, 2010.
[CDG06] A. Ciaffaglione and P. Di Gianantonio.
A certified, corecursive implementation of exact real numbers.
Theor. Comp. Sci., 351:39-51, 2006.
[Chu11] C. M. Chuang. Extraction of Programs for Exact Real Number Computation Using Agda. PhD thesis, Swansea University, Wales, 2011.

References (cont.)

[Coq] The Coq Proof Assistant. http://coq.inria.fr/. [lsa] Isabelle. http://isabelle.in.tum.de/.
[Let] P. Letouzey. A New Extraction for Coq. Types for Proofs and Programs, TYPES 2002, LNCS 2646, 2003.
[Min] The Minlog System. http://www.minlog-system.de.
[SW11] H. Schwichtenberg and S. S. Wainer. Proofs and Computations. Perspectives in Logic. Assoc. Symb. Logic and Cambridge Univ. Press, to appear, 2011.

