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Abstract. Gray-code is a well-known binary number system where
neighboring values differ in one digit only. Tsuiki (2002) has introduced
Gray code to the field of real number computation. He assigns to each
number a unique 1⊥-sequence, i.e., an infinite sequence of {−1, 1,⊥}
containing at most one copy of ⊥ (meaning undefinedness). In this pa-
per we take a logical and constructive approach to study real number
computation based on Gray-code. Instead of Tsuiki’s indeterministic
multihead Type-2 machine, we use pre-Gray code, which is a represen-
tation of Gray-code as a sequence of constructors, to avoid the difficulty
due to ⊥ which prevents sequential access to a stream. We extract
real number algorithms from proofs in an appropriate formal theory in-
volving inductive and coinductive definitions. Examples are algorithms
transforming pre-Gray code into signed digit code of real numbers, and
conversely, the average for pre-Gray code and a translation of finite
segments of pre-Gray code into its normal form. These examples are
formalized in the proof assistant Minlog.

Keywords: Gray-code, real number computation, inductive and coin-
ductive definitions, program extraction.
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1. Introduction

Gray-code (also called reflected binary code) is widely known in digital
communication, due to its property that the Hamming distance between
adjacent Gray-codes is always 1. Based on Gray-code, Di Gianantonio and
Tsuiki studied independently an expansion of real numbers as infinite se-
quences of {0, 1,⊥} each of which contains at most one ⊥ standing for
undefinedness [5, 12]. Tsuiki called it modified Gray expansion. He also
studied computability of real numbers, and presented several algorithms to
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do real number computation via Gray-code. The motivation of this paper
is to shed light on the logical aspect of Gray-code computation from the
constructive standpoint. We formalize Gray-code in the Theory of Com-
putable Functionals, TCF in short, and also in the proof assistant Minlog1,
which is an implementation of TCF, by means of inductive and coinductive
definitions [10]. In order to make use of Tsuiki’s idea in TCF, we intro-
duce pre-Gray code which is Gray-code represented as ordinary streams.
Through the realizability interpretation we extract from proofs programs as
terms in an extension T+ of Gödel’s T involving higher type recursion and
corecursion operators. As case studies we extract real number algorithms in
our setting of pre-Gray code. The correctness of the extracted programs is
automatically ensured by the soundness theorem.

The rest of this paper is organized as follows. In Section 2 we investigate
Gray-code and introduce pre-Gray code representation of real numbers. In
Section 3 we describe realizability in our framework TCF, w.r.t. inductive
and coinductive definitions. This provides a suitable setting to study logical
aspects of signed digit streams and pre-Gray code. Section 4 presents proofs
about coinductive representations that correspond to algorithms; the latter
are described informally. 4.1 studies the average of two real numbers in
signed digit code, and 4.4 directly for pre-Gray code. In 4.2 and 4.3 we
give translators from pre-Gray into signed digit code, and vice versa. 4.5
studies a translation of finite segments of pre-Gray code into its normal
form. Section 5 deals with the conversion of Gray-code to modified Gray
expansion. In Section 6 we present and discuss the terms extracted from
formalizations (in the proof assistant Minlog) of the proofs in Sections 4 and
5.

Related work. There are programming languages which can process mo-
dified Gray expansion directly. Tsuiki and Sugihara studied an extension
of Haskell with the non-deterministic choice operator gamb which works as
McCarthy’s amb operator [14]. Tsuiki studied a logic programming language
with guarded clauses and committed choice [13]. Terayama and Tsuiki stud-
ied an extension of PCF with parallelism [11]. In this paper we avoid using
the above features by adopting pre-Gray code. Concerning stream based
real arithmetic. Wiedmer [15, 16] used signed digit streams for real num-
ber computation. Its corecursive treatment was studied by Ciaffaglione and
Di Gianantonio in Coq [4]. Berger and Seisenberger studied program ex-
traction to obtain programs dealing with signed digit streams [2]. Some of

1See http://www.minlog-system.de/
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their results are formalized by Miyamoto and Schwichtenberg in TCF and
Minlog [7, 8]. Chuang studied the average and the multiplication of real
numbers using coinduction in Agda via the Curry-Howard isomorphism [3].

2. Gray-code and its variations

2.1. Expansions of real numbers. We define binary expansion of the
unit interval as the expansion of the unit2 interval I = [−1, 1] as infinite
sequences of PSD = {−1, 1} (proper signed digits) so that v = a1a2 . . .
represents

∞∑
i=1

ai
2i
.(1)

With binary expansion, a finite sequence a1, a2, . . . , an denotes the interval
fa1(fa2 . . . (fan(I) . . . ) for fa the function

fa(x) =
x+ a

2
,

and a1a2 . . . denotes the real number that belongs to the intersection of
the intervals denoted by its finite truncations. Though binary expansion
is simple and has little redundancy, it cannot be used for stream-based
computation of the reals because, for example, the first digit of the number
0 cannot be determined by any arbitrary approximation information of the
number. To remedy this, signed digit code is commonly used in real number
computation. Signed digit code is a representation of the same interval with
the same formula (1), but with three digits SD = {−1, 0, 1}. In this paper,
we view finite sequences of SD as a free algebra I with a nullary constructor
nilI and three unary constructors C−1,C0,C1 of type I→ I. That is,

I = nilI + C−1 I + C0 I + C1 I.

Signed digit code has a lot of redundancy, as 1̄1 and 01̄ represent the same
interval [−1/2, 0] and 11̄ and 01 represent the same interval [0, 1/2]. Here,
1̄ is the notation of −1 in a sequence.

Modified Gray expansion is a unique representation of I that can be used
for real number computation. It is based on Gray expansion which is another
way of expanding I with PSD. In Gray expansion, the sequence is flipped
after an appearance of 1. That is, let LRa for a ∈ PSD be functions defined
as

(2) LRa(x) = −ax− 1

2

2For simplicity we base our study on [−1, 1] rather than [0, 1].
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Figure 1. Gray expansion.

so that LR−1 = f−1 but LR1(x) = f1(−x) (Figure 2.1). Then, the number
represented by a sequence v = a1a2 . . . is the limit of the shrinking intervals
LRa1(LRa2 . . . (LRan(I) . . . ) which is equal to

(3)

∞∑
i=1

−
∏
j≤i(−aj)
2i

.

With Gray expansion, each dyadic rational number (i.e., k/2i for integers
−2i ≤ k ≤ 2i) other than −1 and 1 is represented in two ways as is the case
for the binary expansion. For example, 0 is expanded as 1̄11̄ω and 111̄ω.
However, the two expansions differ only at one digit and the sequence after
the digit they differ is always 11̄ω. Modified Gray expansion assigns the 1⊥-
sequence s⊥11̄ω to a dyadic rational number which has two Gray expansions
s111̄ω and s1̄11̄ω for s ∈ {1, 1̄}∗ [12]. In this way, each real number in the
unit interval is represented as a unique infinite 1⊥-sequence, which is an
infinite sequence of {−1, 1,⊥} such that at most one copy of ⊥ is contained
in the sequence. In this paper, we consider its variant that assigns all three
sequences s111̄ω, s1̄11̄ω, and s⊥11̄ω to this dyadic rational number and
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simply call it the (infinite) Gray-code. Gray-codes of real numbers in [−1, 1]
range over the subset {1, 1̄}ω ∪{1, 1̄}∗⊥11̄ω of {−1, 1,⊥}ω. We will also call
each 1⊥-sequence in this set an (infinite) Gray-code. The following table
shows the difference of the three representations according to the character
a allowed when a dyadic rational number is represented as sa11̄ω.

Gray expansion a ∈ {−1, 1},
Modified Gray expansion a = ⊥,
Gray-code a ∈ {−1, 1,⊥}.

As we will study in Section 5, Gray-code and modified Gray expansion are
equivalent in that a Gray-code can be coinductively converted to modified
Gray expansion.

In order to define the meaning of Gray-codes more precisely, we introduce
finite Gray-codes. A finite 1⊥-sequence of length n is an infinite sequence
t = t0t1 . . . of {−1, 1,⊥} such that tn−1 6= ⊥, tk = ⊥ for k ≥ n, and tk = ⊥
for at most one k < n. We sometime omit the suffix ⊥ω of a finite 1⊥-
sequence and write it as a sequence of {−1, 1,⊥} of length n. We call a
finite 1⊥-sequence in {1, 1̄}∗ ∪ {1, 1̄}∗⊥11̄∗ a finite Gray-code. We define
the order generated by ⊥ v −1 and ⊥ v 1 on {−1, 1,⊥}, and its product
order on {−1, 1,⊥}ω. The set of finite/infinite 1⊥-sequences form a Scott-
Ershov domain BD with compact elements finite 1⊥-sequences. Similarly,
finite/infinite Gray-codes form a Scott-Ershov domain RD with compact
elements finite Gray-codes. We say that a finite 1⊥-sequence t approximates
a 1⊥-sequence s if t v s.

We can define the meaning of Gray-code based on this domain structure.
The meaning [[s]] of a finite Gray-code s is the same interval as the meaning
of s with Gray expansion if s ∈ {1̄, 1}∗, and is the union of [[s′1̄11̄n]] and
[[s′111̄n]] if s has the form s′⊥11̄n for s′ ∈ {1̄, 1}∗. The meaning [[t]] of an
infinite Gray-code t is the unique real number that belongs to the intersection
of [[s]] for s finite Gray-codes that approximate t. The following proposition
is immediate from the definition.

Proposition 2.1.

(a) For t ∈ {−1, 1}ω, [[t]] is the same as the value obtained by (3).
(b) For s⊥10ω with s ∈ {−1, 1}∗, [[s⊥10ω]] = [[s010ω]] = [[s110ω]].

2.2. An algebra of ⊥-sequences. Note that ⊥ is not an ordinary cha-
racter and a machine cannot read or write a ⊥ on a tape. In [12] an
IM2-machine (indeterministic multihead Type-2 machine) was introduced
to input and output 1⊥-sequences. An IM2-machine has two heads on each
input/output tape so that it can skip a ⊥ and access the rest the sequence.
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In this paper, instead of such a direct manipulation of 1⊥-sequences, we
define pre-Gray code, which is a “representation” of Gray-code as sequences
of constructors representing how an 1⊥-sequence is obtained, and consider
computation through usual stream programs instead of IM2-machines.

Before introducing pre-Gray code, we introduce an algebra OB = (|OB|,
C ∪ {nil}) of finite 1⊥-sequences. The carrier set |OB| is the set of fi-
nite 1⊥-sequences. It is generated by four unary constructors in C :=
{cons1, cons−1, ins1, ins−1} as well as a nullary constructor nil. Recall that
an ordinary binary sequence is a term of a free algebra with two unary con-
structors consa for a ∈ {−1, 1} which prepend a to a sequence as well as
nil. On the other hand, a 1⊥-sequence is generated by two additional con-
structors insa for a ∈ {−1, 1} which insert a as the second character to a
sequence.

Example 2.2. The term ins1(ins−1(cons−1(ins1 nil))) denotes 1̄11̄⊥1:

nil denotes ⊥ω,
(ins1 nil) denotes ⊥1⊥ω,

(cons−1(ins1 nil)) denotes 1̄⊥1⊥ω,
(ins−1(cons−1(ins1 nil))) denotes 1̄1̄⊥1⊥ω,

(ins1(ins−1(cons−1(ins1 nil)))) denotes 1̄11̄⊥1⊥ω.

When writing a term of OB, we omit nil and write it as a sequence of
C. Thus, we write [ins1, ins−1, cons−1, ins1] for this term. One can calculate
that [cons−1, cons1, cons−1, ins1] also denotes the same 1⊥-sequence.

We write ϕ(p) for the 1⊥-sequence denoted by p ∈ C∗. More precisely,
ϕ([c1, . . . , cn]) = (c1 ◦ · · · ◦ cn)(⊥ω).

For coalgebraic computation, one needs to read sequences of constructors
from left to right. If a sequence of C is read from left to right, then it can be
considered as a procedure to construct a 1⊥-sequence as follows. We start
with an infinite tape with the state ⊥ω. We view consa as the operation to
fill the leftmost ⊥ with a and insa as the operation to fill the second ⊥ from
the left with a.

We write ψ(p) for the 1⊥-sequence obtained by this procedure. More
precisely, if we define c′ : {−1, 1,⊥}ω → {−1, 1,⊥}ω (c ∈ C) by

cons′a(s) = filling in s the first bottom from the left by a

ins′a(s) = filling in s the second bottom from the left by a

then ψ([c1, . . . , cn]) = (c′n ◦ · · · ◦ c′1)(⊥ω).
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Example 2.3. We construct 1̄11̄⊥1 according to [cons−1, cons1, cons−1, ins1]
as ⊥ω → 1̄⊥ω → 1̄1⊥ω → 1̄11̄⊥ω → 1̄11̄⊥1⊥ω and according to [ins1, ins−1,
cons−1, ins1] as ⊥ω → ⊥1⊥ω → ⊥11̄⊥ω → 1̄11̄⊥ω → 1̄11̄⊥1⊥ω.

Proposition 2.4. ϕ(p) = ψ(p) for p ∈ C∗.

Proof. We show that

(4) (c1 ◦ · · · ◦ cn)(⊥ω) = (c′n ◦ · · · ◦ c′1)(⊥ω).

Note that c′ satisfies the equations

c′(b : s) = b : c′(s) (b 6= ⊥),

cons′a(⊥ : s) = a : s,

ins′a(⊥ : s) = ⊥ : cons′a(s).

Using the equations for c and c′ one easily verifies that

c(⊥ω) = c′(⊥ω),(5)

c ◦ d′ = d′ ◦ c.(6)

From (6) one obtains

(7) (c1 ◦ · · · ◦ cn) ◦ c′ = c′ ◦ (c1 ◦ · · · ◦ cn)

by induction on n. Now (7) and (5) yield (4), again by induction on n. �

Note that c′ is increasing. That is, s v c′(s) for c ∈ C. Therefore, we
can consider an infinite sequence q ∈ Cω of the four constructors cons1,
cons1̄, ins1, ins1̄ as representing an infinite 1⊥-sequence which is obtained
as the least upper bound of {ϕ(p)(= ψ(p)) | p is a finite prefix of q }. For
example, [ins1, ins−1, ins−1, ins−1, . . . ] represents ⊥11̄ω. We write ϕ(q) for
the 1⊥-sequence represented by q ∈ Cω.

As we have noted, the algebra OB is not a free algebra and we have
equations

insa ◦ consb = consb ◦ consa(8)

for a, b ∈ PSD. Actually, OB is the universal algebra in that the set of
finite 1⊥-sequences is equal to the quotient of C∗ by these equations.

2.3. An algebra of Gray-code and an auxiliary algebra. Recall that
finite Gray-codes form a subset {1̄, 1}∗ ∪ {1̄, 1}∗⊥11̄∗ of the set of finite 1⊥-
sequences. In order to represent only this set of finite Gray-codes, we define
a subalgebra G of OB simultaneously with another subalgebra H. The
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carrier set of G is the set of finite Gray-codes. A naive attempt is to define
them as follows.

G = ({1̄, 1}∗ ∪ {1̄, 1}∗⊥11̄∗,

{ consa : G→ G | a ∈ PSD } ∪ {ins1 : H→ G, nilG : G})
H = (⊥1̄∗, {ins−1 : H→ H, nilH : H})

However, this definition does not allow filling a bottom with a digit by the
consa constructor in the coinductive treatment of an 1⊥-sequence. For this
purpose, we need to add the constructors consa : G → H for a ∈ PSD to
the above definition. In order to distinguish the two constructors consa of
types G → G and G → H, we give them different names LRa and Fina.
We also rename ins1 and ins−1 to U and D, respectively, and define the
two algebras G and H with carrier sets |G| = {1̄, 1}∗ ∪ {1̄, 1}∗⊥11̄∗ and
|H| = {1̄, 1}+ ∪ {1̄, 1}+⊥11̄∗ ∪ ⊥1̄∗ mutually recursively as follows.

G = (|G|, {LRa : G→ G | a ∈ PSD } ∪ {U: H→ G, nilG : G})
H = (|H|, {Fina : G→ H | a ∈ PSD } ∪ {D: H→ H, nilH : H})

Note that the carrier sets of both algebras are generated (but not freely) by
their constructors. We call a term of type G a finite pre-Gray code.

In the coinductive treatment of an 1⊥-sequence, U: H → G means to
leave the current cell U ndefined and fill the next cell with 1, D: H → H
means to Delay the determination of the value of the unfilled cell and add
1̄ to the end of the sequence, and Fina means to Finally fill the unfilled cell
with a. Thus, both U(D(Fin−1(U(nilH)))) and LR−1(LR1(LR−1(U(nilH))))
are terms of type G representing the sequence 1̄11̄⊥1.

We call an infinite sequence of these constructors all of whose finite trun-
cations are term of type G an infinite term of type G, and similary, define
an infinite term of H. An infinite term p of type G is representing an infi-
nite Gray-code ϕ(p) and thus representing a real number [[p]] ∈ I defined as
[[ϕ(p)]]. For example, for p = [U,D,D, . . . ], ϕ(p) = ⊥11̄ω and [[p]] = 0. We
call an infinite term of type G an (infinite) pre-Gray code.

Since consa, and insa satisfy (8), the constructors of G and H satisfy the
following equations for a ∈ PSD.

U ◦ Fina = LRa ◦ LR1,(9)

D ◦ Fina = Fina ◦ LR−1.(10)

We show that the set of finite Gray-codes is the quotient of the term algebra
of G with these equations.
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Proposition 2.5. Let p be a term of type G and ai ∈ PSD (1 ≤ i ≤ m).

(a) If ϕ(p) = a1 . . . am⊥11̄l, the equation p = [LRa1 , . . . ,LRam ,U,D
l]

can be derived from (9) and (10).
(b) If ϕ(p) = a1 . . . am, the equation p = [LRa1 , . . . ,LRam ] can be derived

from (9) and (10).

Proof. Let p = [c1, . . . , cn]. We have n = l + m because each constructor
adds one digit to a sequence. Suppose that the argument type of ci is H for
i ≥ k and the return type of ck is G. Then, from the definition of G and H,
we have k = m + 1 and ck, . . . , cn are uniquely determined as ck = U and
ci = D for i > k. Therefore, (a) is immediately derived from (b). We prove
(b) by induction on m. If m = 0, then p = nilG and this statement holds.
Suppose that cm = LRb. Since ϕ(p) = ψ(p) by Proposition 2.4, am = b
and ϕ([c1, . . . , cm−1]) = a1 . . . am−1. Therefore, it holds by the induction
hypothesis. Suppose that cm = Finb. Since the argument type of cm−1 is
H, p has the form [c1, . . . , cm−k−2,U,D

k,Finb]. By induction hypothesis,
[c1, . . . , cm−k−2] = [LRa1 , . . . ,LRam−k−2

] is derived. On the other hand,

[U,Dk,Finb] = [LRb,LR1,LRk
−1] is derived by applying (10) k times and

then applying (9). Thus, (b) is proved. �

2.4. Pre-Gray code. As we defined, Gray-codes are representations of I
as {−1, 1,⊥}-sequences and pre-Gray codes are terms of the algebra G of
Gray-codes. For our study of real number computation based on pre-Gray
code, we redefine G and H as free algebras and assign affine functions fc to
unary constructors c of G and H so that one can directly define meanings
of pre-Gray codes.

First, since nilG and nilH express the empty 1⊥-sequence, they denote the
unit interval I. It is natural to define fLRa and fU as

fLRa = −ax− 1

2
(= LRa in (2)),(11)

fU(x) =
x

2
.(12)

Since (9) and (10) hold, fFina and fD should satisfy

fU ◦ fFina = fLRa ◦ fLR1 ,(13)

fD ◦ fFina = fFina ◦ fLR−1 .(14)

From (13), we have

(15) fFina(x) = a
x+ 1

2
= fLRa(−x),
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Figure 2. The domain RD and constructors of pre-Gray
code. Here, LR−1,LR1,U,Fin−1,Fin1, and D are written as
1̄, 1,U,F1̄,F1, and D, respectively.

and therefore from (14), we have

(16) fD(x) =
x

2
.

Equations (11), (12), (15), and (16) define the meanings of constructors as
affine functions, and they define the meaning FG(p) of a term p = [c1, . . . , cn]
of type G as

(17) FG(p) = fc1(fc2(. . . fcn(I) . . . )).
They also define the meaning FH(q) of a term q of type H similarly. There-
fore, they define meanings FG(p) and FH(q) of infinite terms p of type G
and q of type H, respectively, as the unique elements which belong to inter-
sections of the meanings of their finite prefixes (Figure 2).

Proposition 2.6. For a (possibly infinite) term p of type G, we have [[p]] =
FG(p).
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Proof. We first prove the statement for the case that p is finite. Since
equations (13) and (14) hold, we only need to consider the cases p =
[LRa1 , . . . ,LRam ,U,D

n] and p = [LRa1 , . . . ,LRam ] by Proposition 2.5. The
latter case is immediate from the definition. In the former case, we have
ϕ(p) = a1 . . . am⊥11̄n. Let g = fLRa1

◦ · · · ◦ fLRam
. We have

[[p]] = [[a1 . . . am1̄11̄n]] ∪ [[a1 . . . am111̄n]]

= g(fLR−1 ◦ fLR1 ◦ fnLR−1
(I)) ∪ g(fLR1 ◦ fLR1 ◦ fnLR−1

(I))

= g([−1/2n+1, 0]) ∪ g([0, 1/2n+1])

= g([−1/2n+1, 1/2n+1])

= (g ◦ fU ◦ fnD)(I)
= FG([LRa1 , . . . ,LRam ,U,D

n]).

The case p is infinite is immediately derived from the finite case. �

Note that the meaning FH(p) of a term p of type H is also defined. If p
is a term of type H, then ϕ(p) may not be a finite Gray-code and even if it
is, FH(p) is different from [[ϕ(p)]] in general. For example, ϕ([D]) = ⊥1̄ and
[[1̄1̄]] ∪ [[11̄]] = [−1,−1/2] ∪ [1/2, 1] is not an interval, and [[ϕ([Fin1,LR1])]] =
[[11]] = [0, 1/2] whereas FH([Fin1,LR1]) = [1/2, 1].

The meaning FH of H defines another representation of I which is ob-
tained by flipping the second digit of Gray code (Figure 3). We extract
conversion programs between these two representations from the proof of
Lemma 4.10 in Section 4.4.

0 1-1 -1/2 1/2 0 1-1 -1/2 1/2

Figure 3. Expansion by G (i.e., Gray expansion) and ex-
pansion by H.

We defined an infinite term of type G as an infinite sequence of construc-
tors of G and H such that any truncation of the sequence forms a finite
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term of type G. In TCF, infinite structures like this can be treated as coto-
tal ideals. Each algebra definition of TCF generates a basic domain of the
Scott-Ershov model of partial continuous functionals. Among the ideals of
such a domain we single out the total and cototal ones, which are our well-
founded and non-well-founded objects, respectively. For the details, please
consult [10]. For our algebras I, G, and H, every total ideal is a finite term
and every cototal ideal is an infinite term of the algebra.

The notion of a cototal ideal also makes sense when the underlying algebra
does not have nullary constructors. Since we will only be concerned with
cototal ideals we take advantage of this fact and from now on omit the
nullary constructor from our algebras. This will simplify the arguments
below considerably (for instance in comparison with [8]). We also redefine
our free algebras I, G and H so that I has a binary constructor C of type
SD→ I→ I and so on; the intention is LRa(p) = LR(a, p). To sum up, our
algebras have the following definitions.

I = C SD I,

G = LR PSD G + U H,

H = Fin PSD G + D H.

3. Coinductive representation of Gray-code via realizability

A constructive proof of a formula A can be viewed as a solution to the
problem posed by A [6]. Such a solution is a (computable) function of a cer-
tain type τ(A) determined by the formulaA. For example, ∀n∃m(Prime(m)∧
m > n) has type N→ N. Sometimes the solution is only a verification, like
for ∀n1,n2,n3>0,m>2(nm1 + nm2 6= nm3 ). In such cases a solution has no com-
putational content and the formula A is called non-computational (n.c., or
Harrop); the other ones are called computationally relevant (c.r.). The only
way c.r. formulas can arise is via inductively defined predicates, like I or
coI below (we consider ∃xA and A ∨B as inductively defined). The clauses
of the inductive definition determine the data type (free algebra) of a solu-
tion or “realizer”. It is essential that we allow non-computational universal
quantifiers ∀nc [1] to obtain the desired data type. For instance, in the clause
∀nc
x ∀d(I(x)→ I(x+d

2 )) (d ∈ {−1, 0, 1}) for I one is not interested in the real
number x as input, but only in how the digit d gives rise to a new element of
I. Here we work in such a constructive arithmetical theory with realizability
(called TCF in [10]).

We want to extract algorithms for real number computation from proofs
in an appropriate formal theory involving coinductive definitions. The idea
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is to leave infinite streams implicit, as realizers of atomic propositions on
reals. For example, consider the problem to compute the average of two real
numbers coded by infinite streams. We will coinductively define a unary
predicate coI and prove

(18) ∀nc
x,x′(

coI(x)→ coI(x′)→ coI(
x+ x′

2
))

(recall that ∀nc indicates that the reals x, x′ have no computational signifi-
cance, only the assumptions coI(x), coI(x′) have). Associated with coI is its
“realizability extension” (coI)r, a relation between streams v of signed digits
and real numbers x. We can understand (coI)r(v, x) as saying that v is a
stream representation of x witnessing coI(x). The soundness theorem gives

(coI)r(v, x)→ (coI)r(v′, x′)→ (coI)r(f(v, v′),
x+ x′

2
)

for some function f extracted from the proof. The function is the stream
transformer for the average, and it is obtained (together with a proof of its
correctness) from the proof of (18), which never mentions streams.

Now what is the predicate coI? Consider the operator

Φ(X) := {x | ∃r
x′∈X∃d(x =

x′ + d

2
) },

where d ranges over SD := {−1, 0, 1}. The r in ∃r (not to be confused with
the r in (coI)r) indicates that the quantified variable x′ has no computational
significance, only the kernel of the existential formula has. Since Φ(X) is
stricly positive in X, our underlying theory provides us with unary predi-
cates (or sets; they are not distinguished) I and coI for the least and greatest
fixed point of Φ:

I := µXΦ(X) least fixed point
coI := νXΦ(X) greatest fixed point

satisfying the (strengthened) axioms

Φ(I ∩X) ⊆ X → I ⊆ X induction

X ⊆ Φ(coI ∪X)→ X ⊆ coI coinduction

(they are called “strengthened” because their hypotheses are weaker than
the fixed point property Φ(X) = X).
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The realizability extensions Ir and (coI)r are binary predicates on streams
v of signed digits (coming from ∃d in the definition of Φ(X)) and real num-
bers x. Consider the operator

Φr(Y ) := { (v, x) | ∃u
(v′,x′)∈Y ∃d(x =

x′ + d

2
∧ v = Cd(v

′))) }

(the u in ∃u indicates that neither the quantified variable nor the kernel has
computational significance). Since Φr(Y ) is strictly positive in Y , again our
underlying theory provides us with binary predicates (or relations) Ir and
(coI)r for the least and greatest fixed point of Φr:

Ir := µY Φr(Y ) least fixed point

(coI)r := νY Φr(Y ) greatest fixed point

satisfying the (strengthened) axioms

Φr(Ir ∩ Y ) ⊆ Y → Ir ⊆ Y induction

Y ⊆ Φr((coI)r ∪ Y )→ Y ⊆ (coI)r coinduction.

The following proposition states that the definition of coI is correct in the
sense that the realizers of coI(x) are exactly the signed digit representations
of x.

Proposition 3.1. For v = a1a2 . . . ∈ SDω and x ∈ I

(coI)r(v, x)↔ x ∈
∞⋂
n=1

fa1(fa2(. . . fan(I) . . . ))

Proof. For the direction from left to right we show

∀v,x((coI)r(v, x)→ v = a1a2 . . . ∧ x ∈ fa1(fa2(. . . fan(I) . . . )))

by induction on n. For n = 0 this holds since x ∈ I. For n+ 1 suppose that
(coI)r(v, x) holds. Then, since (coI)r is a fixed point of Φr,

∃v′,x′,a1((coI)r(v′, x′) ∧ x = fa1(x′) ∧ v = Ca1(v′)).

Let v′ = a2a3 . . .. By induction hypothesis, x′ ∈ fa2(fa3(. . . fan+1(I) . . . )).
We have v = Ca1(v′) = a1a2 . . . and x ∈ fa1(fa2 . . . (fan+1(I)) . . . ).

The direction from right to left is shown by coinduction. Setting

{ (v, x) | v = a1a2 . . . , x ∈ fa1(fa2(. . . fan(I) . . . )) for every n }
it suffices to show P ⊆ Φr(P ). Assume (v, x) ∈ P . Set x′ := 2x − a1 and

v′ := a2a3 . . .. Then clearly P (v′, x′), x = x′+a1
2 and v = a1v

′ = Ca1(v′).
Hence (v, x) ∈ Φr(P ). �
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For Gray-code we proceed similarly; for brevity only for the infinite case.
We now need two predicates coG and coH instead of coI. The corresponding
operators Γ, ∆ are defined by

Γ(X,Y ) := { y | ∃r
x∈X∃a(y = −ax− 1

2
) ∨ ∃r

x∈Y (y =
x

2
) },

∆(X,Y ) := { y | ∃r
x∈X∃a(y = a

x+ 1

2
) ∨ ∃r

x∈Y (y =
x

2
) }

and we define (coG, coH) := ν(X,Y )(Γ(X,Y ),∆(X,Y )). This is understood
as the greatest fixed point of (Γ,∆), expressed by the (strengthened) simul-
taneous coinduction axiom

(X,Y ) ⊆ (Γ(coG∪X, coH ∪ Y ),∆(coG∪X, coH ∪ Y ))→ (X,Y ) ⊆ (coG, coH),

where inclusion ⊆ is meant component-wise.
For later use we note immediate consequences of the fact that (coG, coH)

is a (simultaneous) fixed point of (Γ,∆), CoGClause and CoGClauseInv:

∀nc
x (coG(x)→ ∃r

x′∈coG∃a(x = −ax
′ − 1

2
) ∨ ∃r

x′∈coH(x =
x′

2
)),(19)

∀nc
x (∃r

x′∈coG∃a(x = −ax
′ − 1

2
) ∨ ∃r

x′∈coH(x =
x′

2
)→ coG(x)).(20)

The realizability extensions (coG)r and (coH)r are binary predicates on
cototal ideals p in G or q in H (respectively) and real numbers x. Consider
the operators

Γr(Z,W ) := { (p, x) | ∃(p′,x′)∈Z∃a(x = −ax
′ − 1

2
∧ p = LRa(p

′)) ∨u

∃(q′,x′)∈W (x =
x′

2
∧ p = U(q′)) },

∆r(Z,W ) := { (q, x) | ∃(p′,x′)∈Z∃a(x = a
x′ + 1

2
∧ q = Fina(p

′)) ∨u

∃(q′,x′)∈W (x =
x′

2
∧ q = D(q′)) }

(the u in ∨u indicates that the disjunction has no computational signifi-
cance). Since both Γr(Z,W ) and ∆r(Z,W ) are strictly positive in Z,W ,
our underlying theory provides us with a pair of binary predicates (coG)r,
(coH)r for the greatest fixed point of (Γr,∆r):

((coG)r, (coH)r) := ν(Z,W )(Γ
r(Z,W ),∆r(Z,W ))
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satisfying the (strengthened) simultaneous coinduction axiom

(Z,W ) ⊆ (Γr((coG)r ∪ Z, (coH)r ∪W ),∆r((coG)r ∪ Z, (coH)r ∪W ))→
(Z,W ) ⊆ ((coG)r, (coH)r)

where again inclusion ⊆ is meant component-wise.
Similar to Proposition 3.1, we show that coG is correct in the sense that

the realizers of coG(x) are exactly the pre-Gray codes of x.

Proposition 3.2. For x ∈ I and cototal ideals p in G and q in H

(coG)r(p, x)↔ x = FG(p),

(coH)r(q, x)↔ x = FH(q).

Proof. Recall that if p = [c1, c2, . . .] is a cototal ideal in G, then

FG(p) =

∞⋂
n=1

fc1(fc2(. . . fcn(I) . . . ))

and similary for FH(q). The proof is similar to the case of signed digits, but
slightly more involved because of the simultaneous definition of (coG)r and
(coH)r. �

Remark 3.3 (Nested definition). As an alternative to the above simulta-
neous definition of coG and coH, we can take the nested definition coG′ =
νXΓ(X, coH ′(X)) where coH ′X = νY ∆(X,Y ). The witnessing algebras would
also be changed. In this paper we adopt the simultaneous one, since the
extracted programs are simpler.

4. Proofs about coinductive representations that correspond
to algorithms

In each of the examples below, after the proof we state the rules (equa-
tions) expressing the algorithm implicit in this proof. Such an “informal
program extraction” can be difficult and error-prone. In Section 6 this will
be done precisely, using Minlog to extract a program (i.e., a term in an
extension of Gödel’s T ) from a formalization of this proof.

4.1. Average for signed digit code. As a warm-up we prove the average
property (18), following [2]. Consider two sets of averages, the second one
with a “carry” i ∈ SD2 := {−2,−1, 0, 1, 2}:

P := { x+ y

2
| x, y ∈ coI }, Q := { x+ y + i

4
| x, y ∈ coI, i ∈ SD2 },
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where SD2 are the “extended signed digits” {−2,−1, 0, 1, 2}; let i, j range
over SD2. Recall that coI is a fixed point of Φ. Hence coI ⊆ Φ(coI), i.e.

(21) ∀nc
x∈coI∃r

x′∈coI∃d(x =
x′ + d

2
) coI-clause.

It suffices to show that Q satisfies (21), for then by the greatest-fixed-point
axiom for coI we have Q ⊆ coI. Since we also have P ⊆ Q we then obtain
P ⊆ coI, which is our claim.

Lemma 4.1 (CoIAvToAvc).

∀nc
x,y∈coI∃r

x′,y′∈coI∃i(
x+ y

2
=
x′ + y′ + i

4
).

Proof. Immediate from (21). �

Lemma 4.2 (CoIAvcSatCoICl).

∀i∀nc
x,y∈coI∃r

x′,y′∈coI∃j,d(
x+ y + i

4
=

x′+y′+j
4 + d

2
).

Proof. We need functions J : SD → SD → SD2 → SD2 and K : SD →
SD → SD2 → SD such that d + e + 2i = J(d, e, i) + 4K(d, e, i). They
can be defined easily by cases on d, e and i. Using these we can relate the
functions x+d

2 and x+y+i
4 by

(22)
x+d

2 + y+e
2 + i

4
=

x+y+J(d,e,i)
4 +K(d, e, i)

2
.

Now (21) gives the claim. �

By coinduction from Lemma 4.2 we obtain

Lemma 4.3 (CoIAvcToCoI).

∀nc
z (∃r

x,y∈coI∃i(z =
x+ y + i

4
)→ coI(z)).

Proposition 4.4 (CoIAverage).

∀nc
x,y(

coI(x)→ coI(y)→ coI(
x+ y

2
)).

Proof. Immediate from Lemmata 4.1 and 4.3. �

Implicit algorithm. Lemma 4.1 computes the first “carry” i ∈ SD2 and the
tails of the inputs. Then f : SD2 × I× I→ I defined corecursively by

f(i,Cd(v),Ce(w)) = CK(d,e,i)(f(J(d, e, i), v, w))

is called repeatedly in order to compute the average step by step.
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4.2. From pre-Gray to signed digit code. We prove coG ⊆ coI. However,
to be able to do this by coinduction we need to generalize our goal to

Lemma 4.5 (CoGToCoIAux). ∀nc
x (∃a(coG(ax) ∨ coH(ax))→ coIx).

Proof. For P := {x | ∃a(coG(ax) ∨ coH(ax)) } we must show P ⊆ coI. By
coinduction it suffices to prove P ⊆ Φ(coI ∪ P ). Let x1 ∈ P . We show
x1 ∈ Φ(coI ∪ P ):

(23) ∃r
x∈coI∪P∃d(x1 =

x+ d

2
).

Since x1 ∈ P we have a such that coG(ax1) ∨ coH(ax1).
Case coG(ax1). The coG-clause coG ⊆ Γ(coG, coH) applied to ax1 ∈ coG

gives us

∃r
x∈coG∃b(ax1 = −bx− 1

2
) ∨ ∃r

x∈coH(ax1 =
x

2
).

If the left hand side holds, we have x2 ∈ coG and b such that ax1 = −bx2−1
2 .

Then (23) holds for x := −abx2 and d := ab, since −abx2 ∈ P (by x2 ∈ coG
and the definition of P ), and

x1 = a2x1 = −abx2 − 1

2
=
−abx2 + ab

2
=
x+ d

2
.

If the right hand side holds, we have x2 ∈ coH such that ax1 = x2
2 . Then

(23) holds for x := ax2 and d := 0, since ax2 ∈ P (by x2 ∈ coH and the
definition of P ), and

x1 = a2x1 = a
x2

2
=
ax2 + 0

2
=
x+ d

2
.

Case coH(ax1). The coH-clause coH ⊆ ∆(coG, coH) applied to ax1 ∈ coH
gives

∃r
x∈coG∃b(ax1 = b

x+ 1

2
) ∨ ∃r

x∈coH(ax1 =
x

2
).

If the left hand side holds, we have x2 ∈ coG and b such that ax1 = bx2+1
2 .

Then (23) holds for x := abx2 and d := ab, since abx2 ∈ P (by x2 ∈ coG and
the definition of P ), and

x1 = a2x1 = ab
x2 + 1

2
=
abx2 + ab

2
=
x+ d

2
.

If the right hand side holds, we have x2 ∈ coH such that ax1 = x2
2 . Then

(23) holds for x := ax2 and d := 0, since ax2 ∈ P (by x2 ∈ coH and the
definition of P ), and

x1 = a2x1 = a
x2

2
=
ax2 + 0

2
=
x+ d

2
. �
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Implicit algorithm. [f, g] : PSD×G + PSD×H→ I defined by

f(a,LRb(p)) = Cab(f(−ab, p)), g(a,Finb(p)) = Cab(f(ab, p)),

f(a,U(q)) = C0(g(a, q)), g(a,D(q)) = C0(g(a, q)).

An immediate consequence is

Proposition 4.6 (CoGToCoI). ∀nc
x (coG(x)→ coI(x)).

4.3. From signed digit to pre-Gray code. Conversely we also have coI ⊆
coG. Again, to be able to prove this by coinduction we need to generalize
our goal to

Lemma 4.7 (CoIToCoGAux).

∀nc
x (∃acoI(ax)→ coGx),

∀nc
x (∃acoI(ax)→ coHx).

Proof. For P := {x | ∃a(ax ∈ coI) } we show P ⊆ coG simultaneously with
P ⊆ coH. By coinduction it suffices to prove (i) P ⊆ Γ(coG ∪ P, coH ∪ P )
and (ii) P ⊆ ∆(coG ∪ P, coH ∪ P ). For (i), let x1 ∈ P . We show x1 ∈
Γ(coG ∪ P, coH ∪ P ):

(24) ∃r
x∈coG∪P∃a(x1 = −ax− 1

2
) ∨ ∃r

x∈coH∪P (x1 =
x

2
).

Since x1 ∈ P we have a1 such that coI(a1x1). The coI-clause coI ⊆ Φ(coI)
applied to a1x1 ∈ coI gives us

∃r
x∈coI∃d(a1x1 =

x+ d

2
).

Hence we have x2 ∈ coI and d such that a1x1 = x2+d
2 .

Case d = −1. Then the left hand of (24) holds for x := x2 and a := −a1,
since x2 ∈ P (by x2 ∈ coI and the definition of P ), and

x1 = a1a1x1 = a1
x2 + d

2
= a1

x2 − 1

2
.

Case d = 1. Then the left hand of (24) holds for x := −x2 and a := a1,
since −x2 ∈ P (by x2 ∈ coI and the definition of P ), and

x1 = a1a1x1 = a1
x2 + d

2
= a1

x2 + 1

2
= −a1

−x2 − 1

2
.

Case d = 0. Then the right hand of (24) holds for x := a1x2, since
a1x2 ∈ P (by x2 ∈ coI and the definition of P ), and

x1 = a1a1x1 = a1
x2 + d

2
=
a1x2

2
.
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This finishes the proof of (i). The proof of (ii) is similar, and we omit it. �

Implicit algorithm. g : τ → G and h : τ → H with τ := PSD× I, defined by

g(b,C−1(v)) = LR−b(g(1, v)), h(b,C−1(v)) = Fin−b(g(−1, v)),

g(b,C1(v)) = LRb(g(−1, v)), h(b,C1(v)) = Finb(g(1, v)),

g(b,C0(v)) = U(h(b, v)), h(b,C0(v)) = D(h(b, v)).

An immediate consequence is

Proposition 4.8 (CoIToCoG). ∀nc
x (coI(x)→ coG(x)).

4.4. Average for pre-Gray code. We consider the problem to compute
the average of two real numbers given in pre-Gray code directly, without
going via signed digit code.

As a preparation we treat the unary minus function. Here we make use
of the fact that our coinduction axioms are in strengthened form (that is
X ⊆ Φ(coI ∪X)→ X ⊆ coI instead of X ⊆ Φ(X)→ X ⊆ coI, for example).

Lemma 4.9 (CoGMinus).

∀nc
x (coG(−x)→ coGx),

∀nc
x (coH(−x)→ coHx).

Proof. For P := {x | −x ∈ coG) } and Q := {x | −x ∈ coH) } we show
P ⊆ coG simultaneously with Q ⊆ coH. By coinduction it suffices to prove
(i) P ⊆ Γ(coG ∪ P, coH ∪ Q) and (ii) Q ⊆ ∆(coG ∪ P, coH ∪ Q). For (i), let
x1 ∈ P . We show x1 ∈ Γ(coG ∪ P, coH ∪Q):

(25) ∃r
x∈coG∪P∃a(x1 = −ax− 1

2
) ∨ ∃r

x∈coH∪Q(x1 =
x

2
).

The coG-clause applied to −x1 ∈ coG gives us

∃r
x∈coG∃a(−x1 = −ax− 1

2
) ∨ ∃r

x∈coH(−x1 =
x

2
).

In the first case we have x2 ∈ coG and a with −x1 = −ax2−1
2 . Then the left

hand side of (25) holds for x2 and −a (here we use that our coinduction
axiom is in strengthened form). In the second case we have x2 ∈ coH with
−x1 = x2

2 . Then the right hand side of (25) holds for −x2. This finishes the
proof of (i). The proof of (ii) is similar, and we omit it. �

Implicit algorithm. f : G→ G and f ′ : H→ H defined by

f(LRa(p)) = LR−a(p), f ′(Fina(p)) = Fin−a(p),

f(U(q)) = U(f ′(q)), f ′(D(q)) = D(f ′(q)).
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Using Lemma 4.9 we prove that coG and coH are in fact equivalent.

Lemma 4.10 (CoHToCoG).

∀nc
x (coHx→ coGx),

∀nc
x (coGx→ coHx).

Proof. We show coH ⊆ coG simultaneously with coG ⊆ coH. By coinduction
it suffices to prove (i) coH ⊆ Γ(coG ∪ coH, coH ∪ coG) and (ii) coG ⊆ ∆(coG ∪
coH, coH ∪ coG). For (i), let x1 ∈ coH. We show x1 ∈ Γ(coG ∪ coH, coH ∪ coG):

(26) ∃r
x∈coG∪coH∃a(x1 = −ax− 1

2
) ∨ ∃r

x∈coH∪coG(x1 =
x

2
).

The coH-clause applied to x1 ∈ coH gives us

∃r
x∈coG∃a(x1 = a

x+ 1

2
) ∨ ∃r

x∈coH(x1 =
x

2
).

In the first case we have x2 ∈ coG and a with x1 = ax2+1
2 . Then the left

hand side of (26) holds for −x2 and a, using Lemma 4.9 and (again) that
our coinduction axiom is in strengthened form. In the second case we have
x2 ∈ coH with x1 = x2

2 . Then the right hand side of (25) holds for x2. This
finishes the proof of (i). The proof of (ii) is similar, and we omit it. �

Implicit algorithm. g : H→ G and h : G→ H:

g(Fina(p)) = LRa(f
−(p)), h(LRa(p)) = Fina(f

−(p)),

g(D(q)) = U(q), h(U(q)) = D(q)

where f− := cCoGMinus (cL denotes the function extracted from the proof
of a lemma L). Notice that no corecursive call is involved.

The direct proof of the existence of the average w.r.t. Gray-coded reals
is similar to the proof in Section 4.1 of the existence of the average w.r.t.
signed digit stream coded reals. It proceeds as follows. To prove

∀nc
x,y(

coG(x)→ coG(y)→ coG(
x+ y

2
))

consider again two sets of averages, the second one with a “carry”:

P := { x+ y

2
| x, y ∈ coG }, Q := { x+ y + i

4
| x, y ∈ coG, i ∈ SD2 }.

It suffices to show that Q satisfies the clause coinductively defining coG, for
then by the greatest-fixed-point axiom for coG we have Q ⊆ coG. Since we
also have P ⊆ Q we then obtain P ⊆ coG, which is our claim.
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Lemma 4.11 (CoGAvToAvc).

∀nc
x,y∈coG∃r

x′,y′∈coG∃i(
x+ y

2
=
x′ + y′ + i

4
).

Proof. Immediate from CoGClause (19). �

Implicit algorithm. We use f∗ for cCoGPsdTimes and s for cCoHToCoG.

f(LRa(p),LRa′(p
′)) = (a+ a′, f∗(−a, p), f∗(−a′, p′)),

f(LRa(p),U(q)) = (a, f∗(−a, p), s(q)),
f(U(q),LRa(p)) = (a, s(q), f∗(−a, p)),
f(U(q),U(q′)) = (0, s(q), s(q′)).

Lemma 4.12 (CoGAvcSatCoICl).

∀i∀nc
x,y∈coG∃r

x′,y′∈coG∃j,d(
x+ y + i

4
=

x′+y′+j
4 + d

2
).

Proof. As in Lemma 4.2 we need the functions J,K with their property (22).
Then (19) gives the claim. �

Implicit algorithm.

f(i,LRa(p),LRa′(p
′)) = (J(a, a′, i),K(a, a′, i), f∗(−a, p), f∗(−a′, p′)),

f(i,LRa(p),U(q)) = (J(a, 0, i),K(a, 0, i), f∗(−a, p), s(q)),
f(i,U(q),LRa(p)) = (J(0, a, i),K(0, a, i), s(q), f∗(−a, p)),
f(i,U(q),U(q′)) = (J(0, 0, i),K(0, 0, i), s(q), s(q′)).

Lemma 4.13 (CoGAvcToCoG).

∀nc
z (∃r

x,y∈coG∃i(z =
x+ y + i

4
)→ coG(z)),

∀nc
z (∃r

x,y∈coG∃i(z =
x+ y + i

4
)→ coH(z)).

Proof. We show Q ⊆ coG simultaneously with Q ⊆ coH. By coinduction it
suffices to prove (i) Q ⊆ Γ(coG∪Q, coH∪Q) and (ii) Q ⊆ ∆(coG∪Q, coH∪Q).
For (i), let z1 ∈ Q. We show z1 ∈ Γ(coG ∪Q, coH ∪Q):

(27) ∃r
z∈coG∪Q∃a(z1 = −az − 1

2
) ∨ ∃r

z∈coH∪Q(z1 =
z

2
).

Lemma 4.12 applied to z1 ∈ Q gives us x1, y1 ∈ coG and i1, d1 such that

z1 =
x1+y1+i1

4 + d1

2
.
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Case d1 = 0. Go for the right hand side of (27) with z := (x1 + y1 + i1)/4 ∈
Q. Case d1 = ±1. Go for the left hand side of (27) with a := d1 and
z := (−ax1 − ay1 − ai1)/4 ∈ Q. Then

−az − 1

2
= −a4z − 4

8
=
x1 + y1 + i1 + 4a

8
= z1.

This finishes the proof of (i). The proof of (ii) is similar, and we omit it. �

Implicit algorithm. In the proof we used SdDisj: ∀d(d = 0 ∨ ∃a(d = a)).

g(i, p, p′) = let (i1, d, p1, p
′
1) = cCoGAvcSatCoICl(i, p, p′) in

case cSdDisj(d) of

0→ U(h(i, p1, p
′
1))

a→ LRa(g(−ai, f∗(−a, p1), f∗(−a, p′1))),

h(i, p, p′) = let (i1, d, p1, p
′
1) = cCoGAvcSatCoICl(i, p, p′) in

case cSdDisj(d) of

0→ D(h(i, p1, p
′
1))

a→ Fina(g(−ai, f∗(−a, p1), f∗(−a, p′1))).

Proposition 4.14 (CoGAverage).

∀nc
x,y(

coG(x)→ coG(y)→ coG(
x+ y

2
)).

Proof. Compose Lemmata 4.11 and 4.13. �

4.5. A bounded translation from pre-Gray code to its normal form.
For pre-Gray code there are many ways of expressing the same real number
as we noted in Section 2. In particular, the two terms U(Dk(Fina p))) and
LRa(LR1(LRk

−1 p)))) denote the same number as Proposition 2.5 says (Dk

and LRk
−1 denote k-times repetition of the same constructor). Here we

extract a program which transfers the former pattern in the first n elements
of a pre-Gray code into the latter pattern.

Similar to G we inductively define a binary relation zG between real and
natural numbers (used as bounds), this time with an initial clause. The
definition is no longer simultaneous with H, but the latter can be defined
independently in advance:

z∆(Z) := { (y,m) | m = 0 ∨ ∃r
x∈Z(y =

x

2
∧m = n+ 1) }.
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With zH = µZ
z∆(Z) we can now define

zΓ(X) := { (y,m) | m = 0 ∨ ∃r
(x,n)∈X∃a(y = −ax− 1

2
∧m = n+ 1) ∨

∃r
(x,n)∈zH(y =

x

2
∧m = n+ 1) }

and zG = µX
zΓ(X). From a proof of { (x, n) | coG(x) } ⊆ zG, we extract the

desired program to compute a prefix of a pre-Gray code of x of length n
which does not contain a subsequence of the form UDkFina from a pre-Gray
code of x. The associated algebra for zH it is just the natural numbers N,
and for zG it is zG with constructors

Nz: zG, LRz: PSD→ zG→ zG, Uz: N→ zG.

Lemma 4.15 (GenCoGLR). ∀nc
x ∀a(coG(x)→ coG(−ax−1

2 )).

Proof. Easy by coinduction. �

Lemma 4.16 (CoGToBGAux).

∀n∀nc
x (coG(x)→ zG(x, n)),

∀n∀nc
x (coH(x)→ zH(x, n) ∨ ∃r

y∈coG∃a(zG(y, n− 1) ∧ x = a
y + 1

2
)).

Proof. We prove both statements simultaneously by induction on n. The
case n = 0 is trivial. For the step case, we first assume coG(x1) and prove
(x1, n+ 1) ∈ zG. We have

∃r
x2∈coG∃a(x1 = −ax2 − 1

2
) ∨ ∃r

x2∈coH(x1 =
x2

2
).

(Case A) Suppose that the left hand side holds. Then, by induction
hypothesis applied to x2, we have zG(x2, n). Therefore (x1, n+1) ∈ zΓ(zG) =
zG because

∃r
(x2,n)∈zG∃a(x1 = −ax2 − 1

2
).

(Case B) Suppose that the right hand side holds. Then, x1 = x2
2 for

x2 ∈ coH. Therefore, by induction hypothesis,

zH(x2, n) ∨ ∃r
x3∈coG∃a(

zG(x3, n− 1) ∧ x2 = a
x3 + 1

2
).

(Case B1) Suppose that the left hand side holds. Then, since zH(x2, n)
and x1 = x2

2 , zG(x1, n+ 1) holds.
(Case B2) Suppose that the right hand side holds. Then,

x1 =
x2

2
= a3

x3 + 1

4
= −a3

−x3−1
2 − 1

2
= −a3

x4 − 1

2
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for some a3, x3 ∈ coG and x4 := −x3−1
2 . Since x1 = −a3

x4−1
2 , for our goal

zG(x1, n + 1) it suffices to prove zG(x4, n). In case n = 0 this follows from
the initial clause for zG, and in case n = m+ 1 it follows from zG(x3, n− 1)
by the first generating clause for zG, since x4 = −x3−1

2 .
Next, we suppose that coH(x1) and prove

zH(x1, n+ 1) ∨ ∃r
y∈coG∃a(zG(y, n) ∧ x1 = a

y + 1

2
).

The argument is almost the same as above. Since coH(x1), we have

∃r
x2∈coG∃a(x1 = a

x2 + 1

2
) ∨ ∃r

x2∈coH(x1 =
x2

2
).

(Case A) Suppose that the left hand side holds. We have x1 = a2
x2+1

2 for
a2 and x2 ∈ coG. By induction hypothesis, zG(x2, n). Therefore

∃r
y∈coG∃a(zG(y, n) ∧ x1 = a

y + 1

2
).

(Case B) Suppose that the right hand side holds. We have x1 = x2
2 for

x2 ∈ coH. By induction hypothesis,

zH(x2, n) ∨ ∃r
x3∈coG∃a(

zG(x3, n− 1) ∧ x2 = a
x3 + 1

2
).

(Case B1) Suppose that the left hand side holds. Then, since zH(x2, n)
and x1 = x2

2 , we have zH(x1, n+ 1).
(Case B2) Suppose that the right hand side holds. Then,

x1 =
x2

2
= a

x3 + 1

4
= a

x3−1
2 + 1

2
= a

x4 + 1

2

for x4 := x3−1
2 . We prove the right hand side of our goal for x4 and a. Since

x1 = ax4+1
2 it suffices to prove x4 ∈ coG and zG(x4, n). From x3 ∈ coG we

obtain x4 ∈ coG by Lemma 4.15. To prove zG(x4, n) we argue by cases on
n. In case n = 0 this follows from the initial clause for zG, and in case
n = m+ 1 it follows from zG(x3, n− 1) by the first generating clause for zG,
since x4 = x3−1

2 . �

Implicit algorithm. f : N→ G→ zG and g : N→ H→ N+PSD×G× zG
are defined by simultaneous recursion

f(0, p) = 0 g(0, q) = 0

f(n+ 1,LRa(p)) = LRza(f(n, p))

f(n+ 1,U(q)) = case g(n, q) of

m→ m
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(a, p, r)→ LRza(case n of

0→ 0

m+ 1→ LRz1(r))

g(n+ 1,Fina(p)) = (a, p, f(n, p)))

g(n+ 1,D(q)) = case g(n, q) of

m→ m+ 1

(a, p, r)→ (a,LR−1(p), f(n,LR−1(p)))

An immediate consequence is

Proposition 4.17 (CoGToBG). ∀n∀nc
x (coG(x)→ zG(x, n)).

5. Conversion from Gray-code to modified Gray expansion

As we studied in Section 2.1, each dyadic rational number has three re-
presentations of the forms s111̄ω, s1̄11̄ω and s⊥11̄ω in Gray-code, and only
the last one in modified Gray expansion. We show that Gray-code can be
converted to modified Gray expansion. We denote by K(RD) and L(RD)
the sets of compact and non-compact elements of RD , which coincide with
the sets of finite Gray-codes and infinite Gray-codes, respectively. We also
denote by M(L(RD)) the set of minimal elements of L(RD), which coincides
with the set of modified Gray expansions.

We say that s is a predecessor of t if s v t and no u ∈ K(RD) satisfies
s v u v t. ⊥ω have no predecessor, s′⊥11̄k, 1̄k and 11̄k have one predecessor,
and the other elements of K(RD) have two predecessors (see Figure 2). We
define a function ρ on K(RD) so that ρ(s) is the meet of the predecessors
of s for s 6= ⊥. In the following definition, a ∈ {1̄, 1}, k ≥ 0, s′ ∈ {1̄, 1}∗,
and a1̄k−1 means ⊥ω if k = 0.

ρ(s) =


⊥ω (s = ⊥ω)

s′⊥11̄k−1 (s = s′⊥11̄k)

a1̄k−1 (s = a1̄k)

s′⊥11̄k−1 (s = s′a11̄k)

Since ρ(s) v s, we have [[ρ(s)]] ⊇ [[s]]. Moreover, [[ρ(s)]] is the smallest
standard interval whose interior contains [[s]].

One can verify that ρ is monotonic. Therefore, ρ can be extended to a
continuous function from RD to RD because RD is a Scott-Ershov domain.
It is obvious that ρ(L(RD)) ⊆ L(RD). The following proposition says that
ρ is a conversion function from Gray-code to modified Gray expansion.
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Proposition 5.1. ρ is a retract function from L(RD) to M(L(RD)). That
is, ρ(t) ∈ M(L(RD)) and ρ(t) v t for t ∈ L(RD). In particular, ρ(t) = t
for t ∈M(L(RD)).

Proof. Since ρ(s) v s for s ∈ K(RD), ρ(t) v t for t ∈ L(RD), and therefore
ρ(t) = t for t ∈ M(L(RD)). We show ρ(L(RD)) ⊆ M(L(RD)). Suppose
that t ∈ L(RD) \M(L(RD)) and let t = sa11̄ω for some s ∈ {1̄, 1}∗ and
a ∈ {1̄, 1}. Since ρ(sa11̄k) = s⊥11̄k−1 for every k ≥ 0, ρ(t) = s⊥11̄ω ∈
M(L(RD)). �

We develop an algorithm to compute the function ρ at the level of pre-
Gray code, i.e. we transform a pre-Gray code p to a pre-Gray code p′ such
that ϕ(p′) = ρ(ϕ(p)), in particular p′ will be the modified Gray-expansion
of the real number denoted by p.

In the following, we sometimes write a for LRa for simplicity. Since
ρ(a11̄) = ⊥1 for a ∈ PSD, if the sequence begins with [LRa,LR1,LR−1],
then we apply Equation (9) from right to left and replace it with [U,Fina,LR−1]
and fix U. We write this rule simply as

a 1 1̄ 7→ U | Fina 1̄.

On the other hand, since ρ(a11)=a, if the sequence begins with [U,Fina,LR1],
we apply Equation (9) from left to right and replace it with [LRa,LR1,LR1]
and fix LRa. Therefore, we have

U Fina 1 7→ a 1 1.

Similarly, we have the following rules

Fina 1̄ 1̄ 7→ D | Fina 1̄,

D Fina 1 7→ Fina | 1̄ 1.

If the sequence does not match to these four patterns, then we fix the first
character. We repeat this procedure to the rest of the sequence. One can
verify that the implicit algorithm extracted from the proof of Proposition 5.5
behaves in this way.

We extract a program that converts Gray-code to modified Gray expan-
sion. To this end we define variants coM of coG and coN of coH. Recall that
the predicate (coG)r(p, y) expresses that p is a pre-Gray code of y by Proposi-
tion 3.2, and it is defined (as greatest fixed point) to mean that p = LRa(p

′),
y = −ax−1

2 and (coG)r(p′, x) or else p = U(q), y = x
2 and (coH)r(q, x). In

this definition, p = LR−1(p′) happens only if y ≤ 0, p = LR1(p′) happens
only if y ≥ 0 and p = U(q) happens only if −1

2 ≤ y ≤ 1
2 . Modified Gray

expansion is obtained by restricting these three cases to y < 0, y > 0, and
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−1
2 < y < 1

2 . Therefore, coM is defined so that the left clause of coG is

restricted to y 6= 0 and the right clause of coG is restricted to y 6= ±1
2 . A

similar restriction must be imposed on coH. Accordingly we define variants
Γ′, ∆′ of the operators Γ, ∆ by

Γ′(X,Y ) := { y | ∃r
x∈X∃a(y = −ax− 1

2
∧ y 6= 0) ∨ ∃r

x∈Y (y =
x

2
∧ y 6= ±1

2
) },

∆′(X,Y ) := { y | ∃r
x∈X∃a(y = a

x+ 1

2
∧ y 6= 0) ∨ ∃r

x∈Y (y =
x

2
∧ y 6= ±1

2
) }

and we define (coM, coN) := ν(X,Y )(Γ
′(X,Y ),∆′(X,Y )).

The corresponding realizability predicates are defined by the operators

(Γ′)r(Z,W ) := { (p, x) | ∃(p′,x′)∈Z∃a(x = −ax
′ − 1

2
∧ p = LRa(p

′) ∧ x 6= 0) ∨u

∃(q′,x′)∈W (x =
x′

2
∧ p = U(q′)) ∧ x 6= ±1

2
},

(∆′)r(Z,W ) := { (q, x) | ∃(p′,x′)∈Z∃a(x = a
x′ + 1

2
∧ q = Fina(p

′) ∧ x 6= 0) ∨u

∃(q′,x′)∈W (x =
x′

2
∧ q = D(q′)) ∧ x 6= ±1

2
}

as ((coM)r, (coN)r) := ν(Z,W )((Γ
′)r(Z,W ), (∆′)r(Z,W )).

The following proposition shows that coM is correct in the sense that the
realizers of coM(x) are exactly the pre-Gray codes of x that are mapped by
ϕ to a modified Gray-expansion of x.

Proposition 5.2. For cototal ideals p in G and x ∈ I
(coM)r(p, x)↔ ϕ(p) is a modified Gray-expansion of x.

Proof. This is a direct consequence of the following lemma, because the
modified Gray expansion of −1 and 1 are 1̄ω and 11̄ω, respectively, and
they are the only cases modified Gray expansion has the form s1̄ω for s ∈
{1̄, 1}∗. �

Lemma 5.3. For x ∈ I and cototal ideals p in G and q in H

(coM)r(p, x)↔ x = FG(p) ∧ (x ∈ {−1, 1} ∨ ϕ(p) 6= s1̄ω for s ∈ {1̄, 1}∗),
(coN)r(q, x)↔ x = FH(q) ∧ (x ∈ {−1, 1} ∨ ϕ(q) 6= s1̄ω for s ∈ {1̄, 1}∗).

Proof. (From left to right). First, obviously, (coM)r(p, x) → (coG)r(p, x)
and (coN)r(q, x) → (coH)r(q, x). Therefore, (coM)r(p, x) → x = FG(p) and
(coN)r(q, x)→ x = FH(q) holds by Proposition 3.2. We show

∀s,p,x((coM)r(p, x)→ x ∈ {−1, 1} ∨ ϕ(p) 6= s1̄ω)(28)
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∀s,q,x((coN)r(q, x)→ x ∈ {−1, 1} ∨ ϕ(q) 6= s1̄ω)(29)

by induction on the length |s| of s ∈ {1̄, 1}∗. As the base case, (28) holds
for |s| = 0 because ϕ(p) = 1̄ω ∧ x = FG(p) implies x = −1. We study
(29) for |s| = 0. We show that there is no pair (q, x) such that ϕ(q) = 1̄ω

and (coN)r(q, x). Suppose that such a pair exists. We have x = FH(q) and
FH(q) = 0 (cf. Figure 3 on page 11). Since (coN)r is a fixed point of (∆′)r,

∃p′,x′,a((coM)r(p′, x′) ∧ x = a
x′ + 1

2
∧ p = Fina(p

′) ∧ x 6= 0)

or

∃q′,x′((coN)r(q′, x′) ∧ x =
x′

2
∧ p = D(q′) ∧ x 6= ±1

2
).

Since x = 0, we have the latter case and p = D(q′) and (coN)r(q′, 0). Again
for q′, we have q′ = D(q′′) and (coN)r(q′′, 0). In this way, we have q = Dω

and ϕ(q) = ⊥1̄ω, and we have contradiction. Thus, (29) holds for |s| = 0.
Suppose that (28) and (29) hold for |s| = n and prove (28) for |s| = n+1.

Suppose that (coM)r(p, x). Since (coM)r is a fixed point of (Γ′)r,

∃p′,x′,a((coM)r(p′, x′) ∧ x = −ax
′ − 1

2
∧ p = LRa(p

′) ∧ x 6= 0)

or

∃q′,x′((coN)r(q′, x′) ∧ x =
x′

2
∧ p = U(q′) ∧ x 6= ±1

2
.

In the former case, by induction hypothesis, x′ ∈ {−1, 1} or else ϕ(p′) 6= s1̄ω

for any s ∈ {1̄, 1}n. The case x′ = 1 does not happen because x 6= 0.
If x′ = −1, then x ∈ {−1, 1}. If ϕ(p′) 6= s1̄ω for any s ∈ {1̄, 1}n, then
ϕ(p) = ϕ(LRa(p

′)) = a : ϕ(p′) 6= s′1̄ω for any s′ ∈ {1̄, 1}n+1.
In the latter case, by induction hypothesis, x′ ∈ {−1, 1} or else ϕ(q′) 6=

s1̄ω for any s ∈ {1̄, 1}n. The case x′ ∈ {−1, 1} does not happen because
x 6= ±1

2 . Suppose that ϕ(q′) 6= s1̄ω for any s ∈ {1̄, 1}n. We have, for
a : t = ϕ(q′), ϕ(p) = ϕ(U(q′)) = a : 1 : t and a : 1 : t 6= s′1̄ω for any
s′ ∈ {1̄, 1}n+1.

The step case of (29) is similar and we omit it.
(From right to left). Easily proved by coinduction. �

Remark 5.4. From coG = Γ(coG, coH) and coH = ∆(coG, coH) we know that
γa(x) := −ax−1

2 ∈
coG (x ∈ coH) and δa(x) := ax+1

2 ∈
coH (x ∈ coG).

Proposition 5.5 (CoGToCoM).

∀nc
x (coG(x)→ coM(x)),

∀nc
x (coH(x)→ coN(x)).
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Proof. For P := coG and Q := coH we show P ⊆ coM simultaneously with
Q ⊆ coN . By coinduction it suffices to prove (i) P ⊆ Γ′(coM ∪ P, coN ∪ Q)
and (ii) Q ⊆ ∆′(coM ∪ P, coN ∪ Q). For (i), let x0 ∈ P . We show x0 ∈
Γ′(coM ∪ P, coN ∪Q):

(30) ∃r
x∈coM∪P∃a(x0 = −ax− 1

2
∧ x0 6= 0) ∨ ∃r

x∈coN∪Q(x0 =
x

2
∧ x0 6= ±

1

2
).

The coG-clause applied to x0 ∈ coG gives us

(31) ∃r
x∈coG∃a(x0 = −ax− 1

2
) ∨ ∃r

x∈coH(x0 =
x

2
).

Case ga. The lhs of (31) holds. We have x1 ∈ coG and a1 with x0 = −a1
x1−1

2 .
The coG-clause applied to x1 ∈ coG gives us

(32) ∃r
x∈coG∃a(x1 = −ax− 1

2
) ∨ ∃r

x∈coH(x1 =
x

2
).

Case gaa. The lhs of (32) holds. We have x2∈coG and a2 with x1 = −a2
x2−1

2 .
Case ga1̄. Assume a2 = −1. Go for the lhs of (30) with x1 ∈ P and a1.

The goal x0 = −a1
x1−1

2 holds by the choice of x1, a1. Since x2 ∈ [−1, 1],

x1 = x2−1
2 6= 1. Thus, x0 = −a1

x1−1
2 6= 0.

Case ga1. Assume a2 = 1. The coG-clause applied to x2 ∈ coG gives us

(33) ∃r
x∈coG∃a(x2 = −ax− 1

2
) ∨ ∃r

x∈coH(x2 =
x

2
).

Case ga1a. The lhs of (33) holds. We have x3∈coG and a3 with x2=−a3
x3−1

2 .
Case ga11̄. Assume a3 = −1. Go for the rhs of (30) with x = δa1(x2) :=

a1
x2+1

2 ∈ Q (since x2 ∈ coG implies δa(x2) ∈ coH). The goal x0 = x
2 holds

since

x0 = −a1
x1 − 1

2
= −a1

−a2
x2−1

2 − 1

2
= a1

x2 − 1 + 2

4
=
x

2
.

On the other hand, since x3 ∈ [−1, 1], x2 = x3−1
2 ∈ [−1, 0] and therefore,

x0 = a1
x2+1

4 ∈ [−1
4 ,

1
4 ]. Thus, x0 6= ±1

2 .
Case ga11. Assume a3 = 1. Go for the lhs of (30) with x1 ∈ P and a1.

The goal x0 = −a1
x1−1

2 holds by the choice of x1, a1. Since x3 ∈ [−1, 1],

x2 = −x3−1
2 ∈ [0, 1] and hence x1 = −x2−1

2 6= 1. Thus, x0 = −a1
x1−1

2 6= 0.
Case ga1U. The rhs of (33) holds. We have x3 ∈ coH with x2 = x3

2 .

Go for the lhs of (30) with x = x1 ∈ Q and a1. The goal x0 = −a1
x1−1

2

holds by the choice of x1, a1. Since x3 ∈ [−1, 1], x2 ∈ [−1
2 ,

1
2 ] and therefore

x1 = −x2−1
2 6= 1. Thus, x0 = −a1

x1−1
2 6= 0.
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Case gaU. The rhs of (32) holds. We have x2 ∈ coH with x1 = x2
2 . Go for

the lhs of (30) with x = x1 ∈ Q and a1. The goal x0 = −a1
x1−1

2 holds by the

choice of x1, a1. Since x2 ∈ [−1, 1], x1 = x2
2 6= 1. Thus, x0 = −a1

x1−1
2 6= 0.

Case gU. The rhs of (31) holds. We have x1 ∈ coH with x0 = x1
2 . We

now proceed as above, applying the coH-clause to x1 ∈ coH, and complete
the proof of (i). The proof for (ii) is similar, and we omit it. �

Implicit algorithm. g : G→ G and h : H→ H, defined by (with a for LRa)

g(a(1̄(p))) = a(g(1̄(p))) h(Fina(1̄(1̄(p)))) = D(h(Fina(1̄(p))))

g(a(1(1̄(p)))) = U(h(Fina(1̄(p)))) h(Fina(1̄(1(p)))) = Fina(g(1̄(1(p))))

g(a(1(1(p)))) = a(g(1(1(p)))) h(Fina(1̄(U(q)))) = Fina(g(1̄(U(q))))

g(a(1(U(q)))) = a(g(1(U(q)))) h(Fina(1(p))) = Fina(g(1(p)))

g(a(U(q))) = a(g(U(q))) h(Fina(U(q))) = Fina(g(U(q)))

g(U(Fina(1̄(p)))) = U(h(Fina(1̄(p)))) h(D(Fina(1̄(p)))) = D(h(Fina(1̄(p))))

g(U(Fina(1(p)))) = a(g(1(1(p)))) h(D(Fina(1(p)))) = Fina(g(1̄(1(p))))

g(U(Fina(U(q)))) = U(h(Fina(U(q)))) h(D(Fina(U(q)))) = D(h(Fina(U(q))))

g(U(D(q))) = U(h(D(q))) h(D(D(q))) = D(h(D(q)))

Modified Gray expansion is a more desirable representation of real num-
bers than Gray-code in that it gives the unique code to each real number.
However, a program which input and output modified Gray expansion is
usually not easy to write, as the above conversion program indicates.

When the above program cCoGToModCoG is composed with a program
which inputs and outputs Gray-code, one obtains a program that inputs and
outputs modified Gray expansion since a modified Gray expansion is itself
a Gray-code. For example, cCoGAverage ◦ cCoGToModCoG is an average
program on modified Gray expansion. Therefore, by constructing a program
which inputs and outputs Gray-code, one automatically obtains a program
which inputs and outputs modified Gray expansion.

6. Minlog and program extraction

Minlog is a proof assistant designed to study constructive proofs and their
realizers, or more precisely the theory TCF [10]. All proofs in Sections 4 and
5 have been formalized in Minlog3 and their realizers extracted, as terms in
an extension of Gödel’s T . In this section we present the extracted terms and

3See http://www.minlog-system.de/, which gives instructions on how to download (or
clone) the system and the necessary software (Scheme in this case). The formalizations
can be found in the directory minlog/examples/analysis/gray.scm.
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discuss how they operate. They involve recursion and corecursion operators
where the original proofs used induction or coinduction axioms, and the
conversion rules for these operators determine how the extracted terms can
be used as programs. The results of such an analysis have been shown in
Sections 4 and 5 under the label “implicit algorithm”.

6.1. Corecursion. Recall the type of the corecursion operator for I:

(34) coRτI : τ → (τ → SD× (I + τ))→ I.

The type SD× (I + τ) appears since I has the single constructor C of type
SD→ I→ I. The meaning of coRτINM is defined by the conversion rule

coRτINM 7→ Cπ1(MN)([id
I→I, λy(

coRτIyM)]π2(MN)).

We have used π1, π2 for the two projections of type ρ× σ, and the notation
[f, g] : ρ+ σ → τ (for f : ρ→ τ and g : σ → τ) defined by

[f, g](z) :=

{
f(x) if z = inl(x),

g(y) if z = inr(y).

We will also need the simultaneous corecursion operators coR(G,H),(σ,τ)
G

and coR(G,H),(σ,τ)
H for G, H, of type

coR(G,H),(σ,τ)
G : σ → δG → δH → G

coR(G,H),(σ,τ)
H : τ → δG → δH → H

(35)

with step types

δG := σ → PSD× (G + σ) + (H + τ),

δH := τ → PSD× (G + σ) + (H + τ).

The type PSD×(G+σ)+(H+τ) appears since G has the two constructors
LR: PSD → G → G and U: H → G, and H has the two constructors
Fin: PSD → G → H and D: H → H. Omitting the upper indices of coR,
the terms coRGNMM ′ and coRHN

′MM ′ are defined by the conversion
rules

coRGNMM ′ 7→

{
LRπ1(u)([id, λy(

coRGyMM ′)]π2(u)) if MN = inl(u)

U([id, λz(
coRHzMM ′)]v) if MN = inr(v)

coRHN
′MM ′ 7→

{
Finπ1(u)([id, λy(

coRGyMM ′)]π2(u)) if M ′N ′ = inl(u)

D([id, λz(
coRHzMM ′)]v) if M ′N ′ = inr(v)
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6.2. Notational conventions of Minlog. Types:

iv, ag, ah, bg base types for the algebra I, G, H, zG

rho=>sigma function type

rho@@sigma product type

rho ysum sigma sum type

Variables (with fixed types)

v, p, q of type I, G and H

d, a, i of type SD, PSD, SD2

ivw of type SD2 × I× I

jdvw of type SD2 × SD× I× I

ap of type PSD×G

apq of type PSD× (G + H)

bv of type PSD× I

ipp of type SD2 ×G×G

idpp of type SD2 × SD×G×G

psf of type (G→ zG× zG)× (H→ (N + PSD×G× zG)2)

apbg of type PSD×G× zG

Constants

Rec, CoRec recursion, corecursion

Des destructor

PsdToSd embedding of PSD into SD

plus, times, inv arithmetic in SD

cL realizer for lemma L

Terms

[x]r lambda abstraction λxr

r@s product term

left r, right r components (prefix, binding strongest)

InL, InR injections into a sum type

6.3. CoIAverage. We analyze the term in Figure 4 extracted from CoI-
Average. The first argument N of the corecursion operator destructs v, v0
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[v,v0](CoRec sdtwo@@iv@@iv=>iv)

(left Des v plus left Des v0@right Des v@right Des v0)

([ivw][let jdvw

(J left Des left right ivw

left Des right right ivw

left ivw@

K left Des left right ivw

left Des right right ivw

left ivw@

right Des left right ivw@

right Des right right ivw)

(left right jdvw@InR(left jdvw@right right jdvw))])

Figure 4. Extracted term for CoIAverage.

into their components (d, v), (e, w) and forms (d + e, v, w). The step func-
tion M , when applied to an argument ivw of type τ = SD2 × I × I, M
gives a result of type SD × (I + τ), as follows. Destruct ivw into the form
(i, (d, v), (e, w)), and let jdvw be the quadruple (J(d, e, i),K(d, e, i), v, w).
Return (K(d, e, i), inr(J(d, e, i), v, w)).

Hence we can write λy
coRτIyM as a function f : τ → I defined by

f(i,Cd(v),Ce(w)) = CK(d,e,i)(f(J(d, e, i), v, w)).

6.4. CoGToCoI. Consider the term in Figure 5 extracted from Lemma 4.5
(CoGToCoIAux). We analyze the second argument M of the corecursion
operator (the “step term”). When applied to an argument N of type τ =
PSD× (G + H), M returns a result of type SD× (I + τ); it will be in the
right part of I + τ (i.e., here we do not use the fact that our coinductive
definitions are in “strengthened” form). Consider the right hand side N2 of
N , of type G + H.

Case 1. If N2 is of the form inl(p) with p of type G, destruct p. Recall that
G has two constructors, LR and U. If p is of the form LRb(p

′), the result is
(ab, inr(−ab, inl(p′))). If p is of the form U(q), the result is (0, inr(a, inr(q))).

Case 2. If N2 is of the form inr(q) with q of type H, destruct q. Recall that
H has two constructors, Fin and D. If q is of the form Finb(p), the result is
(ab, inr(ab, inl(p))). If q is of the form D(q′), the result is (0, inr(a, inr(q′))).
Hence λy

coRτIyM is a function [f, g] : PSD×G+PSD×H→ I defined by

f(a,LRb(p)) = Cab(f(−ab, p)), g(a,Finb(p)) = Cab(f(ab, p)),
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[apq](CoRec psd@@(ag ysum ah)=>iv)apq

([apq0][case (right apq0)

(InL p -> [case (Des p)

(InL ap ->

PsdToSd(left apq0 times left ap)@

InR(inv(left apq0 times left ap)@InL right ap))

(InR q -> Mid@InR(left apq0@InR q))])

(InR q -> [case (Des q)

(InL ap ->

PsdToSd(left apq0 times left ap)@

InR(left apq0 times left ap@InL right ap))

(InR q0 -> Mid@InR(left apq0@InR q0))])])

Figure 5. Extracted term for CoGToCoIAux.

f(a,U(q)) = C0(g(a, q)), g(a,D(q)) = C0(g(a, q)).

6.5. CoIToCoG. For Lemma 4.7 (CoIToCoGAux) we obtain the extracted
term in Figure 6.

[bv](CoRec psd@@iv=>ag psd@@iv=>ah)bv

([bv0][case (left Des right bv0)

(Lft -> InL(inv left bv0@InR(PRht@right Des right bv0)))

(Rht -> InL(left bv0@InR(PLft@right Des right bv0)))

(Mid -> InR(InR(left bv0@right Des right bv0)))])

([bv0][case (left Des right bv0)

(Lft -> InL(inv left bv0@InR(PLft@right Des right bv0)))

(Rht -> InL(left bv0@InR(PRht@right Des right bv0)))

(Mid -> InR(InR(left bv0@right Des right bv0)))])

Figure 6. Extracted term for CoIToCoGAux.

To understand this term recall the type (35) of the simultaneous corecur-

sion operators coR(G,H),(τ,τ)
G and coR(G,H),(τ,τ)

H , or shortly coRG and coRH,
with τ := PSD× I and step types δ := τ → PSD× (G+ τ) + (H+ τ). We
again analyze the particular step functions M,M ′ extracted from our proof.
When applied to an argument N of type τ = PSD× I, M returns a result
of type PSD× (G+ τ) + (H+ τ), in the right part of G+ τ or H+ τ . Let
N = (b, v) with v of type I, of the form Cd(v

′). The result is

inl(−b, inr(1, v′)) if d = −1,
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inl(b, inr(−1, v′)) if d = 1,

inr(inr(b, v′)) if d = 0.

Similarly, when applied to an argument N of type τ = PSD× I, M ′ returns
a result of type PSD× (G + τ) + (H + τ). Let N = (b, v) with v of type I,
of the form Cd(v

′). The result is

inl(−b, inr(−1, v′)) if d = −1,

inl(b, inr(1, v′)) if d = 1,

inr(inr(b, v′)) if d = 0.

Hence we can write the two functions λy
coRGyMM ′ and λy

coRHyMM ′

as g : τ → G and h : τ → H defined by

g(b,C−1(v)) = LR−b(g(1, v)), h(b,C−1(v)) = Fin−b(g(−1, v)),

g(b,C1(v)) = LRb(g(−1, v)), h(b,C1(v)) = Finb(g(1, v)),

g(b,C0(v)) = U(h(b, v)), h(b,C0(v)) = D(h(b, v)).

6.6. CoGAverage. For Lemma 4.9 (CoGMinus) the extracted term is shown
in Figure 7.

[p](CoRec ag=>ag ah=>ah)p

([p0][case (Des p0)

(InL ap -> InL(inv left ap@InL right ap))

(InR q -> InR(InR q))])

([q][case (Des q)

(InL ap -> InL(inv left ap@InL right ap))

(InR q0 -> InR(InR q0))])

Figure 7. Extracted term for CoGMinus.

We need simultaneous corecursion operators coR(G,H),(σ,τ)
G , coR(G,H),(σ,τ)

H
of type (35). By analyzing the particular step functions M,M ′ extracted
from our proof we see that we can write λy

coRGyMM ′ and λz
coRHzMM ′

as functions f : σ → G and f ′ : τ → H defined by

f(LRa(p)) = LR−a(p), f ′(Fina(p)) = Fin−a(p),

f(U(q)) = U(f ′(q)), f ′(D(q)) = D(f ′(q)).

Lemma 4.9 (CoGMinus) gave us Lemma 4.10 (CoHToCoG).
The extracted term in Figure 8 clearly represents the functions shown as

implicit algorithm in Section 4.4.
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[q](CoRec ah=>ag ag=>ah)q

([q0][case (Des q0)

(InL ap -> InL(left ap@InL(cCoGMinus right ap)))

(InR q1 -> InR(InL q1))])

([p][case (Des p)

(InL ap -> InL(left ap@InL(cCoGMinus right ap)))

(InR q0 -> InR(InL q0))])

Figure 8. Extracted term for CoHToCoG.

We now come to the average for Gray-code. As a preparation we need
an easy consequence of CoGMinus, a lemma CoGPsdTimes with extracted
term [a,p][case a (PLft -> cCoGMinus p) (PRht -> p)].

For Lemma 4.11 (CoGAvToAvc) the extracted term in Figure 9 again
clearly represents the function shown as implicit algorithm in Section 4.4.

[p,p0][case (Des p)

(InL ap ->

[case (Des p0)

(InL ap0 -> left ap plus left ap0@

cCoGPsdTimes inv left ap right ap@

cCoGPsdTimes inv left ap0 right ap0)

(InR q -> left ap plus Mid@

cCoGPsdTimes inv left ap right ap@

cCoHToCoG q)])

(InR q ->

[case (Des p0)

(InL ap -> Mid plus left ap@

cCoHToCoG q@

cCoGPsdTimes inv left ap right ap)

(InR q0 -> MT@cCoHToCoG q@cCoHToCoG q0)])]

Figure 9. Extracted term for CoGAvToAvc.

For Lemma 4.12 (CoGAvcSatCoICl) the extracted term is shown in Fi-
gure 10. It is rather easy to parse into how it is written in Section 4.4.

For Lemma 4.13 (CoGAvcToCoG) we need as a preparation an easy
lemma SdDisj: ∀d(d = 0 ∨ ∃a(d = a)), with extracted term

[d][case d (Lft -> Inr PLft) (Rht -> Inr PRht) (Mid -> DummyL)]
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[i,p,p0][case (Des p)

(InL ap ->

[case (Des p0)

(InL ap0 -> J(PsdToSd left ap)(PsdToSd left ap0)i@

K(PsdToSd left ap)(PsdToSd left ap0)i@

cCoGPsdTimes inv left ap right ap@

cCoGPsdTimes inv left ap0 right ap0)

(InR q -> J(PsdToSd left ap)Mid i@

K(PsdToSd left ap)Mid i@

cCoGPsdTimes inv left ap right ap@

cCoHToCoG q)])

(InR q ->

[case (Des p0)

(InL ap -> J Mid(PsdToSd left ap)i@

K Mid(PsdToSd left ap)i@

cCoHToCoG q@

cCoGPsdTimes inv left ap right ap)

(InR q0 -> J Mid Mid i@K Mid Mid i@

cCoHToCoG q@cCoHToCoG q0)])]

Figure 10. Extracted term for CoGAvcSatCoICl.

It is easy to see that the extracted term for Lemma 4.13 (in Figure 11) gives
the algorithm in Section 4.4.

Now for Proposition 4.14 (CoGAverage) the extracted term is obtained
just by composition of those for Lemmata 4.11 and 4.13:

[p,p0]cCoGAvcToCoG(cCoGAvToAvc p p0)

6.7. CoGToBG. For Lemma 4.16 again the extracted term (see Figure 12)
represents the algorithms given in Section 4.5

6.8. CoGToCoM. Finally Figure 13 gives the term extracted from our
proof of Proposition 5.5.
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[n](Rec nat=>(ag=>bg@@bg)@@

(ah=>(nat ysum psd@@ag@@bg)@@

(nat ysum psd@@ag@@bg)))

n
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(InR q -> Uz Zero)])@

([q]InL Zero@

[case (Des q)

(InL ap -> InR(left ap@right ap@Nz))

(InR q0 -> InL(Succ Zero))]))

([n0,psf]

([p]right(left psf p)@

[case (Des p)
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(InR q ->
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[p](CoRec ag=>ag ah=>ah)p

([p0][case (Des p0)

(InL ap -> [case (Des right ap)

(InL ap0 -> [case (left ap0)

(PLft -> InL(left ap@InR right ap))

(PRht -> [case (Des right ap0)

(InL ap1 -> [case (left ap1)

(PLft -> InR(InR(cCoHClauseInv

(InL(left ap@right ap0)))))

(PRht -> InL(left ap@InR right ap))])

(InR q -> InL(left ap@InR right ap))])])

(InR q -> InL(left ap@InR right ap))])

(InR q -> [case (Des q)

(InL ap -> [case (Des right ap)

(InL ap0 -> [case (left ap0)

(PLft -> InR(InR(cCoHClauseInv(InL ap))))

(PRht -> InL(left ap@InR(cCoGClauseInv

(InR(cCoHClauseInv(InL(PRht@right ap0)))))))])

(InR q0 -> InR(InR(cCoHClauseInv(InL ap))))])

(InR q0 -> InR(InR q))])])

([q][case (Des q)

(InL ap -> [case (Des right ap)

(InL ap0 -> [case (left ap0)

(PLft -> [case (Des right ap0)

(InL ap1 -> [case (left ap1)

(PLft -> InR(InR(cCoHClauseInv

(InL(left ap@right ap0)))))

(PRht -> InL(left ap@InR right ap))])

(InR q0 -> InL(left ap@InR right ap))])

(PRht -> InL(left ap@InR right ap))])

(InR q0 -> InL(left ap@InR right ap))])

(InR q0 -> [case (Des q0)

(InL ap -> [case (Des right ap)

(InL ap0 -> [case (left ap0)

(PLft -> InR(InR(cCoHClauseInv(InL ap))))

(PRht -> InL(left ap@InR(cCoGClauseInv

(InR(cCoHClauseInv(InL(PLft@right ap0)))))))])

(InR q1 -> InR(InR(cCoHClauseInv(InL ap))))])

(InR q1 -> InR(InR q0))])])

Figure 13. Extracted term for CoGToCoM.


