
PROGRAM EXTRACTION IN EXACT REAL

ARITHMETIC

KENJI MIYAMOTO AND HELMUT SCHWICHTENBERG

Abstract. The importance of an abstract approach to a computation
theory over general data types has been stressed by John Tucker in
many of his papers. Ulrich Berger and Monika Seisenberger recently
elaborated the idea for extraction out of proofs involving (only) abstract
reals. They considered a proof involving coinduction of the proposition
that any two reals in [−1, 1] have their average in the same interval,
and informally extract a Haskell program from this proof, which works
with stream representations of reals. Here we formalize the proof, and
machine-extract its computational content using the Minlog proof assis-
tant. This required an extension of this system to also take coinduction
into account.

Keywords: Program extraction, exact real numbers, coinduction,
corecursion, streams.

Extraction of programs from constructive proofs has received extensive
interest in recent years [11, 18]. Here we concentrate on an application area
of particular importance, namely exact real arithmetic, seen as a subfield of
constructive analysis. A standard way to approach the subject is to base
the study on a concrete representation of (constructive) real numbers, like
Cauchy sequences with a modulus [17, 14]. However, an attractive alterna-
tive to such an approach has been proposed by [5]: one might start out with
an abstract theory of reals instead. But then the immediate question is:
how could one associate computational content with a formula ∀x . . . where
x ranges over abstract reals? By the very idea of abstractness we do (and
should) not know the type of x; in fact, it may be a type variable. Therefore
the quantifier ∀x should have no computational significance. Following [3]
we use a “non-computational” universal quantifier ∀ncx instead, and move the
computational content of our assumption into a predicate, i.e., we consider
∀ncx (Px → . . . ) instead. This leaves the exact form of realizers for Px and
hence the data type we use for representing real numbers open. Particularly
relevant for concrete computations with exact real numbers is a stream rep-
resentation based on signed digits, say −1, 0, 1. This has been realized very
early: the thesis of [20, 21] (supervised by Engeler) is an example, and it is
noted there that already Cauchy saw the usefulness of such a representation.
Now how can we achieve that Px has a stream of signed digits as realizer?
An obvious way is to define the predicate P coinductively.

Date: February 13, 2012.
Kenji Miyamoto is supported by the Marie Curie Initial Training Network in Mathe-

matical Logic – MALOA – From MAthematical LOgic to Applications, PITN-GA-2009-
238381.

1



2 KENJI MIYAMOTO AND HELMUT SCHWICHTENBERG

More precisely, we start out with a (free) algebra I of “lists of signed
digits”, given by a nullary constructor I of type I and a binary constructor
C of type SD → I → I. Here SD are the “signed digits” −1, 0, 1 (or
L,M,R for left, middle, right); we write Cdv for Cdv. The intuition is that
each signed digit indicates the subinterval of the half length. For example,
I means [−1, 1], C0I means [−1

2 ,
1
2 ] and C1C0I means [14 ,

3
4 ]. Now define

inductively a set I of (abstract) reals, by the clauses

(1) I0, ∀ncx ∀d
(
Ix→ I

x+ d

2

)
.

Clearly, a witness for a proposition Ir according to the two clauses above
can be seen as a constructor expression in our algebra I, or alternatively as
a “total ideal” in the intended model (the base domain of the Scott-Ershov
model of partial continuous functionals over free algebras; cf. Section 1.1 or
[18] for details). For I we can (as for every inductively defined predicate) de-
fine its “companion”, the coinductively defined predicate coI, by the (single)
clause

(2) ∀ncx
(
coIx→ x = 0 ∨ ∃ry∃d(x =

y + d

2
∧ coIy)

)
.

Here ∃ry indicates that the existentially quantified variable y is disregarded in
the realizability interpretation; cf. Section 1.3. A witness for a proposition
coIr according to this clause can be seen as a finite or infinite stream of
signed digits, indicating which signed digit d has been chosen in the second
disjunct, and stopping if the first disjunct is taken. Such objects can be seen
as “cototal ideals” for the algebra I (see loc. cit. for details). Now we can
formulate the proposition to be proved:

∀ncx,y(coIx→ coIy → coI
x+ y

2
),

where addition + and the division by 2 are performed on the abstract level.
By the above the computational content of this proposition will be a stream
transformer from two streams realizing coIx and coIy into another stream
realizing coI x+y2 , and this is exactly what we want.

Now what will be special in the proof of our proposition? First of all, to
reasonably work with the predicate coI we will need coinduction, or more
precisely, the greatest-fixed-point axiom for coI. On the level of extracted
terms we will have to provide the corecursion operator, as the computational
content of coinduction. The main contribution of the work reported in
this paper is an appropriate extension of the general extraction mechanism
(based on realizability) as implemented in the proof assistant Minlog1, and
its application in the present example.

Comparison with the literature. The importance of an abstract ap-
proach to a computation theory over general data types has been stressed
by John Tucker in many of his papers (for instance [19]). In Berger and
Seisenberger [5] the idea for extraction out of proofs involving (only) ab-
stract reals is presented. Moreover, they give a proof of the proposition
above about the average, and informally extract a Haskell program from

1See http://www.minlog-system.de



PROGRAM EXTRACTION IN EXACT REAL ARITHMETIC 3

this proof. Here we formalize the proof, and machine-extract its computa-
tional content using the Minlog proof assistant. This required an extension
of this system to also take coinduction into account.

The average function has been studied from an exact real number per-
spective by Plume [15] and Ciaffaglione and Gianantonio in [8]. The latter
paper starts with explicit definitions of stream transformers; correctness is
verified in the proof assistant Coq [9]. Work involving coinduction is also
prominent in the proof assistant Agda [1]; see the recent PhD thesis of Chi
Ming Chuang [7]. However, in Agda whole proofs are taken as programs
(not only their computationally relevant parts), and this causes difficulties.

1. The formal system

We discuss particular features of the underlying formal system TCF (“the-
ory of computable functionals”, cf. [18]), which are relevant for the example
at hand.

1.1. Algebras and their total and cototal ideals. Rather than working
with algebras and coalgebras in a categorical setting (as for instance done
in [5]), we just use (free) algebras to generate the basic domains of the
Scott-Ersov model of partial continuous functionals, and let the ground type
variables range over the ideals (defined as deductively closed consistent sets
of tokens, cf. [18]) in this domain. As an example, consider the algebra I of
standard intervals introduced above, and let C range over its constructors.

(a) The tokens a are the type correct constructor expressions Ca∗1 . . . a
∗
n

where a∗i is an extended token, i.e., a token or the special symbol ∗
which carries no information.

(b) A finite set U of tokens is consistent if all its elements start with the
same constructor C, say of arity τ1 → . . . → τn → I, and all Ui are
consistent (i = 1, . . . , n), where Ui consists of all (proper) tokens at the

i-th argument position of some token in U = {C ~a∗1, . . . ,C ~a∗m}.
(c) {C ~a∗1, . . . ,C ~a∗m} ` C′ ~a∗ (read “entails”) is defined to mean C = C′,

m ≥ 1 and Ui ` a∗i , with Ui as in (b) above (and U ` ∗ taken to be
true).

To define total and cototal ideals, consider a constructor tree P (∗) with a

distinguished occurrence of ∗. Then an arbitrary P (C ~a∗) is called one-step

extension of P (∗), written P (C ~a∗) �1 P (∗). An ideal x is called cototal if
every constructor tree P (∗) ∈ x has a �1-predecessor P (C~∗ ) ∈ x; it is called
total if it is cototal and the relation �1 on x is well-founded. Every total
ideal then can be seen as a standard interval

Ii·2−k,k := [
i

2k
− 1

2k
,
i

2k
+

1

2k
] for −2k < i < 2k.

However, the cototal ideals include {Cn
−1∗ | n ≥ 0 }, a “stream” represen-

tation of the real −1, and also {C−1C
n
1∗ | n ≥ 0 } and {C1C

n
−1∗ | n ≥ 0 },

which both represent the real 0. Generally, the cototal ideals give us all
reals in [−1, 1], in the (non-unique) stream representation via signed digits
−1, 0, 1.



4 KENJI MIYAMOTO AND HELMUT SCHWICHTENBERG

1.2. Corecursion. Streams are infinite objects, and require a special treat-
ment when computing with them. It is well-known that an arbitrary “reduc-
tion sequence” beginning with a term in Gödel’s T terminates. For this to
hold it is essential that the constants allowed in T are restricted to construc-
tors C and (structural) recursion operators R. A consequence will be that
every closed term of a base type denotes a total ideal. The conversion rules
for R work from the leaves towards the root, and terminate because total
ideals are well-founded. If, however, we deal with cototal ideals (streams,
for example), then a similar operator is available to define functions with co-
total ideals as values, namely “corecursion”. The corecursion operator coRτI
is used to construct a mapping from τ to I by corecursion on the structure
of I. Its type and conversion relation is as follows.

coRτI : τ → (τ → U + SD× (I + τ))→ I,
coRτINM 7→ [λ I, λd,z(Cd([λ I, λu(coRτIuM)]z))](MN)

or in a more readable notation
coRτINM 7→ [case (MN)U+SD×(I+τ) of

inl 7→ I |
inr〈d, z〉 7→ Cd[case zU+τ of

inl 7→ I |
inr uτ 7→ coRτIuM ]].

(3)

Note that U is the unit type, and for f : ρ→ τ and g : σ → τ , [f, g] of type
ρ+ σ → τ is recursively defined on the sum type.

[f, g](inlxρ) = fx,

[f, g](inryσ) = gy.

As an example of a function defined by corecursion consider the transfor-
mation of an abstract real in the interval [−1, 1] into a stream representation
using signed digits. Assume that we work in an abstract (axiomatic) theory
of reals, having an unspecified type ρ, and that we have a type Q for ratio-
nals as well. Assume that the abstract theory provides us with a function
g : ρ→ Q→ Q→ B (B is the type of booleans) comparing a real x with a
proper rational interval p < q:

g(x, p, q) = tt→ x ≤ q,
g(x, p, q) = ff → p ≤ x.

From g we define a function h : ρ→ U + SD× (I + ρ) by

h(x) :=


inr〈−1, inr(2x+ 1)〉 if g(x,−1

2 , 0) = tt,

inr〈0, inr(2x)〉 if g(x,−1
2 , 0) = ff, g(x, 0, 12) = tt,

inr〈1, inr(2x− 1)〉 if g(x, 0, 12) = ff.

h is definable by a closed term M in Gödel’s T. Then the desired function
f : ρ→ I transforming an abstract real x into a cototal ideal (i.e., a stream)
in I can be defined by

f(x) := coRρIxM.

This f(x) will thus be a stream of signed digits −1, 0, 1.



PROGRAM EXTRACTION IN EXACT REAL ARITHMETIC 5

1.3. Realizability. We now address the issue of extracting computational
content from proofs. The method of program extraction is based on modified
realizability as introduced by Kreisel [12] and described in detail in [18]. In
short, from every constructive proof M of a non-Harrop formula A (in na-
tural deduction) one extracts a program et(M) “realizing” A, essentially by
removing computationally irrelevant parts from the proof (proofs of Harrop
formulas have no computational content). The extracted program has some
simple type τ(A) which depends solely on the logical shape of the proven for-
mula A. In its original form the extraction process is fairly straightforward,
but often leads to unnecessarily complex programs. In order to obtain better
programs, proof assistants (for instance Coq, Isabelle/HOL, Agda, Nuprl,
Minlog) offer various optimizations of program extraction. Below we de-
scribe optimizations implemented in Minlog [16], which are relevant for our
present case study.

Quantifiers without computational content. Besides the usual quantifiers,
∀ and ∃, Minlog has so-called non-computational quantifiers, ∀nc and ∃r,
which allow for the extraction of simpler programs. These quantifiers, which
were first introduced by Berger in [2], can be viewed as a refinement of the
Set/Prop distinction in constructive type systems like Coq or Agda. Intu-
itively, a proof of ∀ncx A(x) (A(x) non-Harrop) represents a procedure that
assigns to any x a proof M(x) of A(x) where M(x) does not make “compu-
tational use” of x, i.e., the extracted program et(M(x)) does not depend on
x. Dually, a proof of ∃rxA(x) is a proof of M(x) for some x where the witness
x is “hidden”, that is, not available for computational use (the “r” stands
for “right”); in fact, ∃r can be seen as inductively defined by the clause
∀ncx (A → ∃rxA). The types of extracted programs for non-computational
quantifiers are τ(∀ncxρA) = τ(∃rxρA) = τ(A) as opposed to τ(∀xρA) = ρ →
τ(A) and τ(∃xρA) = ρ× τ(A). The extraction rules are, for example in the

case of ∀nc-introduction and -elimination, et((λxM
A(x))∀

nc
x A(x)) = et(M) and

et((M∀
nc
x A(x)t)A(t)) = et(M) as opposed to et((λxM

A(x))∀xA(x)) = et(λxM)

and et((M∀xA(x)t)A(t)) = et(Mt). For the extracted programs to be correct
the variable condition at ∀nc-introduction must be strengthened by requiring
in addition the abstracted variable x not to occur in the extracted program
et(M), and similarly for ∃r. Note that for a Harrop formula A the formulas
∀ncx A, ∀xA and also ∃rxA, ∃xA are equivalent.

Animation. Suppose a proof of a theorem uses a lemma. Then the proof
term contains just the name of the lemma, say L. In the term extracted
from this proof we want to preserve the structure of the original proof as
much as possible, and hence use a new constant cL at those places where the
computational content of the lemma is needed. When we want to execute
the program, we have to replace the constant cL corresponding to a lemma
L by the extracted program of its proof. This can be achieved by adding
computation rules for cL. We can be rather flexible here and enable/block
rewriting by using animate/deanimate as desired.

1.4. Inductive and coinductive definitions. To be able to work from a
computational point of view with our abstract reals, we have to inductively
define what we need to know in order to be able to view an abstract real as



6 KENJI MIYAMOTO AND HELMUT SCHWICHTENBERG

a computational object. This is done by means of inductive and coinductive
definitions.

As an example, consider the inductive definition of I by the clauses (1)
and the coinductive definition of coI by (2). We have already seen above that
a witness for a proposition Ir can be seen as a total ideal in our algebra I,
and that a witness for a proposition coIr can be seen as a cototal ideal. We
still need to express that I is the least predicate satisfying the two clauses
(1). This is done by means of the least-fixed-point axiom

(4) ∀ncx (Ix→ P0→ ∀ncx ∀d(Ix→ Px→ P
x+ d

2
)→ Px).

Dually we need to express that coI is the greatest predicate satisfying (2).
This is done by means of the greatest-fixed-point axiom

(5) ∀ncx (Px→ ∀ncx (Px→ x = 0 ∨ ∃d∃ry(x =
y + d

2
∧ (coIy ∨ Py)))→ coIx).

Both can be understood as dealing with a “competitor” predicate P satis-
fying the same clauses/clause as I/coI. Then (4) says that P is a superset
of I, and (5) that P is a subset of coI.

The computational content of these axioms depends on the type τ :=
τ(Pr) of P . Then the term extracted from the least-fixed-point axiom (4)
is the recursion operator RτI , and the term extracted from the greatest-
fixed-point axiom (5) is the corecursion operator coRτI . Moreover, the terms
extracted from the clauses (1) for I are the constructors of I, and the term
extracted from the clause (2) for coI is the destructor D for I of type I →
U + SD× I, defined by

D0 := inl u, D(Cdv) := inr〈d, v〉.

2. The informal proof

By our convention on variable names, d, e are for SD, and i, j are for
SD2. Here SD2 are the “extended signed digits” {−2,−1, 0, 1, 2} (or LL,
LT , MT , RT , RR).

Theorem (Average).

∀ncx,y(coIx→ coIy → coI
x+ y

2
).

Proof. We essentially follow the argument in [5]. Let

X := { x+ y

2
| x, y ∈ coI }, Y := { x+ y + i

4
| x, y ∈ coI, i ∈ SD2 }.

Below we will show X ⊆ Y and that Y satisfies the clause coinductively
defining coI. Therefore by the greatest-fixed-point for coI we have Y ⊆ coI.
Hence X ⊆ coI, which is our claim. �

Lemma (XSubY).

∀ncx,y∈coI∀ncz
(
z =

x+ y

2
→ ∃i∃rx′,y′∈coI z =

x′ + y′ + i

4

)
.



PROGRAM EXTRACTION IN EXACT REAL ARITHMETIC 7

Proof. Let x, y ∈ coI and z := x+y
2 . Assume for instance x = x′+d

2 and

y = y′+e
2 for some x′, y′ ∈ coI and d, e ∈ SD. Then z = x+y

2 = x′+y′+d+e
4 .

In case x = 0 and y = y′+e
2 we have z = x+y

2 = y′+e
4 . The other cases are

similar. �

Lemma (YSatClause).

∀i∀ncx,y∈coI∀ncz
(
z =

x+ y + i

4
→

z = 0 ∨ ∃j,d∃rx′,y′∈coI∃rz′
(
z′ =

x′ + y′ + j

4
∧ z =

z′ + d

2

))
.

Proof. Let i ∈ SD2 and x, y ∈ coI. We show that z := x+y+i
4 satisfies the

right hand side of the disjunction. In case x = x′+d′

2 and y = y′+e′

2 we have

z = x′+y′+d′+e′+2i
8 . Solve d′ + e′ + 2i = j + 4d. Then for z′ := x′+y′+j

4

z′ + d

2
=

4z′ + 4d

8
=
x′ + y′ + j + 4d

8
=
x′ + y′ + d′ + e′ + 2i

8
= z.

The other cases are simpler. �

3. Formalization and extraction

Since the formal proof follows rather closely the informal one above, we
do not comment on how it is generated interactively, but only on some of
the more interesting points, and the extracted terms.

3.1. Formalization.

Abstract reals. We use a type variable ρ to denote an abstract type of reals.
To formulate their properties, we need functions P (plus) of type ρ→ ρ→ ρ
for addition, and H (half) of type ρ→ ρ for division by 2. Moreover we need
auxiliary functions connecting the concrete data types Z (integers), SD
(signed digits {−1, 0, 1}) and SD2 (extended signed digits {−2,−1, 0, 1, 2})
with our abstract reals and also among themselves. These are

SDToInt : SD→ Z, SDtwoToInt : SD2 → Z, IntToR : Z→ ρ,

The properties we need to assume for our abstract reals are

(x+ k)/2 + l = (x+ (k +Z 2l))/2,

(x+ k)/4 + l = (x+ (k +Z 4l))/4,

(x+ k)/2 + (y + l)/2 = ((x+ y) + (k +Z l))/2,

x+ 0 = x, 0 + y = y,

0/2 = 0, 2k/2 = k, k + l = k +Z l,

where + is the addition on ρ and +Z is one on Z. It is crucial to treat
everything connected with ρ (a type variable) as non-computational. This
is a point where the non-computational quantifiers are essential.

The functions J and D. In the proof of lemma YSatClause we had to solve
d′ + e′ + 2i = j + 4d for given d′, e′ ∈ SD and i ∈ SD2. This is a finite
problem and hence can be solved by defining J : SD→ SD→ SD2 → SD2

and D : SD → SD → SD2 → SD explicitly. The validity of d′ + e′ + 2i =
J(d′, e′, i) + 4D(d′, e′, i) is then verified by means of case distinctions.



8 KENJI MIYAMOTO AND HELMUT SCHWICHTENBERG

3.2. Extraction. We present terms extracted from the formalized proofs
(literal output of Minlog), and give some explanations.

Extraction from lemma XSubY. The term extracted from the proof is

[v0,v1]

[if (des v0)

[if (des v1)

(MT@v0@v1)

([dv2]JOne M left dv2@v0@right dv2)]

([dv2]

[if (des v1)

(JOne left dv2 M@right dv2@v1)

([dv3]JOne left dv2 left dv3@right dv2@right dv3)])]

Here v is a name for variables ranging over I, and dv for variables ranging
over SD × I. The constant des denotes the destructor for I of type I →
U + SD × I, and JOne : SD → SD → SD2 adds the two integers. Clearly
left and right are (prefix) operators for the components of a pair. The
constant cXSubY of type I→ I→ SD2× I× I is defined to be the extracted
term above. It satisfies the equations

cXSubY(I, I) = 〈0, I, I〉,
cXSubY(I,Cew) = 〈e, I, w〉,
cXSubY(Cdv, I) = 〈d, v, I〉,
cXSubY(Cdv,Cew) = 〈d+ e, v, w〉.

For the given two streams with regarding I as CM I, cXSubY computes the
sum of the first two digits of them and the tails of the given two streams.
This sum of digits of type SD2 is a “carry” which contains intermediate
information to compute the average.

Extraction from lemma YSatClause. The term extracted from the proof is

[i0,v1,v2]

[if (des v1)

[if (des v2)

(J M M i0@D M M i0@v1@v2)

([dv3]J M left dv3 i0@D M left dv3 i0@v1@right dv3)]

([dv3]

[if (des v2)

(J left dv3 M i0@D left dv3 M i0@right dv3@v2)

([dv4]J left dv3 left dv4 i0@D left dv3 left dv4 i0

@right dv3@right dv4)])]

The constant cYSatClause of type SD2 → I → I → SD2 × SD × I × I is
defined to be the extracted term above. It satisfies the equations

cYSatClause(i, I, I) = 〈J(0, 0, i), D(0, 0, i), I, I〉,
cYSatClause(i, I,Cew) = 〈J(0, e, i), D(0, e, i), I, w〉,
cYSatClause(i,Cdv, I) = 〈J(d, 0, i), D(d, 0, i), v, I〉,
cYSatClause(i,Cdv,Cew) = 〈J(d, e, i), D(d, e, i), v, w〉.



PROGRAM EXTRACTION IN EXACT REAL ARITHMETIC 9

For the given carry and two signed digit streams, cYSatClause computes the
carry for the next step, the first signed digit of the average of the streams,
and the tails of the streams.

Extraction from theorem Average. The term extracted from the proof is

[v0,v1]

(CoRec sdtwo@@iv@@iv=>iv)(cXSubY v0 v1)

([ivw2]

Inr

[let jdvw3

(cYSatClause left ivw2 left right ivw2 right right ivw2)

(left right jdvw3@

(InR sdtwo@@iv@@iv iv)(left jdvw3@right right jdvw3))])

of type I → I → I. It calls cXSubY to compute the first carry and the
tails of the inputs. Then CoRec repeatedly calls cYSatClause in order to
compute the average step by step. Here ivw is a name for variables ranging
over SD2 × I × I, and jdvw for variables ranging over SD2 × SD × I × I,
and [let x M N ] is for N [M/x]. The second argument of the corecursion
operator, say M : SD2× I× I→ U+SD× (I+SD2× I× I), operates on an
argument 〈i, v, w〉 as follows. Let cYSatClause(i, v, w) = 〈j, d, v′, w′〉. Then
M〈i, v, w〉 = inr〈d, inr〈j, v′, w′〉〉. Given v and w, let cXSubY(v, w) = 〈i, v, w〉
for which N stands. Then MN is inr〈d, inr〈j, v′, w′〉〉. Therefore by the con-
version rule (3) for the corecursion operator the result is Cd(

coR〈j, v′, w′〉M).
The extracted term can be applicable for concrete cases. An experiment

is given in Section. 3.4.

3.3. Normalization. Recall that the term t extracted from a proof of a
formula A is a realizer of A, in particular a term of the underlying formal
theory TCF. This is in contrast to what is extracted in the proof assis-
tants Coq [13] and Isabelle [6], which (for efficiency reasons) are programs
in a programming language like OCaml, ML, Haskell or Scheme. We prefer
to stay within TCF, for then the proposition t r A (“t realizes A”) can
be proved formally, as a special case of the soundness theorem. This gives
a higher degree of security, since the formal proof of t r A can easily be
machine-checked, largely independent of the full proof assistant. When effi-
ciency is an issue, one can – in a second step – translate the term t into an
expression of a programming language and employ standard optimization
techniques in the process. In Minlog the command is called term-to-expr;
it has Scheme as the target language.

However, we can use the extracted (closed higher-order) term t directly as
a program. For this to work we need to apply it to (closed) input or argument
terms, and calculate (i.e., normalize) the resulting applicative term. For
efficiency reasons we use normalization-by-evaluation [4] here. In case proofs
involve coinduction the extracted term may contain corecursion operators.
This creates a well-known problem for normalizaton, since the conversion
rule (3) for the corecursion operator does not terminate. However, we can
view this fact as a feature rather than a bug, since we want to compute with
streams. In particular, we want to see the result only up to a given accuracy,
which controls the number of unfoldings of the corecursion operator.



10 KENJI MIYAMOTO AND HELMUT SCHWICHTENBERG

In the present case a simple approach suffices. First normalize the ex-
tracted term, treating the corecursion operator as a constant (i.e., without
conversion rules), and then provide an external bound for the number of
unfoldings of the corecursion operator. This could be refined to a more
demand driven device, as Haskell’s take command.

3.4. An experiment. Let eterm be the term above, extracted from the
Average theorem. We want to use this term as a program to compute the
average of 5

8 and 3
4 . To this end we proceed as follows.

(1) Normalize eterm to neterm, treating the corecursion operator as a
constant.

(2) Represent the two arguments as terms of type I. Recall that the
constructors of the algebra I are I : I and C: SD→ I→ I, and that
the three (nullary) constructors of SD are −1, 0, 1 (or internally L,
M, R for left, middle, right); we write Cdv for Cdv. Then 5

8 = 1
2 + 1

8

appears as CR(CM (CRI)) and 3
4 = 1

2 + 1
4 as CR(CRI).

(3) Let test be the result of applying neterm to the two arguments,
and ntest its normal form. This term still contains the corecursion
operator; it denotes a cototal ideal in I (i.e., a stream).

(4) Normalize ntest again, but this time allowing say 10 unfoldings of
the corecursion operator. The commands are

(define eterm10 (undelay-delayed-corec ntest 10))

(define neterm10 (nt eterm10))

(pp neterm10)

The final result is

C R (C R (C M (C L (C M

(C M (C M (C M (C M (C M

((CoRec sdtwo@@iv@@iv=>iv) ... ))))))))))

which is effectively computed in 30 msec. of time consumption. This is the
correct result, since

5
8 + 3

4

2
=

11

16
=

1

2
+

1

4
− 1

16
.

4. Conclusion

We presented a formal proof of the existence of the average of two real
numbers in [−1, 1], as a case study of constructive exact real arithmetic.
From the formal proof involving coinduction we extracted a term containing
the corecursion operator. The evaluation method of the corecursion operator
allows to approximate the computation of cototal ideals or streams, the
standard representation of non-well-founded data as real numbers.

As for the future work, general uniformly continuous functions can be
studied with the same motivation as in the present paper. A promising
treatment is in [3] (or [18]) which involves nested algebras in TCF and their
cototal-total ideals.

References

[1] Agda. http://wiki.portal.chalmers.se/agda/.



PROGRAM EXTRACTION IN EXACT REAL ARITHMETIC 11

[2] U. Berger. Program extraction from normalization proofs. In M. Bezem and J. Groote,
editors, Typed Lambda Calculi and Applications, volume 664 of LNCS, pages 91–106.
Springer Verlag, Berlin, Heidelberg, New York, 1993.

[3] U. Berger. From coinductive proofs to exact real arithmetic. In E. Grädel and
R. Kahle, editors, Computer Science Logic, LNCS, pages 132–146. Springer Verlag,
Berlin, Heidelberg, New York, 2009.

[4] U. Berger, M. Eberl, and H. Schwichtenberg. Term rewriting for normalization by
evaluation. Information and Computation, 183:19–42, 2003.

[5] U. Berger and M. Seisenberger. Proofs, programs, processes. In F. Ferreira et al.,
editors, Proceedings CiE 2010, volume 6158 of LNCS, pages 39–48. Springer Verlag,
Berlin, Heidelberg, New York, 2010.

[6] S. Berghofer. Proofs, Programs and Executable Specifications in Higher Order Logic.
PhD thesis, Institut für Informatik, TU München, 2003.

[7] C. M. Chuang. Extraction of Programs for Exact Real Number Computation Using
Agda. PhD thesis, Swansea University, Wales, UK, 2011.

[8] A. Ciaffaglione and P. D. Gianantonio. A certified, corecursive implementation of
exact real numbers. Theoretical Computer Science, 351:39–51, 2006.

[9] Coq Development Team. The Coq Proof Assistant Reference Manual – Version 8.2.
Inria, 2009.

[10] A. Heyting, editor. Constructivity in Mathematics. North-Holland, Amsterdam, 1959.
[11] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and Their Use in Ma-

thematics. Springer Verlag, Berlin, Heidelberg, 2008.
[12] G. Kreisel. Interpretation of analysis by means of constructive functionals of finite

types. In Heyting [10], pages 101–128.
[13] P. Letouzey. A New Extraction for Coq. In H. Geuvers and F. Wiedijk, editors, Types

for Proofs and Programs, Second International Workshop, TYPES 2002, volume 2646
of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[14] R. O’Connor. Incompleteness & Completeness. Formalizing Logic and Analysis in
Type Theory. PhD thesis, Nijmegen University, 2009.

[15] D. Plume. A Calculator for Exact Real Number Computation. PhD thesis, University
of Edinburgh, 1998.

[16] H. Schwichtenberg. Minlog. In F. Wiedijk, editor, The Seventeen Provers of the
World, volume 3600 of LNAI, pages 151–157. Springer Verlag, Berlin, Heidelberg,
New York, 2006.

[17] H. Schwichtenberg. Realizability interpretation of proofs in constructive analysis.
Theory of Computing Systems, 43(3):583–602, 2008.

[18] H. Schwichtenberg and S. S. Wainer. Proofs and Computations. Perspectives in Logic.
Association for Symbolic Logic and Cambridge University Press, to appear 2011.

[19] J. V. Tucker and J. I. Zucker. Theory of computation over stream algebras, and its
applications. In I. M. Havel and V. Koubek, editors, MFCS, volume 629 of Lecture
Notes in Computer Science, pages 62–80. Springer, 1992.

[20] E. Wiedmer. Exaktes Rechnen mit reellen Zahlen und anderen unendlichen Objekten.
PhD thesis, ETH Zürich, 1977.

[21] E. Wiedmer. Computing with infinite objects. Theoretical Computer Science, 10:133–
155, 1980.

Mathematisches Institut, LMU, Theresienstr. 39, D-80333 München


