
Minlog - A Tool for Program Extraction
Supporting Algebras and Coalgebras

Ulrich Berger1, Kenji Miyamoto?2, Helmut Schwichtenberg2,
and Monika Seisenberger1

1 Swansea University, Wales
2 LMU University, Munich

Abstract. Minlog is an interactive system which implements proof-
theoretic methods and applies them to verification and program extrac-
tion. We give an overview of Minlog and demonstrate how it can be
used to exploit the computational content in (co)algebraic proofs and to
develop correct and efficient programs. We illustrate this by means of
two examples: one about parsing, the other about exact real numbers in
signed digit representation.

1 Introduction

In this paper we give an overview of the interactive proof system Minlog and
describe a proof-theoretic method based on realizability for developing correct
programs. We particularly address inductive and coinductive proofs and the
associated computation principles: iteration for initial algebras and coiteration
for terminal coalgebras. Minlog is not a type-theoretic system, such as Coq or
Isabelle, but based on first-order logic and has a simple mathematical (i.e. de-
notational) semantics. This makes it accessible to a wide range of researchers
including those outside the type-theoretically minded community. Minlog is im-
plemented in Scheme. It is an “open” system giving users full access to the code,
thus inviting them to contribute to its development. Although designed as a gen-
eral purpose system, most of the recent developments in Minlog are concerned
with program extraction from proofs. It seems fair to say that, regarding pro-
gram extraction, Minlog is the most advanced proof system. Minlog implements
various methods of program extraction (realizability, Dialectica Interpretation)
and extends them to classical proofs via the Friedman/Dragalin A-translation.
All these techniques are refined and optimized in order improve usability and
to obtain simpler programs. In addition to extracting a program from a proof,
Minlog also automatically extracts a proof that the program meets its specifi-
cation. In Sect. 2 we give a more detailed and technical description of Minlog
and its program extraction facilities. A number of substantial case studies on
program extraction have been carried out in Minlog reaching from the extrac-
tion of a normalisation-by-evaluation algorithm to the extraction of programs in
? Supported by the Marie Curie Initial Training Network in Mathematical Logic –

MALOA – From MAthematical LOgic to Applications, PITN-GA-2009-238381



constructive analysis. In this paper we present two case studies demonstrating
the use of inductive and coinductive definitions in program extraction (Sect. 3)
and show that they work well with Minlog’s optimized extraction mechanism.

2 Program extraction in Minlog

2.1 The Interactive Proof System Minlog

Minlog [Min,BBS+98] is an interactive proof system based on first order natu-
ral deduction calculus. It is intended to reason about higher type computable
functionals, using minimal rather than classical or intuitionistic logic. Minlog
implements a theory of computable functionals, as described in [SW11]. The un-
derlying semantics is the Scott-Ershov model of partial continuous functionals,
with free algebras as base types. These algebras are viewed as domains repre-
sented by Scott’s information systems, whose tokens are constructor trees pos-
sibly involving the symbol ∗ (“no information”). The ideals (points, objects)
of base type are consistent and deductively closed sets of tokens, possibly in-
finite. Initial algebras and final coalgebras are modelled by notions of totality
and cototality: An ideal x is “cototal” if every constructor tree P (∗) ∈ x has
a “one-step extension” P (Ca∗) ∈ x, and “total” if it is cototal and this ex-
tension relation is well-founded. Totality and cototality are instances of strictly
positive inductive and coinductive definitions which are supported in general in
Minlog. With every initial algebra and final coalgebra are associated operators
for (co)iteration and (co)recursion. Computation is implemented efficiently via
normalization by evaluation [BS91,BES03]. Computation is extended to proofs
via the Curry-Howard correspondence. Intuitionistic and classical logic are rep-
resented by the axiom schemes ⊥ → A and ¬¬A → A. Interactive proofs are
organized in a goal-directed backwards-reasoning fashion. Forward reasoning is
modelled by a form of cut rule. Minlog also contains an automated prover for a
certain fragment of (simply typed) minimal logic. Its theory (based on [Mil91])
is developed in [Sch04].

2.2 Program extraction

One of the main motivations behind Minlog is to use it as a tool for program
verification, and to exploit the proofs-as-programs paradigm for program devel-
opment. Minlog’s program extraction is based on Kreisel’s modified realizabil-
ity [Kre59]: to each formula A a type τ(A) (the type of realizers of A) and a
formula xτ(A) r A are assigned. The formula x r A is to be read as “x realizes
A” and intuitively means “x solves the computational problem expressed by A”.
Program extraction computes from a derivation d of A a term et(d) (the ex-
tracted program) and a proof that et(d) realizes A. Of particular interest are the
realization of induction and coinduction by algebras and coalgebras, as well as
the computational and non-computational versions of logical operators. The lat-
ter are crucial for obtaining practically useful results as they lead to drastically



simplified proofs and extracted programs. The case studies on parsing (3.1) and
exact real numbers (3.2) below will highlight these points. From a type-theoretic
point of view, realizability collapses a dependently typed lambda-calculus (which
Minlog’s proof calculus is an instance of) to a simply typed lambda-calculus. The
collapse happens on the level of atomic formulas, since τ(P t) = τ(P ) where τ(P )
is a simple type assigned to the predicate P , discarding the first-order terms t.
Minlog extends program extraction to classical proofs via a refined A-translation
[BBS02] or Dialectica Interpretation (see eg. [SW11]). The theoretical founda-
tions of program extraction from formal proofs, as implemented in Minlog, are
presented in detail in [SW11]. Realizability for induction and coinduction, in-
cluding applications to exact real numbers, are developed in [Ber09,BS10].

2.3 Related Work

Program extraction from proofs is also implemented in Isabelle [Isa] (for alge-
bras) and in Coq [Coq] (cf [BBLS06] for a joint case study). The implementation
in Isabelle has been modelled after Minlog’s extraction. The correctness of pro-
gram extraction in Coq is not based on realizability and a Soundness Theorem
(as in Minlog), but on the fact that reduction of proofs is correctly simulated
by reduction of extracted programs [Let03]. There exists also an experimental
implementation of program extraction in Agda [Agd] (cf [Chu11]). We are not
aware of substantial case studies on program extraction in these systems. Also,
Minlog seems to be the only system implementing the Dialectica Interpretation
and program extraction from classical proofs. We also mention RZ [BS07], a tool
that computes the realizability interpretation of a mathematical statement (but
does not extract programs from proofs).

3 Case studies

3.1 Algebras for parsing

Consider strings x, y of left and right parentheses L, R. We define inductively
the predicate (grammar) S of balanced strings of parentheses by the clauses

InitS: S(nil), ApS: Sx→ Sy → S(xy), ParS: Sx→ S(LxR).

The type τ(S) of realizers of S is the algebra algS of generation trees for S.
It has one nullary constructor, cInitS, one binary, cApS, and one unary, cParS.
Our goal is to prove decidability of S, i.e. ∀x(Sx ∨ ¬Sx), and extract from
the proof a program computing for each string x a boolean value p and a tree
t : algS such that p decides whether Sx holds and, in the positive case, t is a
generation tree for x. Note that negation, ¬A, is expressed in Minlog as A→ ⊥
and disjunction, A ∨ B, as ∃p((p → A) ∧ (¬p → B)). Hence the goal reads
∀x∃p((p → Sx) ∧ ((p → ⊥) → Sx → ⊥)). We also consider an alternative
grammar U for the same set of strings (which, in contrast to S, is deterministic)

InitU: U(nil), ApU: Ux→ Uy → U(xLyR),



with an algebra of realizers algU with constructors cInitU (nullary) and cApU
(binary). Equality of U and S is expressed by ∀nc

x (Ux→ Sx) and ∀nc
x (Sx→ Ux).

These formulas can be easily proven by induction on Ux and Sx. The non-
computational universal quantifier ∀nc

x has the same logical meaning as the usual
∀x, but it indicates that the extracted programs only operate on the generation
trees for x and not on the string x itself. The variables x, y in the defining clauses
for S and U are implicitly quantified by ∀nc as well. The extracted program for
the proof of ∀nc

x (Sx→ Ux) is ([b0] and [b1, . . .] denote lambda-abstractions)

[b0](Rec algS=>algU)b0 cInitU
([b1,b2,a3,a4](Rec algU=>algU)a4 a3([a5,a6,a7,a8]cApU a7 a6))
([b1]cApU cInitU)

The fact that the proof is by induction on Sx is witnessed by the occurrence of the
recursion operator (Rec algS=>algU) implementing (an instance of) structural
recursion on algS. There is also a side induction witnessed by (Rec algU=>algU).
The term above is equivalent to a program SU defined by the recursive equations

SU cInitS = cInitU
SU (cApS b1 b2) = UU (SU b2) where

UU cInitU = SU b1
UU (cApU a5 a6) = cApU (UU a5) a6

SU (CParS b) = cApU cInitU (SU b)

The boolean value deciding whether or not Sx holds is computed as Test 0 x,
the function Test being defined as a constant Test (py means parse-type):

(add-program-constant "Test" (py "nat=>list par=>boole"))
(add-computation-rules
"Test 0(Nil par)" "True"
"Test 0(R::x)" "False"
"Test(Succ n)(Nil par)" "False"
"Test n(L::x)" "Test(Succ n)x"
"Test(Succ n)(R::x)" "Test n x")

Note that (Nil par) denotes the empty list of parentheses and :: is the cons
operation for lists. Soundness, ∀nc

x (Ux→ Test(0, x)), is easy and the proof has no
computational content. Completeness, ∀x(Test(0, x)→ Sx), needs an inductively
defined predicate State with clauses

InitState : State(0,nil), ApState : Ss→ State(n, x)→ State(Sn, xsL)

and a lemma ∀y∀nc
n,x(State(n, x) → ∀nc

s (Ss → Test(n, y) → S(xsy))), proved by
induction on y. Now ∀x∃p((p→ Sx) ∧ ((p→ ⊥)→ Sx→ ⊥)) is proved easily3.
The parser-term extracted from this proof is (@ is a pairing operator in infix
notation, [if . . . ] is a generalization of the usual if-then-else allowing pattern
matching on the constructors of an algebra)
3 The third author is grateful to Makoto Takeyama for explaining his Agda code
http://code.haskell.org/Agda/examples/ParenDepTac.agda to him.



[x0]Test 0 x0 @
(Rec list par=>algState=>algS=>algS)x0
([st1,b2][if st1 b2 ([b3,st4]cInitS)])
([par1,x2,f3,st4,b5]
[if par1
(f3(cApState b5 st4)cInitS)
[if st4 cInitS ([b6,st7]f3 st7(cApS b6(cParS b5)))]])

cInitState cInitS

which corresponds to the following recursive program:

P x0 = Test 0 x0 @ P0 x0 cInitState cInitS where
P0 Nil cInitState b2 = b2
P0 Nil(cApState b3 st4)b2 = cInitS
P0 (L::x2)st4 b5 = P0 x2(cApState b5 st4)cInitS
P0 (R::x2)cInitState b5 = cInitS
P0 (R::x2)(cApState b6 st7)b5 = P0 x2 st7(cApS b6(cParS b5))

Experiments (pp, nt, pt mean pretty-print, normalize-term, parse-term -
Four inputs to Minlog, followed by Minlog’s response):

(pp (nt (mk-term-in-app-form parser-term (pt "L::R:"))))
"True@cApS cInitS(cParS cInitS)"
(pp (nt (mk-term-in-app-form parser-term (pt "R::L:"))))
"False@cInitS"
(pp (nt (mk-term-in-app-form parser-term (pt "L::R::L::R:"))))
"True@cApS(cApS cInitS(cParS cInitS))(cParS cInitS)"
(pp (nt (mk-term-in-app-form parser-term (pt "L::L::R::R:"))))
"True@cApS cInitS(cParS(cApS cInitS(cParS cInitS)))"

3.2 Coalgebras for exact real numbers

Our second case study concerns algorithms in exact real arithmetic. Whilst such
algorithms have been verified before (see eg. [CDG06,MRE07,GNSW07,BH08]),
in the present paper we show by means of an example how to extract them.
We extract a program which for every rational number a ∈ [−1, 1] computes a
signed binary digit representation, that is, a (finite or infinite) stream of digits
d0, d1, . . . ∈ {−1, 0, 1} such that

a =
∑
i

di
2i+1

(1)

We let a range over abstract real numbers (we only use the properties of an
ordered field) and let Qa mean that a is a rational number with absolute value
≤ 1. Our program will be extracted from a proof of the formula

∀nc
a (Qa→ Ja) (2)



where the predicate J is defined coinductively by the clause

∀nc
a (Ja→ a = 0∨∃rb(a =

b− 1
2
∧Jb)∨∃rb(a =

b

2
∧Jb)∨∃rb(a =

b+ 1
2
∧Jb)) (3)

that is, J is the largest predicate satisfying (3). The proof of (2) proceeds by
coinduction, that is, by showing that (3) holds when J is replaced by Q. The
superscript r attached to the quantifier ∃r stands for “right” and means that
from a proof of a formula ∃rbA only the realizer of A is kept while the witness b
contained in the proof is discarded. The type of realizers for J is the coalgebra of
finite and infinite streams of signed digits. In our setting it is modelled as the set
of cototal ideals (see Sect. 2.1) of the algebra I of “standard rational intervals”,
whose constructors are I (for the initial interval [−1, 1]) and C−1,C0,C1 (for the
left, middle, right part of the argument interval, of half its length). For example,
C−1I, C0I and C1I should be viewed as the intervals [−1, 0], [− 1

2 ,
1
2 ] and [0, 1].

The cototal ideals include, for example, {Cn−1∗}n≥0, a “stream” representation
of the real −1, and also {C−1Cn1∗}n≥0 and {C1Cn−1∗}n≥0, which both represent
the real 0. Generally, the cototal ideals give us all reals in [−1, 1], in the repre-
sentation (1). We have formalized in Minlog a proof of (2) and extracted from it
a term neterm of type ι→ I involving the corecursion operator coRιI associated
with (3). The value of the term obtained by applying neterm to, say, 1/2 (in
Minlog: cGenQ(1#2)) is an infinite ideal starting with C1,C0,C0,C0 . . . (CIntP,
CintZ, . . . ). To compute it (again via normalization-by-evaluation, i.e., nt) we
delay unfolding coRιI at a fixed depth, say 5:

(pp (nt (undelay-delayed-corec
(mk-term-in-app-form neterm (pt "cGenQ(1#2)")) 5)))
"CIntP (CIntZ (CIntZ (CIntZ (CIntZ (CoRec algQ=>intv)..."

Sources. The Minlog system is available at www.minlog-system.de. To run
the examples download the latest version minlog-latest.tar.gz (SVN snap-
shot) and follow the installation instructions. Note that, as prerequisites, Scheme
and Emacs are required. The reader new to Minlog is referred to the tutorial
[CSS11] for introductory examples. The two case studies of this paper can be
found in examples/parsing/parens.scm and examples/analysis/ratsds.scm
together with readme files readme-parens.txt and readme-ratsds.txt ex-
plaining the background and how to run the case studies.

Acknowledgements. The authors would like to thank the referees for their
constructive comments and criticism.

References

[Agd] Agda. http://wiki.portal.chalmers.se/agda/.
[BBLS06] U. Berger, S. Berghofer, P. Letouzey, and H. Schwichtenberg. Program

extraction from normalization proofs. Studia Logica, 82:27–51, 2006.



[BBS+98] H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and W. Zuber.
Proof theory at work: Program development in the Minlog system. In
W. Bibel and P.H. Schmitt, editors, Automated Deduction, volume II of
Applied Logic Series, pages 41–71. Kluwer, 1998.

[BBS02] U. Berger, W. Buchholz, and H. Schwichtenberg. Refined program extrac-
tion from classical proofs. APAL, 114:3–25, 2002.

[Ber09] U. Berger. From coinductive proofs to exact real arithmetic. In E. Grädel
and R. Kahle, editors, Computer Science Logic, volume 5771 of LNCS, pages
132–146. Springer, 2009.

[BES03] U. Berger, M. Eberl, and H. Schwichtenberg. Term rewriting for normali-
zation by evaluation. Information and Computation, 183:19–42, 2003.

[BH08] U. Berger and T. Hou. Coinduction for exact real number computation.
Theory of Computing Systems, 43:394–409, 2008.

[BS91] U. Berger and H. Schwichtenberg. An inverse of the evaluation functional
for typed λ-calculus. In R. Vemuri, editor, Proceedings 6’th Symposium
on Logic in Computer Science, LICS’91, pages 203–211. IEEE Computer
Society Press, 1991.

[BS07] A. Bauer and C. A. Stone. RZ: A tool for bringing constructive and com-
putable mathematics closer to programming practice. In Computation and
Logic in the Real World, CiE 2007, volume 4497 of LNCS, pages 28–42,
2007.

[BS10] U. Berger and M. Seisenberger. Proofs, programs, processes. In F. Fer-
reira B. Löwe, E. Mayordomo, and L. Mendes Gomes, editors, Programs,
Proofs, Processes, CiE 2010, volume 6158 of LNCS, pages 39–48, 2010.

[CDG06] A. Ciaffaglione and P. Di Gianantonio. A certified, corecursive implemen-
tation of exact real numbers. Theor. Comp. Sci., 351:39–51, 2006.

[Chu11] C. M. Chuang. Extraction of Programs for Exact Real Number Computation
Using Agda. PhD thesis, Swansea University, Wales, 2011.

[Coq] The Coq Proof Assistant. http://coq.inria.fr/.
[CSS11] L. Crosilla, M. Seisenberger, and H. Schwichtenberg. A Tutorial for Minlog,

Version 5.0, 2011.
[GNSW07] H. Geuvers, M. Niqui, B. Spitters, and F. Wiedijk. Constructive analysis,

types and exact real numbers. Math. Struct. Comp. Sci, 17(1):3–36, 2007.
[Isa] Isabelle. http://isabelle.in.tum.de/.
[Kre59] G. Kreisel. Interpretation of analysis by means of constructive functionals

of finite types. Constructivity in Mathematics, pages 101–128, 1959.
[Let03] P. Letouzey. A New Extraction for Coq. In H. Geuvers and F. Wiedijk, ed-

itors, Types for Proofs and Programs, TYPES 2002, volume 2646 of LNCS,
2003.

[Mil91] D. Miller. A logic programming language with lambda–abstraction, function
variables and simple unification. Jour. Logic Comput., 2(4):497–536, 1991.

[Min] The Minlog System. http://www.minlog-system.de.
[MRE07] J. R. Marcial-Romero and M. H. Escardo. Semantics of a sequential lan-

guage for exact real-number computation. Theor. Comp. Sci, 379(1-2):120–
141, 2007.

[Sch04] H. Schwichtenberg. Proof search in minimal logic. In B. Buchberger and
J.A. Campbell, editors, Artificial Intelligence and Symbolic Computation
AISC 2004, Proceedings, volume 3249 of LNAI, pages 15–25. Springer, 2004.

[SW11] H. Schwichtenberg and S. S. Wainer. Proofs and Computations. Perspectives
in Logic. Assoc. Symb. Logic and Cambridge Univ. Press, to appear, 2011.


