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Chapter 1

Introduction

This is an informal introduction, precise definitions will be given from Section 1.4 on.

The motivation for this thesis originates from the article “Geometric detection of coupling
directions by means of inter-system recurrence networks” by [Feldhoff et al.]. The authors
consider two dynamical systems X and Y in the phase space Rn for some n P N, whose
trajectories are observable.1 It is assumed that both systems are governed by their own,
intrinsic, dynamics, and are coupled with each other by means of diffusive coupling2: the
dynamics of the type #

9x � fpxq � kYX py � xq
9y � gpyq � kXYpx� yq (1.0.1)

1Without giving precise definition, we will see a dynamical system as a triple consisting of a phase space,
time and a time-evolution law ([Katok and Hasselblatt, Ch.0.1]). Time can be continuous or discrete and the
time-evolution law, which in general can itself depend on time and have infinite memory, is simplified to allow
us to find out all future states if we know the state at any particular moment. Thus, the law for continuous time
can be described by a system of differential equations and the law for discrete time — by a map xt�1 � F pxtq.
The resulting “sequence” of states is the trajectory one can observe.

There are at least three different situations in which one considers a dynamical system. On the theoretical
level, having the equations governing the system, it is indeed possible to observe the whole trajectory. While
doing numerical simulations, it is possible to observe all states of a discrete time system, but only some
approximations of states of a continuous time system. The third situation is working with real-world data,
assuming that this data represents a sequence of states of some underlying dynamical system. If we think that
the time in the real world is continuous, we always get partial information from the data. More than that, the
vector xt which represents one state does not describe the whole underlying system, but only some features of
it, that is why it is more appropriate to call this vector an observable and not a state. In general, observables
have to be converted into state vectors, and an appropriate phase space, i.e., a space that is equivalent to the
original state space, has to be chosen. This problem of phase space reconstruction is not always trivial, see
[Kantz and Schreiber, Ch.3 and 9] for established methods. In this thesis, we do not discuss these difficulties
and always consider some Rn as the original state space. We speak of states and trajectories to simplify the
language.

Finally, we want to stress that the work described in this thesis is motivated by application to real-world
data. Although some theoretical dynamical systems can hardly be applied to real-world processes, we see
in each of these systems, e.g., temperature, percipitation and wind direction measured every day at 2 pm in
Chennai.

2The choice of diffusive coupling is not motivated in the article. Clearly, it is a simple form of interaction
between two systems. The term “diffusive” naturally arises as one considers chemical processes and trajectories
of the concentrations of some quantities in connected chambers (see, e.g., [Bar-Eli]). In the same sense it is
reasonable to apply this form of coupling to atmospheric processes.
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for functions f and g very similar to each other and coupling strengths kYX , kXY ¥ 0 is
considered. However, it is not known whether one (or both) coupling strength is zero, i.e., in
which directions the systems are coupled, and the question is to determine these directions
on the basis of trajectories as well as functions f and g.

1.1 Recurrence network approach

[Feldhoff et al.] propose a method to answer this question, which is based on the recur-
rence network analysis (RNA). RNA, whose systematic study was started by [Donner et al., 2010],
combines recurrence plot analysis (see [Marwan et al.] for comprehensive discussion) with
the complex network approach (see, e.g., [Boccaletti et al.]). One starts with a time series,
i.e., a sequence pxtqt�1,...,N with all xt P Rn for some n,N P N, which represents states of a
dynamical system, chooses some norm || � || on Rn, a number ε ¡ 0 and defines the adjacency
matrix Apεq as

Aijpεq � 1t||xi�xj ||¤εu � 1ti�ju, (1.1.1)

where 1B is the indicator function of the set B. This adjacency matrix automatically defines
a recurrence network, i.e., a graph where each time index t is a vertex — irrespectively
of possible equality of the two corresponding states — and two different vertices i and j are
connected with an edge if and only if ||xi � xj || ¤ ε, i.e., the corresponding states are close
enough to each other with respect to the threshold ε.3 Now one can study the recurrence
network in order to reveal some properties of the underlying dynamical system. “Many
network-theoretic measures yield sophisticated quantitative charactericstics corresponding to
certain phase space properties of a dynamical system.”4

In order to study two coupled systems, the authors introduce the concept of the inter-
system recurrence network (IRN). Let AX pεX q and BYpεYq be the adjacency matrices
for the systems X and Y and some thresholds εX , εY . For the inter-system threshold εXY ¡ 0,
define the cross-recurrence adjacency matrix AXYpεXYq as

AXY
ij pεXYq � 1t||xi�yj ||¤εXYu, (1.1.2)

where pxiqi�1,...,N1 and pyjqj�1,...,N2 are time series for the systems X and Y respectively. The
matrix

Apεq �
�

AX pεX q AXYpεXYq�
AXYpεXYq

�T
AYpεYq

�
(1.1.3)

with ε � �
εX , εY , εXY�T is the inter-system adjacency matrix - this way, one gets a

recurrence network for both time series together. One may choose different thresholds due
to a possibly different geometry of the time-series. It is worth noting that both series do not
need to have the same sampling, as the network uses time information only for determining
the list of all vertices.

3This means that the state xi (as well as xj) is “recurrent”, since the trajectory comes at some other point
in time close to it again. As one can see, the temporal relation of states plays no role in recurrence networks.

It is important to choose an appropriate threshold. For discussion of the threshold for recurrence plots, see
[Marwan et al., Sec.3.2.2].

4[Donner et al., 2010, Sec.1], see Section 3 for the measures. A list of all relevant measures can be found in
[Donges et al., Tab.II]. Chapter 3 of the review [Newman] offers comprehensive discussion.
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Further, several measures for the IRN are introduced.5 One of them is the local cross-
clustering coefficient. Fix ε and define A � Apεq. Denote by VX and VY the subsets of
the network vertices corresponding to the time series for X and Y respectively and by v P VX
some arbitrary vertex from X . Then the local cross-clustering coefficient for the vertex v is
defined by

ĈXY
v �

°
p,qPVY

AvpAvqApq�°
pPVY

Avp

	�°
pPVY

Avp � 1
	 (1.1.4)

and can be interpreted as the probability that two different randomly drawn neighbours of v
from the subset VY are linked6. The global cross-clustering coefficient

ĈXY � 1

|VX |
¸
vPVX

ĈXY
v (1.1.5)

shows the probability that for a randomly chosen vertex in VX , two of its different randomly
drawn neighbours from VY are linked.

Another similar global measure is introduced: the cross-transitivity

T̂ XY �
°
vPVX , p,qPVY

AvpAvqApq°
vPVX , p,qPVY , p�q

AvpAvq
(1.1.6)

shows the probability that a randomly chosen “cross-triple”, i.e., a vertex v P VX and two
vertices p, q P VY with both ||xv�xp|| and ||xv�xq|| less or equal ε, is in fact a non-degenerate
“cross-triangle”, i.e., ||xp � xq|| ¤ ε and p � q.7

Analogously, one defines ĈYX and T̂ YX . A priori, there is no reason to assume that
ĈXY � ĈYX or T̂ XY � T̂ YX , and this fact is the basis for the proposed method. The authors
argue that in case of unidirectional coupling, i.e., one of kXY , kYX is zero and the other is
not, one cross-transitivity tends to be larger than the other.8 “Let xi and xj be two recurrent
states in X . If the coupling direction is X Ñ Y9 and the coupling is large enough, we are likely
to also find a state y�k in Y, which is (cross-)recurrent to both xi and xj , due to the coupling’s
diffusive nature and thus the tendency to “drag” the trajectory of Y towards X . The resulting
“cross-triangle” adds to the value of both T̂ YX and ĈYX according to their definition. On the
other hand, “cross-triangles” constituted by two recurrent states in Y and one cross-recurrent
state in X are merely coincidental due to the driver-responce-like coupling. We would thus
expect to see T̂ YX ¡ T̂ XY in case of unidirectional coupling X Ñ Y and vice versa for the
opposite coupling direction.”10

The article proceeds with a single numerical example of two coupled Rössler oscillators
(equation (4.1.4)), for which the hypothesis is corroborated: for coupling strengths in a certain
interval, T̂ YX ¡ T̂ XY clearly holds for all realisations from an ensemble of 200.

5All of them are analogues of the measures for one-system recurrence networks. See previous footnote.
6In case

°
pPVY

Avp ¤ 1, i.e., v has less than 2 neighbours among VY , we set ĈXY
v � 0.

7In the article, p � q in the denomenator’s sum is not present in the definition, but is assumed implicitly.
The same applies to transitivity, which will be defined later.

8Since global clustering and transitivity are similar measures, we will from now on discuss only transitivity,
which is also the focus of the thesis. Intuition suggests that all results should at least qualitatively also hold
for the global clustering coefficient, though this may be misleading.

9This means, kYX � 0.
10[Feldhoff et al., Sec.2.4]
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1.2 Numerics vs. analytical theory. Attractor of the system

Of course, one numerical example does not give enough evidence for the theory. We consid-
ered examples of other systems and present the results in Chapter 4. For numerous systems
- described by both differential equations or maps - the hypothesis is corroborated again.
However, there are other systems, e.g., the so-called Thomas operator or the Rényi map,
for which T̂ XY and T̂ YX stay in exactly opposite relation to each other. In general, as the
numerical estimations show, T̂ XY and T̂ YX for two diffusively coupled systems can exhibit
complex behaviour.

These findings reveal the need of a better theoretical understanding. Reading thoroughly
the argument for the hypothesis given above, one can notice that only “cross-triangles”, and
not the “cross-triples”, are discussed. However, the change of the spatial distribution of
system Y due to its coupling with system X should affect both triangles and triples. Since
the transitivity is the ratio of the number of triangles to the number of triples, the resulting
effect is in general unclear. In Section 4.2 we give two simple examples to show that both
relations between T̂ XY and T̂ YX are possible. The question of what is (in any sense) the
typical relation, remains unanswered.

An analytical theory would imply the understanding of attractors of the dynamical sys-
tems. For some systems, a nonempty set of initial conditions will after some transient time
result in a set of trajectories lying close to a certain subset of the phase space. This subset
is invariant under the time-evolution law and is called the attractor of the system. The
corresponding set of initial conditions is called the basin of attraction. Systems that have
attractors are called dissipative11.

When we talked about trajectories before, we meant the part of trajectories that is close
to the attractor. We are interested in a typical behaviour of the system and this is the one
after the transient time. An attractor represents the system in its dynamical equilibrium and
the properties of the attractor are often everything we want to know about the system.12 A
system can have several attactors; in this case each of them can be studied separately.

Since an attractor is a set of points (in a phase space), it is in the first place characterized
by its geometry.13 The simplest attractors are stable fixed points and limit cycles. If the
dimension of the phase space is higher than two, systems can have attractors of very complex
geometry.14 [Ruelle and Takens] coined the word strange attractor to describe attractors

11Dissipative systems are defined as systems that loose energy in the course of their time evolution. On aver-
age a phase space volume of an ensemble of initial conditions decreases during the time evolution of the system.
Existence of attractors is the characterizing property of a dissipative system. See [Handbook of Physics, 6.1.3]

12For decades researchers focus on the dynamical equilibrium and not the transient time. This has partly
historical reasons. Without computers one could not characterize the system in the transient time well enough:
some time after Newton, it was clear that it is impossible to give explicit solutions for the dynamics of even only
three bodies. The theory of dynamical systems started to develop fast after the breakthrough of [Poincaré],
who suggested not to ask questions about individual states but about the trajectory after sufficiently many
iterations. Developing stability theory for fixed points and periodic orbits, he laid the foundation of studying
attractors. See [Holmes] and [Strogatz, Sec.1.1] for the history of the theory of dynamical systems.

It is not clear whether the focus on the attractor is justified by the motivation to study real-world processes.
Any real-world system is not isolated: there are changing forces coming from outside the system and not
constant energy exchange with the outer parts, so it is rather always the transient evolution that we observe.
The concept of attractor is rationalized by the dissipative processes such as friction or heat transfer which run
in all real-world systems.

13Here we will describe only those approaches to study attractors which will be more thoroughly investigated
in the thesis. For a comprehensive introduction to different approaches see, e.g., [Hilborn, Ch.9].

14It was long believed that stable fixed points and limit cycles are the only possible attractors. The
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with fractal geometry15. Many chaotic systems, i.e., systems sensitive to the initial condi-
tions in the sense that a slight change of the starting point drastically changes the subsequent
trajectory, have strange attractors. Strange attractors deserve their name and there is no
comprehensive theory describing them. To have a better understanding of an attractor one
needs to study the corresponding invariant measure.

1.3 Invariant measure, dimension of an attractor

An attractor is a set of points, so we are interested in its geometry. At the same time, this
set evolves from the trajectories of the dynamical system, so the distribution of points in the
set is also relevant. Normally, the trajectory “visits” different points not equally often and
the distribution of points gives additional information about the structure of the attractor.
This distribution is described by the invariant measure.

Suppose that a dynamical system in discrete time has only one attractor, whose basin is
the whole phase space. Define some finite measure (let it be normalized to 1, i.e., a proba-
bility density) on the phase space and consider an ensemble of initial conditions distributed
according to this measure. After the transient time, all points from this ensemble will be
close to the attractor and one could compute a new measure, according to which these points
are distributed in the phase space.16 Normally, this measure will be approximately invariant
under the dynamical system, which means that the measure, according to which the points
will be distributed after the next iteration, will be approximately the same.

The invariant measure provides enough information about the attractor - clearly, it con-
tains information about the geometry, since it is equal to zero only for points of the phase
space which are not on the attractor. However, the question of existence and uniqueness
of the invariant measure, not to speak of the analytical expression for it, is in general very
difficult.17 One thus has to revert to less informative and again more geometric proper-
ties of the attractor. Different kinds of dimensions constitute another class of attractors’
charactericstics.

The dimension of a set is intuitively understood as the minimum number of coordinates
needed to identify a point in this set. E.g., a square is two-dimensional and a unit circle is
one-dimensional - though the circle is normally embedded in a (two-dimensional) plane, it is
enough to use one parameter - the angle - to identify each of its points.

There are many different (and not always equivalent) ways to formalize the concept of

Poincaré-Bendixson theorem states that this is indeed true for continuous systems in one- or two-
dimensional phase space. In 1927, [van der Pol and van der Mark] described a system, noting the coexistence
of two periodic orbits of different period, which, according to [Birkhoff] implied an unstable invariant set of
complex geometry. It was not until 1960 that a stable invariant set with fractal geometry arising from a
dynamical system described by a map was found (the set is now called the Smale horseshoe, see [Smale]).
Soon, in 1963, the probably most famous attractor - the Lorenz attractor - was discovered ([Lorenz]). The
Lorenz attractor arises from a 3-dimensional system in continuous time. See [Holmes] for the history.

15Fractals are sets that have repeating patterns at every scale. They are often self-similar sets, i.e., some
of their proper subsets are similar to the whole set. We will not give mathematical definitions of fractals or
self-similarity, since they involve more theory and are not exactly the topic of this thesis. For the classical
work on fractals, see [Mandelbrot]. For the mathematical foundations, see [Falconer].

16One can compute the new measure after each iteration. Clearly, a finite ensemble will give only an
approximation of the measure. For a good description of this process, see [Lasota and Mackey, Sec.1.2].

17In Chapter 3, we discuss a sophisticated theory of the invariant measure developed by Prof. Lasota and
colleagues, which we apply to the driven Rényi transformation.
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dimension. A very intuitive approach is that of the box-counting dimension18. Imagine
that the phase space Rn is covered by a grid of n-dimensional cubes of edge length ε. Let Npεq
be the number of cubes that have non-empty intersection with the set. Thinking about the
simple examples of a point, an interval, a square or a cube, we expect Npεq to be proportional
to εd, where d is the dimension of the set. The box-counting dimension is defined as (e.g.,
[Ott, Sec.3.1])

D0 � lim
εÑ0

� logNpεq
log ε

, (1.3.1)

in case the limit exists. For geometrically simple sets, this definition coincides with the
intuitive idea of a dimension. For sets of complex structure, this definition can yield non-
integer values. Though surprising at first sight, this fact is what makes the definition so
valuable: it gives a measure of the space-filling capacity of the set. E.g., the Koch curve
— one of the first examples of a fractal set (see [von Koch]) — is defined by an iterative
process and can be depicted only approximately after a finite number of iterations. Any
approximation is a one-dimensional curve, but the Koch curve itself fills some space on the
plane and has box-counting dimension higher than 1.

The box-counting dimension has a disadvantage in that it is quite demanding to compute
it for the given data. The phase space should be divided into boxes, the trajectory should be
located and the number of computations increases exponentially with the dimension of the
phase space. Other notions of dimension allow easier numerical estimations. The correlation
dimension was the first concept of dimension created to gain computational advantage (see
[Grassberger and Procaccia, Sec.1 and 2]). Another example is the transitivity dimension,
which arised from the recurrence network approach. We will discuss these notions in Chapter
2.

1.4 Thesis goals and structure

The initial plan for this thesis was to develop an analytical theory for the detection of diffu-
sive coupling in two systems from the data sets of their trajectories, based on the recurrence
network analysis. Specifically, we wished to circumstantiate the ideas of [Feldhoff et al.] and
develop them, possibly through the analysis by means of the transitivity dimension. This
turned out to be a very complex task to accomplish in the available time, so only several
steps towards understanding the subject have been made.

After introducing basic definitions and notation in Section 1.4, we proceed in Chapter 2
with new results on transitivity19 and the transitivity dimension. Having sketched the already
known facts, I give a proof that the transitivity dimension of the attractor is an integer equal
to the phase space dimension n in case the corresponding invariant density is absolutely
continuous w.r.t. Lebesgue, bounded and continuous in at least one point of the phase space
where it is nonzero. It probably follows that if the invariant measure has the same properties
but w.r.t. a smooth submanifold of dimension m   n, the transitivity dimension will be equal
to m. This result supports the idea that the transitivity dimension is defined meaningfully,
and it does not contradict the well-known fact about the non-integer dimension of fractal
sets. Indeed, fractal attractors do not normally have invariant densities which are absolutely

18The box-counting dimension is also called the Minkowski-Bouligand dimension.
19Transitivity is the analogue of cross-transitivity for one system. The definition will be given in Chapter 2.
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continuous w.r.t. Lebesgue and continuous at least in one point.20 On the other hand, this
result is surprising, since it shows that the continuity in one point (local property) is enough
for the dimension to have integer value (global property).

The result is in line with the fact that the whole class of Rényi entropy dimensions (the
correlation dimension being one of them) has also integer values of the phase space dimension
under the same conditions on the invariant measure. Though this last fact seems to be widely
accepted among the researchers, I could not find the proof in the literature and give my own.

Further, I study the rate of convergence of the transitivity computed from a sample
data towards the theoretical value (i.e., the one computed using the invariant measure) in
dependence on the attractor dimension. Third, in Section 2.3, I present an approach to study
weak coupling identifying the influence of the driving system with stochastic noise and show
on simple examples how the presence of the noise changes the dimension of the attractor of
the driven system.

In Chapter 3, I present the theory of the invariant measure of the Rényi transformation
developed by Prof. Lasota and colleagues. This is not an original piece of work, my contribu-
tion is solely the application of the theory to the driven Rényi transformation as well as the
compilation of different articles into one (hopefully, better readible) sequence of lemmas and
theorems. However, I found the work on this chapter very useful for the understanding of the
difficulties involved in the analytical theory of the invariant measure for a given system. Rényi
transformations were chosen for analysis quite early during the work on the thesis, since they
demonstrated interesting behaviour by numerical computations of the cross-transitivities and
seemed to be not difficult to study analytically. However, own attempts to find the invariant
measures did not succeed and the found existing theory turned out to be quite complicated.

Finally, Chapter 4 is devoted to heuristic study of the questions following [Feldhoff et al.].
Different dynamical systems are studied with the same methodology as in [Feldhoff et al.] and
the results of the numerical computations are presented. Further, I give simple examples to
show that in general any relation between T̂ XY and T̂ YX (see Section 1.1) is possible.

We finish with a short conclusion.

1.5 Basic definitions, theorems and notation

This section can be skipped and used as a reference while reading the thesis, especially
Section 2.3 and Chapter 3.

1.5.1 Norms on Rn, scalar product

In all applications, we consider dynamical systems in the phase space Rn for some n P N.
On Rn we use the Euclidean and, most of the time, the supremum norm. The choice is due
to the simplicity of computations and is not of high significance, since all norms on Rn are
equivalent.

Definition 1.5.1. Let x � px1, . . . , xnqT be a point in Rn. Then

||x||2 �
b
x2

1 � x2
2 � � � � � x2

n (1.5.1)

20In Section 2.1, we give an example and further discuss this issue.
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is the Euclidean norm of x and

||x||8 � max
1¤j¤n

|xj | (1.5.2)

is the supremum norm of x.
The (open) ball of radius r P Rn with center in x P Rn is defined by

Brpxq � ty P Rn : ||x� y||   ru, (1.5.3)

where || � || can be any norm and should be specified beforehand.

Definition 1.5.2. Two norms || � ||α and || � ||β on Rn are called equivalent if there exist
finite positive constants c and C with

c||x||α ¤ ||x||β ¤ C||x||α (1.5.4)

for all x P Rn.

Theorem 1.5.3. On Rn, any two norms are equivalent.

The elementary proof of an even stronger statement can be found in [MacCluer, Th.4.2].

Definition 1.5.4. For two points x � px1, . . . , xnqT , y � py1, . . . , ynqT P Rn, the scalar
product of x and y is defined as

xx, yy �
ņ

i�1

xiyi. (1.5.5)

1.5.2 Measures

For the theory in Chapter 3, we consider a general phase space X.

Definition 1.5.5. A family of sets A � X is called a σ-algebra if

(i) X P A,

(ii) for all A P A, Xc � XzA P A and

(iii) for any countably many A1, A2, � � � P A,
�8
i�1Ai P A.

Definition 1.5.6. Let A � X be a σ-algebra. A measure is a function µ : AÑ r0,8s with
µpHq � 0 and such that for any countably many mutually disjoint sets A1, A2, � � � P A, it
holds µ

��8
i�1Ai

� � °8
i�1 µpAiq.

A measure µ is called finite, if µpXq   8.
A measure µ is called σ-finite, if there are at most countably many sets X1, X2, � � � P A

such that X � �8
i�1Xi and µpXiq   8 for all i P N.

Definition 1.5.7. For a space X, a σ-algebra A defined on X and a σ-finite measure µ
defined on A,

the pair pX,Aq is called the measurable space and
the triple pX,A, µq is called the σ-finite measure space.

For Rn, the canonical σ-finite measure space is pRn,BpRnq, λnq:
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Definition 1.5.8. BpRnq, the Borel σ-algebra on Rn, is the smallest σ-algebra, which
contains all open sets in Rn, i.e., all possible unions of open balls in Rn.

The existence of this smallest σ-algebra is guaranteed by a theorem, see, e.g., [Klenke,
Th.1.16].

Definition 1.5.9. The Lebesgue measure λn is the unique measure on pRn,BpRnqq such
that

λnppa, bsq �
n¹
i�1

pbi � aiq (1.5.6)

for all a � pa1, . . . , anqT , b � pb1, . . . , bnqT P Rn.

The existence of this unique measure is guaranteed by a theorem, see, e.g., [Klenke,
Th.1.55].

Let pX,A, µq be a σ-finite measure space. For a function f : X Ñ R, we denote the integral
of f over a set A P A with respect to (w.r.t.) the measure µ by»

A
fdµ. (1.5.7)

For the Lebesgue measure on Rn, we write dx instead of dλn.

Definition 1.5.10. Let µ and ν be two measures on pX,Aq.
The measure µ is called absolutely continuous w.r.t. the measure ν, if νpAq � 0 implies

µpAq � 0 for every A P A.

The measures µ and ν are called mutually singular, if there is an A P A with µpAq � 0
and νpXzAq � 0.

Theorem 1.5.11 (The Radon-Nikodym theorem). Let µ and ν be two σ-finite measures on
pX,Aq. Then µ is absolutely continuous w.r.t. ν if and only if there exists a nonnegative
measurable function f : X Ñ R such that for all A P A

µpAq �
»
A
fdν. (1.5.8)

A proof of this theorem can be found, e.g., in [Teschl, topics, Th.9.2].

Definition 1.5.12. The function f : X Ñ R from the Radon-Nikodym theorem is called the
Radon-Nikodym derivative.

Theorem 1.5.13 (Lebesgue decomposition theorem). Let µ and ν be two σ-finite measures
on pX,Aq. Then µ can be uniquely decomposed as µ � µac � µs, where µac is absoultely
continuous w.r.t. ν and µs and ν are mutually singular.

A proof of this theorem uses the Radon-Nikodym theorem, c.f. [Teschl, topics, Th.9.3].21

21One can proceed the other way around and make the Radon-Nikodym theorem a corollary to the Lebesgue
decomposition theorem - see [Klenke, Th.7.33].
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There are several ways in which we can express the time-evolution law. Generally, we can
speak of transformations of the phase space.22

Definition 1.5.14. A transformation (or a function) S : X Ñ X is measurable, if
S�1pAq P A for all A P A.

A measurable transformation is nonsingular if µpAq � 0 implies µpS�1pAqq � 0.

Definition 1.5.15. Let S : X Ñ X be a nonsingular transformation. The measure µ is said
to be invariant under S if for every A P A

µpS�1pAqq � µpAq. (1.5.9)

1.5.3 Lp-spaces and Fubini theorem

Definition 1.5.16. For a set A P X, the indicator function of A is defined as

1Apxq �
#

1, x P A
0, otherwise.

(1.5.10)

Definition 1.5.17. The support of a function f : X Ñ R is the set

supppfq � tx P X : fpxq � 0u. (1.5.11)

Definition 1.5.18. For p ¡ 1, the space of functions f : X Ñ R such that

||f ||p �
�»

X
|f |pdµ


1{p

  8 (1.5.12)

is called an Lp space over X, denoted LppXq.
The space of functions f : X Ñ R such that

||f ||8 � sup
xPX

|fpxq|   8 (1.5.13)

is called an L8 space over X, denoted L8pXq.
Functions f P L1 are called integrable.

Definition 1.5.19. Denote

D � DpX,A, µq � tf P L1pXq : ||f || � 1u. (1.5.14)

Any function f P D is called a density.

It can be easily shown that Lp spaces are indeed vector spaces for all 1 ¤ p ¤ 8. Moreover,
they are Banach spaces, i.e., complete.23 If µ is finite, then we have the following inclusions
for all p P N (see, e.g., [Villani, Th.2]):

L8pXq � � � � � LppXq � Lp�1pXq � � � � � L2pXq � L1pXq. (1.5.15)

22For discrete time systems, the transformation is just the map S : X Ñ X. For systems in continuous
time, we need to define a family of transformations. Following [Lasota and Mackey, Def.7.2.1], we can define
a dynamical system tStutPR on X as a family of transformations St : X Ñ X, t P R, satisfying (i) S0pxq � x
for all x P X, (ii) StpSt1pxqq � St�t1pxq for all x P X, t, t1 P R and (iii) the map pt, xq Ñ Stpxq is continuous.
We will not use this definition and leave it for the footnote.

23We do not give definitions of these elementary notions from (functional) analysis as well as of the Hilbert
space mentioned later. See [Reed, Simon, Ch.1 and 2].
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There is an important issue that in Lp spaces we cannot distinguish functions which differ
on a set of measure 0. In fact, f P Lp is a representative of an equivalence class of functions,
which are equal up to a set of measure 0. It follows that all (in)equalities of functions should
be understood only as “almost everywhere” - a.e. - (in)equalities.

We will treat sets in a similar way. Since characteristic functions are equal in L1 if and
only if the underlying sets are equal up to a set of measure 0, we will call two sets A and
B different only if AzB or BzA has positive measure. Equalities of sets should also be
understood as “almost” equalities.

From all Lp-spaces, only L2 can be made to a Hilbert space.

Definition 1.5.20. Let f, g P L2pXq. Then the scalar product of f and g is

xf, gy �
»
X
fgdµ. (1.5.16)

Finally, we state the Fubini theorem that will be used in Chapter 2.

Theorem 1.5.21 (Fubini). Let pX1,A1, µq and pX2,A2, νq be two σ-finite measure spaces
and f be a nonnegative measurable function on X1 �X2. Then»

X1

�»
X2

fpx1, x2qdνpx2q


dµpx1q   8 (1.5.17)

if and only if »
X2

�»
X1

fpx1, x2qdµpx1q


dνpx2q   8 (1.5.18)

and if one (and thus both) of these integrals is finite, then they are equal.

For the proof, see [Teschl, topics, Th.A.21 and A.22].

1.5.4 Normal distribution, characteristic function and some notation

We will not mention here the preliminaries from probability theory, which can be found,
e.g., in [Klenke, Ch.1].

Definition 1.5.22. A matrix Mn�n is called positive definite, if xTMx ¡ 0 for all x P Rn.

Definition 1.5.23. Let Σ be a positive definite symmetric real n� n Matrix and a P Rn. A
random vector ξ � pξ1, . . . , ξnqT is said to have the (multivariate) normal distribution
with mean a and covariance matrix Σ, if ξ has the probability density

fpxq � 1a
p2πqndetpΣq exp

�
�1

2
xx� a,Σ�1px� aqy



(1.5.19)

for x P Rn. We write ξ � N pa,Σq.
Definition 1.5.24. Let µ be a finite measure on Rn. The function ϕµ : Rn Ñ C defined by

ϕpλq �
»
eixλ,xyµpdxq, (1.5.20)

where i is the imaginary unit, is called the characteristic function of µ.
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For a normal distribution with mean a and covariance matrix Σ, the characteristic function
has the form ([Klenke, Th.15.53])

ϕpλq � eixλ,aye�
1
2
xλ,Σλy (1.5.21)

for all λ P Rn.

At the end of this section we repeat some common notation that will be used in the thesis.
By

�
iPI Ai we denote the Cartesian product of the sets tAiuiPI .

For two sets A and B, A∆B denotes the symmetric difference:

A∆B � AzB YBzA. (1.5.22)

The restriction of a function f : D Ñ X to a subdomain A � D is denoted by f |A.



Chapter 2

Transitivity dimension and the
impact of noise on dimensions

We start this chapter with the definition of transitivity as a measure in the complex network
theory. As in introduction, we start with a time series pxtqt�1,...,N , xt P Rn for all t �
1, . . . , N and some n,N P N, which represents states of a dynamical system, and construct
the recurrence network. The vertices are all xt irrespectively of possible equality of two states
and the edges are defined by the adjacency matrix A P RN�N with

Aijpεq � 1t||xi�xj ||¤εu � 1ti�ju for all i, j P t1, . . . , nu, (2.0.1)

where ε is a fixed threshold and the norm is specified. Throughout this chapter, we will use
the supremum norm, which is normally easier for computations, and write just || � || instead
of || � ||8.

Definition 2.0.25. The (ε-)transitivity is the number

T̂ �
°N
i,j,k�1AkiAkjAij°N
i,j,k�1, i�j AkiAkj

. (2.0.2)

In words, we have that the transitivity1 is

6� number of triangles in the network

2� number of connected triples in the network
� 3� number of triangles

number of connected triples
, (2.0.3)

where “triangle” means three different vertices connected pairwise through edges and “con-
nected triple” is a vertex connected through edges to two other different ordered vertices. The
factor 3 corresponds to the fact that each triangle contributes to 3 triples and thus ensures
that 0 ¤ T̂ ¤ 1. This way, the transitivity can be interpreted as the mean probability that
two neighbour vertices of one chosen vertex are themselves neighbours.

1According to [Newman, Sec.3.2], transitivity in this form was first proposed in physical literature by
[Barrat and Weigt]. However, they called it “clustering coefficient” following [Watts and Strogatz], who gave
a slightly different definition. In the recent literature (c.f. [Donges et al.]), the term “clustering coefficient” is
used for this second definition, and the measure defined in [Barrat and Weigt] is called “transitivity”, as we
do here for now. Later, we will call it the “transitivity estimator” in order to distinguish this quantity, which
can be computed from a finite network, from another quantity defined using the invariant measure.
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As all measures in complex network theory, the transitivity is computed for a finite dis-
crete network. However, our theoretical interest lies in studying attractors of dynamical
systems, which are often “continuous” objects. [Donner et al., 2011] proposed to “interpret
an ε-recurrence network as a discrete subnetwork of a ”continuous“ graph with uncount-
ably many vertices and edges corresponding to the system’s attractor.”2 Accordingly, they
redefined measures and came up with the following definition of transitivity:

Definition 2.0.26. Let X be a dynamical system in Rn and µ the corresponding invariant
density. We call

T pεq �
µ

Rn�Rn�Rn 1t||x�y||¤εu1t||x�z||¤εu1t||y�z||¤εudµpzqdµpyqdµpxqµ
Rn�Rn�Rn 1t||x�y||¤εu1t||x�z||¤εudµpzqdµpyqdµpxq

(2.0.4)

the ε-transitivity of X .

The notion of transitivity is this way uncoupled from the recurrence network and is solely
a measure of the attractor of the system, more precise, of its ivariant measure. From now on,
to avoid confusion, we use the term “transitivity” for this new object and call the network
measure from definiton 2.0.25 the “transitivity estimator”, though this name is probably not
yet established.

2.1 Transitivity dimension and its properties

Transitivity is a measure corresponding to an attractor. As mentioned in Section 1.2,
measures of attractors often come up in form of dimensions. Donner et al. observed close
interrelation between the transitivity and the dimensionality of attractors, e.g., for the sim-
plest examples of the attractor points uniformly distributed on an interval, a square or an
n-dimensional hypercube, the transitivity converges to p3{4qn for the corresponding dimen-
sion n of the attractor as εÑ 0. This encouraged them to define a new notion of dimension.
Following [Donner et al., 2011, Sec.3.2], we define the transitivity dimension.

Definition 2.1.1. Let X be a dynamical system in Rn, µ the corresponding invariant density
and T pεq the corresponding ε-transitivity. If the limit

DT � lim
εÑ0

log T pεq
logp3{4q (2.1.1)

exists, it is called the transitivity dimension of X .

Donner et al. point out that for self-similar sets, DT does not exist in general. Instead of
considering definition 2.1.1, they study the upper and lower transitivity dimensions.

Definition 2.1.2. Let X be a dynamical system in Rn, µ the corresponding invariant density
and T pεq the corresponding ε-transitivity. The upper and lower transitivity dimensions
of X are

Du
T � lim sup

εÑ0

log T pεq
logp3{4q and

Dl
T � lim inf

εÑ0

log T pεq
logp3{4q (2.1.2)

2[Donges et al., Abstract], which is another article from the same authors summarizing many issues from
[Donner et al., 2011].
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respectively.

The authors describe several properties of these new notions.
First, Du

T and Dl
T can differ for one attractor, if it has fractal geometry. E.g., for the

Cantor set, i.e., the set of real numbers in r0, 1s with ternary expansion which does not
contain any “1” digit, T pεq � 1 for all ε P t1{3kukPN and T pεq � 11{13 for all ε P t5{3kuk¡1,
so Du

T � 0.581 and Dl
T � 0.

Second, Du
T can be smaller or larger than the established notions of dimension, in partic-

ular the Rényi entropy dimensions (see defintions in Section 2.1.2).
Third, Du

T can even exceed the dimension of the phase space. This is supported by a
Cantor-like example and is probably true only for pathological cases.

Transitivity dimension is a conceptually new notion of dimension, since it is the first
one that is based on geometric three-point interdependencies. This novelty has practical
implications, e.g., for detecting distinct spatial structures related with supertrack functions
and the unstable periodic orbits. We do not discuss this, see [Donner et al., 2011, Sec.4].

Further, transitivity dimension has computational advantage in comparison to Rényi en-
tropy dimensions: reasonable estimates can be obtained from rather short time series, i.e.,
with Op103 . . . 104q points, at least for low-dimensional systems.

2.1.1 Transitivity dimension for absolutely continuous ivariant measures

We have managed to analytically prove another property of the transitivity dimension,
which generalizes the motivating example of the uniform distribution on an n-dimensional
hypercube. For invariant measures which are absoulutely conitnuous w.r.t. Lebesgue and
have Radon-Nikodym derivatives with at least one point of continuity on its support, the
transitivity dimension is always equal to the phase space dimension. After the proof of the
proposition, we discuss how one could infer that the same properties of the invariant measure
w.r.t. a proper smooth submanifold of the phase space would yield the transitivity dimension
equal to the dimension of the submanifold.

Proposition 2.1.3. Let X be a dynamical system in Rn such that its invariant density µ is
absolutely continuous w.r.t. the Lebesgue measure λ, i.e., there exists a function f P L1pRnq
such that µpAq � ³

A fpxqdx for all measurable sets A P Rn. If f P L8pRnq and there exists
at least one point z P Rn such that f is continuous in z and fpzq ¡ 0, then the transitivity
dimension is equal to the space dimension n.

Proof. We prove this theorem in 3 steps. First, we show that for every integrable step function,
i.e., a function

m̧

i�1

ci1Ri (2.1.3)

for some rectangle Ri and some constants ci P R, the ε-transitivity converges to p3{4qn as
εÑ 0. Second, we show this for integrable simple functions, i.e., functions of the form

m̧

i�1

ci1Ai (2.1.4)

for some measurable sets Ai of finite measure and some constants ci P R. Finally, we infer
the convergence for arbitrary nonnegative L1 X L8 functions. In the second and the third
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steps, density of the corresponding function sets is used (see, e.g., [Stein and Shakarchi, RA,
Th.II.2.4]). Clearly, convergence of ε-transitivity to p3{4qn is equivalent to DT � n.

Step I. Let

f �
m̧

i�1

ci1�n
j�1ra

j
i ,b

j
i s

(2.1.5)

with all ci ¡ 0 and all intervals raji , bji s disjoint for a fixed j be an integrable step function

(integrability implies that all aji , b
j
i � �8). Define c � minitciu and C � maxitciu and choose

some

ε   min
ti,j: aji ,b

j
iPRu

#
|bji � aji |

2
,
1

2

+
. (2.1.6)

We will now consider the “inner” part of each rectangle
�n

j�1raji � ε, bji � εs and the rest
separately. Denoting Tdpεq the denominator of T pεq, we can write

Tdpεq �
»
Rn

»
Bεpxq

»
Bεpxq

m̧

i�1

ci1�n
j�1ra

j
i ,b

j
i s
pxq

m̧

l�1

cl1�n
j�1ra

j
l ,b

j
l s
pyq

m̧

k�1

ck1�n
j�1ra

j
k,b

j
ks
pzqdzdydx

�
m̧

i�1

c3
i

»
Rn

»
Bεpxq

»
Bεpxq

1�n
j�1ra

j
i�ε,b

j
i�εs

pxq1�n
j�1ra

j
i ,b

j
i s
pyq1�n

j�1ra
j
i ,b

j
i s
pzqdzdydx�Rd

�
m̧

i�1

c3
i

n¹
j�1

» 8
�8

» xj�ε
xj�ε

» xj�ε
xj�ε

1
raji�ε,b

j
i�εs

pxjq1raji ,bji spyjq1raji ,bji spzjqdzjdyjdxj �Rd

�
m̧

i�1

c3
i � p4ε2qn

n¹
j�1

pbji � aji � 2εq �Rd, (2.1.7)

where we used the fact that all intervals raji , bji s disjoint for a fixed j in the first step
and the Fubini theorem to compute the integral. The computation of Rd is much more
complicated, but we can easily find the upper and the lower bounds for it. Any area in�n

j�1raji , bji sz
�n

j�1raji � ε, bji � εs has length equal to ε in at least one and at most n direc-
tions, so we get

kε3n ¤ Rd ¤ Kp4ε2qn � ε (2.1.8)

for some k,K P R depending on c and C respectively. Using the Landau notation, Rd � opε2nq,
i.e., limεÑ0Rd{ε2n � 0.

Analogously, for the numerator of T pεq,

Tnumpεq �
m̧

i�1

c3
i

n¹
j�1

» bji�ε
aji�ε

dxj

�» xj
xj�ε

» yj�ε
xj�ε

dzjdyj �
» xj�ε
xj

» xj�ε
yj�ε

dzjdyj

�
�Rnum

�
m̧

i�1

c3
i � p3ε2qn

n¹
j�1

pbji � aji � 2εq �Rnum (2.1.9)

with Rnum � opε2nq. It follows that

T pεq �
°m
i�1 c

3
i � p3ε2qn

±n
j�1pbji � aji � 2εq �Rnum°m

i�1 c
3
i � p4ε2qn

±n
j�1pbji � aji � 2εq �Rd

Ñ
�

3

4


n
as εÑ 0. (2.1.10)
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Step II. Now let f be an integrable simple function, i.e.,

f �
m̧

i�1

ci1Ai (2.1.11)

with measurable sets Ai of finite measure and all ci ¡ 0. W.l.o.g. assume that Ai’s are
disjoint and let C � m �maxitciu 3. Since the set of step functions is dense in the set of simple
functions, there exists a sequence tfkukPN of step functions such that

||f � fk||1 Ñ 0 as k Ñ8. (2.1.12)

We construct tfku with special properties that we will use in the proof to follow. Fix some
i. As a measurable set, Ai can be approximated from outside by open sets; every open set is a
countable union of almost disjoint closed rectangles, more than that, all these rectangles have
measure 2�ln for some l P N, there are finitely many rectangles of each measure and they are
ordered so that the measure is non-increasing (e.g., [Stein and Shakarchi, RA, Th.I.3.4 and
Th.I.1.4]). So there exist almost disjoint closed rectangles tDi,jujPN with

Ai �
8¤
j�1

Di,j (2.1.13)

and λp�8
j�1Di,jzAiq ¤ 1

4mk . Since for every N P N

N¤
j�1

Di,j∆Ai �
�

N¤
j�1

Di,jzAi
�
Y
�
Aiz

N¤
j�1

Di,j

�

�
�

N¤
j�1

Di,jzAi
�
Y

8¤
j�N�1

Di,j (2.1.14)

and tDi,ju has the properties discussed above, there exists a number Ni,k P N such that for

Ui,k �
�Ni,k
j�1 Di,j it holds

λpUi,k∆Aiq ¤ 1

2mk
. (2.1.15)

Denote by Zk the set of all points, where at least two of Di,j , j ¤ Nk, intersect. Define

fk �
m̧

i�1

ci1Ui,k . (2.1.16)

Clearly, f � fk a.e. on Dk � p�m
i�1 Ui,kq zZk. Further, since Ai’s are disjoint,

λpsupppfq∆Dkq ¤ 1

2k
. (2.1.17)

In addition, w.l.o.g. (by extracting a subsequence), assume that
³ |f � fk| ¤ 1

k . Finally, since

f is continuous in z and fpzq ¡ 0, w.l.o.g. there exists a rectangle
�n

j�1rãj , b̃js such that
fk|�n

j�1rãj ,b̃js
� c̃ ¡ 0 for all k P N.

3We will need to use this upper bound due to the choice of approximating sequence we make below.
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Now, denoting by T pf, εq the ε-transitivity for the measure fdx, we notice that if the
following limits exist,

lim
εÑ0

����T pf, εq �
�

3

4


n���� � lim
kÑ8

lim
εÑ0

����T pf, εq �
�

3

4


n����
¤ lim

kÑ8
lim
εÑ0

|T pf, εq � T pfk, εq| � lim
kÑ8

lim
εÑ0

����T pfk, εq �
�

3

4


n���� . (2.1.18)

The last limit is zero, so in order to prove that T pf, εq Ñ 3{4 as εÑ 0, it is now enough to show
that limkÑ8 limεÑ0 |T pf, εq � T pfk, εq| � 0, which is equivalent to |T pf, εq � T pfk, εq| Ñ 0 as
nÑ8 uniformly in ε.

Denote the numerator and denominator of T pf, εq by Tnumpf, εq and Tdpf, εq respectively.
Since for all nonnegative numbers a, b, c, d

|ab� cd| ¤ |ab� ad| � |ad� cd|
¤ a � |b� d| � d � |a� c|, (2.1.19)

we have

|T pf, εq � T pfk, εq| � |Tnumpf, εqTdpfk, εq � Tnumpfk, εqTdpf, εq|
Tdpf, εqTdpfk, εq

¤ Tnumpf, εq
Tdpf, εq � |Tdpfk, εq � Tdpf, εq|

Tdpfk, εq � |Tnumpf, εq � Tnumpfk, εq|
Tdpfk, εq .

(2.1.20)

Clearly,

0 ¤ Tnumpf, εq
Tdpf, εq ¤ 1 (2.1.21)

and
|Tnumpf, εq � Tnumpfk, εq| ¤ |Tdpfk, εq � Tdpf, εq| , (2.1.22)

so it remains to show that |Tdpf, εq � Tdpfk, εq|
Tdpfk, εq Ñ 0 (2.1.23)

as k Ñ8 uniformly in ε.
We aim at estimating this term from above and start with the numerator. By the triangle

inequality,

|Tdpf, εq � Tdpfk, εq| ¤
»
Rn

»
Bεpxq

»
Bεpxq

|fpxqfpyqfpzq � fkpxqfkpyqfkpzq| dzdydx.

For all nonegative a, b, c, a1, b1, c1

|abc� a1b1c1| ¤ |ab| � |c� c1| � |ab� a1b1| � |c1|
¤ a � b � |c� c1| � a � c1 � |b� b1| � b1 � c1 � |a� a1|. (2.1.24)

Since both f and fk are bounded by C, it holds»
Rn

»
Bεpxq

»
Bεpxq

pfpxqfpyq|fpzq � fkpzq| � fpxqfkpzq|fpyq � fkpyq|q dzdydx

¤ 2Cp2εqn
»
Rn
fpxq

»
Bεpxq

|fpyq � fkpyq|dydx, (2.1.25)
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and, since
³ |f � fk| ¤ 1

k ,»
Rn

»
Bεpxq

»
Bεpxq

fkpyqfpzq|fpxq � fkpxq|dzdydx

¤ C2p4ε2qn
»
Rn
|fpxq � fkpxq|dx ¤ C2p4ε2qn 1

k
. (2.1.26)

We will resume the estimation of the numerator later.
In order to estimate the denominator Tdpfk, εq from below, we use the existence of a

rectangle
�n

j�1rãj , b̃js such that fk|�n
j�1rãj ,b̃js

� c̃ ¡ 0:

Tdpfk, εq ¥
»
Rn

»
Bεpxq

»
Bεpxq

c̃31�n
j�1rãj ,b̃js

pxq1�n
j�1rãj ,b̃js

pyq1�n
j�1rãj ,b̃js

pzqdzdydx

¥ c̃3p2ε2qn
n¹
j�1

pb̃j � ãj � 2εq ¥ c̃3p2ε2qn
n¹
j�1

b̃j � ãj
2

, (2.1.27)

where the two last inequalities hold for all ε small enough.
We can finally estimate

|Tdpf, εq � Tdpfk, εq|
Tdpfk, εq ¤

εn2n�1C
³
Rn fpxq

³
Bεpxq

|fpyq � fkpyq|dydx� ε2n4nC2 1
k

ε2n2nc̃3
±n
j�1

b̃j�ãj
2

. (2.1.28)

Imagine that for some constant K̃»
Rn
fpxq

»
Bεpxq

|fpyq � fkpyq|dydx ¤ εnK̃
1

k
(2.1.29)

holds for all k P N. Then we can further estimate

|Tdpf, εq � Tdpfk, εq|
Tdpfk, εq ¤ ε2n2n�1CK̃ 1

k � ε2n4nC2 1
k

ε2n2nc̃3
±n
j�1

b̃j�ãj
2

� 1

k

2n�1CK̃ � 4nC2

2nc̃3
±n
j�1

b̃j�ãj
2

, (2.1.30)

where the last term goes to 0 as k goes to 8 uniformly in ε.
To finish this step of the proof, we show (2.1.29).
Recall that there exists a measurable set Dk with f � fk a.e. on Dk and such that

λpsupppfq∆Dkq ¤ 1
2k . Using again the fact that every measurable set can be approximated

from outside by open sets and every open set is a countable union of almost disjoint closed
rectangles, suppose that

supppfq∆Dk �
8¤
l�1

Dl
kpyq, (2.1.31)

where all Dl
k are closed rectangles and

°8
l�1 λpDl

kq ¤ 1
k . We have»

Rn
fpxq

»
Bεpxq

|fpyq � fkpyq|dydx ¤ C

»
Rn

»
Bεpxq

|fpyq � fkpyq| � 1supppfq∆Dkpyqdydx

¤ 2C2

»
Rn

»
Bεpxq

8̧

l�1

1Dlk
pyqdydx

� 2C2
8̧

l�1

»
Rn

»
Bεpxq

1Dlk
pyqdydx, (2.1.32)
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where the last equality holds by the monotone convergence theorem.
Let Dl

k �
�n

j�1raj , bjs. Then, by the Fubini theorem,

»
Rn

»
Bεpxq

1Dlk
pyqdydx �

n¹
j�1

»
R

» x�ε
x�ε

1raj ,bjspyqdydx. (2.1.33)

Since there can be infinitely many different Dl
k’s, we need to consider 3 cases:

Case 1. 2ε ¤ |bj � aj |. Exploiting symmetry,

»
R

» x�ε
x�ε

1raj ,bjsdydx � 2

» aj�ε
aj�ε

» x�ε
aj

dydx�
» bj�ε
aj�ε

» x�ε
x�ε

dydx

� p2εq2 � pbj � aj � 2εq � 2ε � 2εpbj � ajq. (2.1.34)

Case 2. ε ¤ |bj � aj | ¤ 2ε.

»
R

» x�ε
x�ε

1raj ,bjsdydx �
» bj�ε
aj�ε

» x�ε
aj

dydx�
» aj�ε
bj�ε

» bj
aj

dydx�
» bj�ε
aj�ε

» bj
x�ε

dydx

� pbj � ajq2
2

� 2εpbj � ajq � pbj � ajq2 � pbj � ajq2
2

� 2εpbj � ajq. (2.1.35)

Case 3. |bj � aj | ¤ ε. Exploiting symmetry again,

»
R

» x�ε
x�ε

1raj ,bjsdydx � 2

» bj�ε
aj�ε

» x�ε
aj

dydx�
» aj�ε
bj�ε

» bj
aj

dydx

� pbj � ajq2 � pbj � aj � 2εq � 2ε � 2εpbj � ajq. (2.1.36)

In all cases we get the same result and it follows that»
Rn

»
Bεpxq

1Dlk
pyqdydx � p2εqn

n¹
j�1

pbj � ajq � p2εqnλpDl
kq. (2.1.37)

Together with (2.1.32), we get (2.1.29).
Step III. Finally, consider an arbitrary nonnegative function f P L1 X L8pRnq with

||f ||8 � C. This function can be approximated in L1 by integrable simple functions such as
(2.1.11). Let us construct a specific approximating sequence tfkukPN. First, for each k P N,
find a number Lk ¡ 0, such that »

pr�Lk,Lksnqc
f ¤ 1

k
. (2.1.38)

Define

fk �
tCku�1¸
i�1

i� 1

k
1Ai (2.1.39)

with

Ai � f�1

�
i� 1

k
,
i

k



X r�Lk, Lksn, (2.1.40)
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ensuring that |f �fk| ¤ 1
k a.e. on r�Lk, Lksn. Second, slightly change fk, ensuring that there

exists a rectangle
�n

j�1rãj , b̃js such that fk|�n
j�1rãj ,b̃js

¥ c̃ ¡ 0 for all k P N.

Now we can repeat the argumentation of step II up to equation (2.1.27). Further, with
the assumptions on tfku,»

Rn
fpxq

»
Bεpxq

|fpyq � fkpyq|dydx �
»
r�Lk,LksnYpr�Lk,Lksnqc

fpxq
»
Bεpxq

|fpyq � fkpyq|dydx

¤ p2εqn 1

k
� 2Cp2εqn 1

k
. (2.1.41)

We estimate

|Tdpf, εq � Tdpfk, εq|
Tdpfk, εq ¤

εn2n�1C
³
Rn fpxq

³
Bεpxq

|fpyq � fkpyq|dydx� ε2n4nC2 1
k

ε2n2nc̃3
±n
j�1

b̃j�ãj
2

¤ εn2n�1C
�p2εqn 1

k � 2Cp2εqn 1
k

�� ε2n4nC2 1
k

ε2n2nc̃3
±n
j�1

b̃j�ãj
2

� 1

k

2n�1C
�
2n � 2n�1C

�� 4nC2

2nc̃3
±n
j�1

b̃j�ãj
2

, (2.1.42)

where the last term goes to 0 as k goes to 8 uniformly in ε.

While not having the complete proof, we believe that one could further generalize this
proposition in the following way. Suppose that the invariant measure is supported on a proper
smooth compact submanifold of dimension m   n.4 Since this submanifold has Lebesgue
measure zero in Rn and at the same time supports the invariant measure, this measure can
not be absolutely continuous w.r.t. Lebesgue by definition. However, there can exist an atlas
of the submanifold such that the pullback of the invariant measure is absoulutely continuous
w.r.t. Lebesgue measure on every chart, which is in that case diffeomorphic to Rm. Note
that since the submanifold is compact, the atlas is finite. Suppose that — in line with the
proposition — there is a point on the submanifold such that in a chart containig it the Radon-
Nikodym derivative of the invariant measure is continuous. One can sligthly change the atlas
in order to ensure that every chart of the submanifold contains this point. (This should be
possible by finding a path from some point of a chart to the given point and enlarging the
chart by a “tube” around this path.) If on every chart the Radon-Nikodym derivative is a
function from L1 X L8, the proposition ensures that for this chart the ratio of two integrals
from the definition of transitivity converges to p3{4qm as ε Ñ 8. Loosely speaking, the
transitivity can be represented as a ratio of sums

τ1
num � τ2

num � � � � � τ lnum
τ1
d � τ2

d � � � � � τ ld
, (2.1.43)

where l P N is the number of charts and, as discussed,

τ inum
τ id

Ñ
�

3

4


m
as εÑ 0 (2.1.44)

4Here we use different terminology from the differential geometry. Please, refer to [Lee].



22 2. Transitivity dimension and the impact of noise on dimensions

for every i P t1, . . . , lu. Since all estimations in the proof of the proposition use polynomials
in ε, the ratio (2.1.43) also coverges to p3{4qm.

In order to prove this generalization, one has to carefully elaborate every step, especially
the pullback of the measure and the splitting of the integral (using partition of unity), paying
attention to the change of metric (and thus ε) in the differentiable chart. The generalization
is useful since attractors are often submanifolds of the phase space, to describe which one
needs less than n coordinates (to avoid the word “dimension”).

Of course, these considerations do not suggest that the transitivity dimension is always
an integer. Many attractors have fractal geometry: in this case, the corresponding invariant
measure is not absolutely continuous w.r.t. Lebesgue, thus allowing the transitivity dimension
to be non-integer. E.g., the attractor of the generalized baker’s map (equation (4.1.10) with
coefficients which may differ from 2 and 1{2) is the Cartesian product of the Cantor set
and the r0, 1s interval (cf. [Farmer et al., Sec.4.3]). As above, since the Cantor set has
measure zero, this density can not be absolutely continuous w.r.t. Lebesgue by definition.
In [Donner et al., 2011, Sec.3.2.2] it is stated that the upper transitivity dimension for the
generalized baker’s map is approximately 1.58.

It would be interesting to find an example of an attractor, whose invariant measure is
absolutely continuous w.r.t. Lebesgue, but with a Radon-Nikodym derivative which is dis-
continuous in every point where it is non-zero. One should search among fat fractals - fractal
sets with positive Lebesgue measure. At the same time, this fat fractal should be the sup-
port of the invariant measure of some dynamical system. Unfortunately, we could not find
an appropriate example. If there is one, the proposition above would be sharp in the sense
that it would clearly classify the attractors with respect to the property of having an integer
transitivity dimension.

The statement of this proposition supports the idea that the definition of the transitiv-
ity dimension is meaningful. If the density f corresponding to the invariant measure of the
attractor has a point of continuity, the attractor contains at least a small set which “con-
tinuously stretches in all directions of the phase space” (to avoid the word “dimension” in a
different way). Thus any reasonable definition of dimension should assign to this set a number
equal to the phase space dimension. However, it is not obvious that a global dimension, i.e.,
a dimension that takes into account the whole attractor and not only a part of it, will have
this property. We see that the transitivity dimension has it. In the following subsection we
prove that the same holds for a large class of established dimensions, called the Rényi entropy
dimensions.

2.1.2 Rényi entropy dimensions for absolutely continuous ivariant mea-
sures

In 1983, [Grassberger] defined a family of dimensions based on Rényi entropies (see [Rényi, entropy]),
which are now known as the Rényi entropy dimensions and are widely used in the modern
literature for the characterization of attractors.

Definition 2.1.4. Let X be a dynamical system in Rn and µ the corresponding invariant
density. Let ε ¡ 0 and tBi

εuiPZ be the set of boxes defined on the ε-coordinate mesh with
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elements
rεk1, εk1 � εq � � � � � rεkn, εkn � εq (2.1.45)

for some k1, . . . , kn P Z. Let
J � tj P Z|µpBj

ε q ¡ 0u. (2.1.46)

For every q P t0u Y R�zt1u, if the limit

D̂q � lim
εÑ0

1

q � 1

log
°
jPJ µpBj

ε qq
log ε

(2.1.47)

exists, it is called the Rényi entropy dimension of X of order q.
If the limit

D̂1 � lim
εÑ0

lim
q×1

1

q � 1

log
°
jPJ µpBj

ε qq
log ε

(2.1.48)

exists, it is called the Rényi entropy dimension of X of order 1.

The most widely used Rényi entropy dimensions are those of the orders 0, 1 and 2. For
order 0, we have the box-counting dimension already discussed in the introduction. This
is the only Rényi entropy dimension which does not depend on the invariant measure and
reflects only the geometrical form of the attractor.

For order 1, it is shown in [Rényi, entropy] that, equivalently,

D̂1 � lim
εÑ0

°
jPJ µpBj

ε q logµpBj
ε q

log ε
, (2.1.49)

which is well-known in the literature under the name information dimension.
The order 2 Rényi entropy dimension is the correlation dimension popularized by

[Grassberger and Procaccia]. It is often used in chaos theory due to the considerable easiness
of estimation. The correlation dimension is especially useful for characterizing data from very
high dimensional systems (see [Grassberger and Procaccia, Sec.5 and 6]).

Clearly, the given definitions of the Rényi entropy dimensions use the invariant measure,
but are written with sums and not integrals. In order to make statements about these
dimensions for the invariant measures absolutely continuous w.r.t. Lebesgue, it is better
to have definitions with integrals. The one for the correlation dimension can be found in
[Grassberger and Procaccia, Sec.2]. For the case of absolutely continuous w.r.t. Lebesgue
measure µ with dµpxq � fpxqdx, we have

D2 � lim
εÑ0

log
³
Rn
³
Bεpxq

fpxqfpyqdydx
log ε

. (2.1.50)

Analogously, we are able to define

Dq � lim
εÑ0

1

q � 1

log
³
Rn fpxq

�³
Bεpxq

fpyqdy
	q�1

dx

log ε
(2.1.51)

for q ¡ 1 and

D1 � lim
εÑ0

lim
q×1

1

q � 1

log
³
Rn fpxq

�³
Bεpxq

fpyqdy
	q�1

dx

log ε
. (2.1.52)
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This does not work for q   1, since
³
Bεpxq

fpyqdy can be equal to zero.
Note that although we conjecture that dimensions defined with sums and with integrals

are equal we denote them with different letters, since for now we cannot give proofs that they
are exactly the same (and did not find them in the literature). Moreover, we see the defini-
tions with sums as definitions of the dimension estimators (by analogy with the transitivity
dimension estimator), since they are the ones applicable for numerical computations.

Now we are ready to prove the result similar to Proposition 2.1.3.

Proposition 2.1.5. Let X be a dynamical system in Rn such that its invariant density µ is
absolutely continuous w.r.t. the Lebesgue measure λ, i.e., there exists a function f P L1pRnq
such that µpAq � ³

A fpxqdx for all measurable sets A P Rn. If f P L8pRnq and there exists
at least one point z P Rn such that f is continuous in z and fpzq ¡ 0, then the Rényi entropy
dimension of any order q ¥ 1 is equal to the space dimension n.

The dimensions of order less than 1 are not considered here, since we do not have expres-
sions for them that use invariant measures (and the interesing box-counting dimension does
not depend on the invariant measure).

Proof. Let f P L1 X L8pRnq be a density with ||f ||8 � M . Since f is continuous in z and
fpzq ¡ 0, there exists a rectangle

�n
j�1rãj , b̃js around z such that f ¥ c̃ ¡ 0 a.e. on it and

c̃2
±n
j�1pb̃j � ãjq   1.

We can estimate the integral in the definition of the dimension from both sides. From
above,

»
Rn
fpxq

�»
Bεpxq

fpyqdy
�q�1

dx ¤
»
Rn
p2εqnpq�1qM pq�1qfpxqdx

� p2εqnpq�1qM q�1. (2.1.53)

From below,

»
Rn
fpxq

�»
Bεpxq

fpyqdy
�q�1

dx ¥
»
Rn
c̃1�n

j�1rãj ,b̃js
pxq

�»
Bεpxq

c̃1�n
j�1rãj ,b̃js

pyqdy
�q�1

dx

¥
»
Rn
c̃1�n

j�1rãj�ε,b̃j�εs
pxq

�»
Bεpxq

c̃1�n
j�1rãj ,b̃js

pyqdy
�q�1

dx

¥ c̃2p2εqnpq�1q
n¹
j�1

pb̃j � ãj � 2εq, (2.1.54)

in case

ε ¤ min
j�1,...,n

#
b̃j � ãj

2

+
. (2.1.55)

For q ¡ 1, it follows that

Dq ¤ lim
εÑ0

1

q � 1

logrp2εqnpq�1qM pq�1qs
log ε

� lim
εÑ0

1

q � 1

�
npq � 1q log ε

log ε
� logp2npq�1qM pq�1qq

log ε

�
� n. (2.1.56)
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On the other hand,

Dq ¥ lim
εÑ0

1

q � 1

log
�
c̃2p2εqnpq�1q

±n
j�1pb̃j � ãj � 2εq

�
log ε

� lim
εÑ0

1

q � 1

�
�npq � 1q log ε

log ε
�

log
�
c̃22npq�1q

±n
j�1pb̃j � ãj � 2εq

	
log ε

�
� � n, (2.1.57)

so Dq � n for all q ¥ 2.

For q � 1,

D1 ¤ lim
εÑ0

lim
q×1

1

q � 1

log
�p2εqnpq�1qM pq�1q

�
log ε

� lim
εÑ0

lim
q×1

�
n � log ε

log ε
� logp2nMq

log ε

�
� n (2.1.58)

and

D1 ¥ lim
εÑ0

lim
q×1

1

q � 1

�
�npq � 1q log ε

log ε
�

log
�
c̃22npq�1q

±n
j�1pb̃j � ãj � 2εq

	
log ε

�
�

¥ lim
εÑ0

lim
q×1

1

q � 1

npq � 1q log ε

log ε
� n, (2.1.59)

where the second inequality holds for ε and q � 1 small enough, since c̃2
±n
j�1pb̃j � ãjq   1.

It follows that D1 � n.

2.2 Convergence of the transitivity dimension estimator for
data from attractors with absolutely continuous invariant
measures

Now we found out what should be the theoretical value of the transitivity dimension for
sufficiently nice invariant measures. In practice, one often does not know the invariant measure
and is interested in the dimension estimator, which can be computed using a finite number
of observations. In this section we study how the transitivity dimension estimator (2.0.2)

T̂ pεq �
°N
i,j,k�1AkipεqAkjpεqAijpεq°N
i,j,k�1, i�j AkipεqAkjpεq

converges to its theoretical value. We consider the simple example of regular n-dimensional
grids as representative case for absoulutely continuous w.r.t. Lebesgue invariant measures
in n-dimensional phase spaces. Since the transitivity estimator and not the dimension is
considered, we expect the values p3{4qn and not n. The main interests here are the bias and
the rate of convergence.
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Limit cycle (1 dimension). Suppose that the trajectory of the system is some closed
curve with curvature that allows us to consider it locally as a straight line. Suppose that
locally the observables look like the dots in the figure below with equal distances between
neighbours, forming a regular 1-dimensional grid.

)

ε

xixi�1xi�2
(

xi�3 xi�1 xi�2 xi�3

Fix ε so that there are 2k � 1 points in an ε-ball with center in any observable and
fix xi as this center (in the figure, an ε corresponding to k � 2 is shown). First, consider
the denominator of the transitivity, i.e., the number of triples with distancies shorter than ε.
There are 2k �p2k�1q different triples with xi as the first vertex. In sum, there are Np4k2�2kq
triples.

In order to compute the numerator, i.e., the number of triangles with sides shorter than
ε, first rename the states so that the ε-ball around xi contains points xi�k, xi�k�1, . . . , xi�k in
this order. Second, suppose that we count triangles with 2 or even 3 equal vertices (we will
than substract additional triangles and apply this strategy, since it helps in further cases of
higher dimensions). Consider xi�k. There are k � 1 triangles inside the ε-ball with center in
xi, having xi as the first and xi�k as the second vertex, and the same result holds for xi�k.
For each xi�k�1 and xi�k�1 there are k � 2 corresponding triangles etc. xi is the only point
with 2k � 1 corresponding triangles. Thus, we have

2rpk � 1q � pk � 1q � � � � � 2ks � 2k � 1 � 3k2 � 3k � 1 (2.2.1)

triangles with xi as the first vertex. How many of them are in fact “not allowed”? First, these
are 2k � 1 triangles, where the second and the third vertices are the same. Second, these are
2 � 2k triangles where xi, which is the first vertex, is the second or the third one as well. It
follows that there are Np3k2 � 3k � 1� p2k � 1q � 4kq triangles and we get

T̂1pkq � 3k2 � 3k

4k2 � 2k
� 3

4
� 3k

8k2 � 4k
. (2.2.2)

As expected, T̂1pkq Ñ 3
4 as k Ñ 8. We see that the estimator converges from below and the

rate of convergence is proportional to k�1.

Here we express the convergence in terms of the changing k. Clearly, it is more natural
to ask about convergence with the increase in the number of observations. In this simplified
setting both ways are the same, since we may assume that, e.g., a doubling of the number of
observations (uniformly distibuted on the attractor) doubles k in case that ε remains fixed.

Limit torus (2 dimensions). Suppose that the trajectory of the system is some closed
surface with curvature that allows us to consider it locally as a plane (e.g., a torus). Suppose
that locally the observables look like the dots in figure below with equal distances between
neighbours, forming a regular two-dimensional grid.
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Fix ε so that there are p2k�1q2 points in an ε-ball with center in any observable and fix xi
as this center (recall that we use the supremum norm, the dashed square in the figure above
show a ball for some ε corresponding to k � 1). Clearly, there are pp2k�1q2�1q�pp2k�1q2�2q
triples inside this ball.

In order to compute the number of triangles, we consider two dimensions of the surface
separately. Again, count first all triangles, including those with 2 or 3 same vertices. By
the computation for limit cycle, there are 3k2 � 3k � 1 pairs of horizontal lines with the
distance in y-direction less than ε and 3k2 � 3k� 1 pairs of vertical lines with the distance in
x-direction less than ε. Since all pairs are ordered, there are as many triangles as intersections
of the lines (the second vertex is the intersection of the first horizontal line in its pair with
the first vertical line in its pair and the third vertex is the intersection of the second lines),
i.e., p3k2 � 3k � 1q2 triangles. How many of them are in fact “not allowed”? First, these are
p2k � 1q2 triangles, where the second and the third vertices are the same. Second, these are
2
�p2k � 1q2 � 1

�
triangles where xi, which is the first vertex, is the second or the third one

as well. We get

p3k2 � 3k � 1q2 � p2k � 1q2 � 2
�p2k � 1q2 � 1

� � 9k4 � 18k3 � 3k2 � 6k (2.2.3)

triangles inside the ball and

T̂2pkq � 9k4 � 18k3 � 3k2 � 6k

pp2k � 1q2 � 1qpp2k � 1q2 � 2q �
9k4 � 18k3 � 3k2 � 6k

16k4 � 32k3 � 12k2 � 4k

�
�

3

4


2

� 15

16p4k2 � 4k � 1q (2.2.4)

Again, as expected, T̂2pkq Ñ
�

3
4

�2
as k Ñ 8. The estimator converges from below and the

rate of convergence is proportional to k�2.

n-dimensional grid. We are now ready to generalize the computations above and consider
an n-dimensional grid with equal distancies between neighbours.

Consider ε such that there are p2k � 1qn points in an ε-ball with center in some fixed xi.
There are pp2k � 1qn � 1q � pp2k � 1qn � 2q triples inside this ball.

For the triangles, we again consider dimensions of the grid separately and count first all
triangles, including those with 2 or 3 same vertices. With the same argumentation as in the
limit torus case, we get p3k2 � 3k � 1qn triangles. Out of them p2k � 1qn have equal second
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and third vertices, and 2 pp2k � 1qn � 1q have xi not only as the first, but also as the second
or the third vertex. This means that there are

p3k2 � 3k � 1qn � 3p2k � 1qn � 2 (2.2.5)

triangles inside the ε-ball with center in xi and

T̂npkq � p3k2 � 3k � 1qn � 3p2k � 1qn � 2

pp2k � 1qn � 1qpp2k � 1qn � 2q . (2.2.6)

Clearly, T̂npkq Ñ
�

3
4

�n
as k Ñ 8. In order to determine the rate of convergence, we need

further computations. Consider n ¥ 3. Computing polynomials in the fraction, we ignore all
powers less than 2n� 2:

T̂npkq � p3k2 � 3kqn � np3k2qn�1 � P1

p4k2 � 4kqn � np4k2qn�1 � P2
, (2.2.7)

where P1 and P2 are some polynomials in k with the highest power 2n � 3. Expanding, we
get

T̂npkq �
3nk2n � 3nnk2n�1 �

�
3n�1n� 3n npn�1q

2

	
k2n�2 �Q1 � P1

4nk2n � 4nnk2n�1 �
�

4n�1n� 4n npn�1q
2

	
k2n�2 �Q2 � P2

, (2.2.8)

where Q1 and Q2 are again some polynomials in k with the highest power 2n� 3. Further,

T̂npkq �
�

3

4


n
� 3n n

12k
2n�2 � 3n

4n pQ2 � P2q �Q1 � P1

4nk2n � 4nnk2n�1 �
�

4n�1n� 4n npn�1q
2

	
k2n�2 �Q2 � P2

. (2.2.9)

It follows that for n ¥ 3 the estimator converges from above and the rate of convergence is
proportional to k�2.

Note that the bias of the transitivity estimator is different for low- (1 and 2) and high-
dimensional systems and that the rate of convergence is k�2 for all n ¥ 2 and not k�n as one
could have conjectured.

2.3 The impact of noise on dimensions

In this section we first come back to the original question of infering the coupling direction
in two systems from numerical data. Suppose that the systems X and Y are coupled via
diffusive coupling so that the system Y is the driver and consider the discrete time case:#

xt�1 � fpxtq � kpyt � xtq � fpxtq � kxt � kyt

yt�1 � gpytq
(2.3.1)

for some functions f, g and k ¡ 0.
Suppose that k is very small, i.e., the systems are weakly coupled. In this case one

reasonable approach to study the effects of coupling on system X is to approximate the
influence of system Y — the term kyt — by stochastic noise ξt, leading to the equation

xt�1 � fpxtq � kxt � ξt � f̃pxtq � ξt. (2.3.2)
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Of course, in general the most approprate noise term ξt would represent some complicated
autocorrelated stochastic process. However, the theory of stochastic processes is a complex
domain of mathematics (see, e.g., [Gikhman and Skorokhod]). Hence, in the limited space of
this thesis, we will only consider the simplest case of uncorrelated Gaussian noise added to a
discrete time system with a fixed point as the attractor. Even here interesting results come
out.

To quantify the effect of noise, we will consider the difference in dimension of the attractor
in cases with and without noise. We will speak of “dimension” in general - with the results
of Section 2.1 one can substitute the word for the transitivity or any of the Rényi entropy
dimensions of order q ¥ 1. This is because the invariant measure induced by the Gaussian
noise is clearly absolutely continuous w.r.t. Lebesgue and fulfills other requirements of the
propositions 2.1.3 and 2.1.5.

So, consider two systems governed by the same deterministic dynamics, where one is dis-
turbed by an additive noise: #

yt�1 � f̃pytq
xt�1 � f̃pxtq � ξt�1,

(2.3.3)

where tξtutPN is a sequence of independent identically distributed random variables.
Let tξtu represent the Gaussian white noise, i.e., every ξt is normally distributed with zero

mean and covariance matrix Σ (in the 1-dimensional case, Σ � σ2):

ξt � N p0,Σq for all t P N, (2.3.4)

whereas tξtu are mutually independent. Later we will assume that Σ is diagonal. “Patholog-
ical” cases, when some of the diagonal elements are 0, will be considered to represent cases
where the actual coupling term y � x lies in a proper submanifold of the phase space.

2.3.1 Fixed point in R, Gaussian white noise

Fixed point in R. Let n � 1 and f̃pyq � 0. Clearly, the attractor of the system Y is just
a one-point set, w.l.o.g. t0u, which has dimension 0. For every t, xt � ξt, so xt � N p0, σ2q,
hence the invariant density is simply the Gaussian density of the noise and the dimension of
the system X is 1. In other words, the noise increases the dimension of the system up to the
space dimension.

Convergence to a fixed point in R. Let n � 1, a ¡ 1 and f̃pyq � y{a. We have

lim
tÑ8

yt � lim
tÑ8

y0

at
� 0, (2.3.5)

so Y has again 0-dimensional attractor t0u. On the other hand, one can show by induction
that

xt � x0

at
�

ţ

i�1

ξi
at�i

, (2.3.6)

so

x8 � lim
tÑ8

xt �
8̧

t�1

ξt
at�1

, (2.3.7)
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where we inverted the sum, using the fact that ξt’s are independent and identically distributed.
Clearly, the last expression makes sense, if the sum converges, which it does:

The normal distribution is invariant under convolution and for every n P N

ņ

t�1

ξt
at�1

� N

�
0,

ņ

t�1

σ2

a2pt�1q

�
(2.3.8)

More than that, we can compute the limit of the characteristic function

lim
nÑ8

ϕ°n
t�1

ξt
at�1

pλq � lim
nÑ8

exp

�
�1

2

ņ

t�1

σ2

a2pt�1q
λ2

�
� exp

�
�1

2
� a2

a2 � 1
σ2λ2



, (2.3.9)

which itself turns out to be the characteristic function of a normally distributed random
variable. It follows that

x8 �
8̧

t�1

ξt
at�1

� N
�

0,
a2

a2 � 1
σ2



, (2.3.10)

so the invariant density is again Gaussian, but with a larger variance than that of the noise,
and the dimension of the system X in its dynamical equilibrium is 1. Again, noise increases
the dimension of the system up to the space dimension.

In fact, the result on dimension does not depend crucially on the assumption of the normal
distribution. For example, since tξtu are independent, any symmetric distibution having whole
R as domain will result in dimension 1 for the system X .

2.3.2 Fixed point in Rn, Gaussian white noise

Now let n be an arbitrary integer, A PMn�n a square matrix with all eigenvalues smaller
than 1 in absolute value and f̃pyq � Ay.

For any square matrix there exists a Jordan matrix J P Mn�n and an invertible matrix
P P Mn�n such that A � PJP�1. J has the eigenvalues of A on its principal diagonal and
some 1’s on the first diagonal (above the principal one), all other elements are zero. It is easy
to show that, if the eigenvalues are smaller than 1 in absoulte value, then Jn Ñ 0 as nÑ8.
It follows that

yt � Aty0 � PJ tP�1y0 Ñ 0 as tÑ8, (2.3.11)

so the attractor of Y is t0u and has dimension 0.

For the system X we have

xt � Atx0 �
ţ

i�1

At�1ξt, (2.3.12)

and, inverting the sum,

x8 � lim
tÑ8

xt � lim
nÑ8

ņ

t�1

At�1ξt. (2.3.13)

For ξt � N p0,Σq,
At�1ξt � N p0, At�1ΣpAt�1qT q (2.3.14)
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and, by continuity of the exponential function and the scalar product,

lim
nÑ8

ϕ°n
t�1 A

t�1ξtpλq � lim
nÑ8

exp

�
�1

2

C
λ,

ņ

t�1

At�1ΣpAt�1qT
G�

� exp

�
�1

2

C
λ,

8̧

t�1

At�1ΣpAt�1qT
G�

, (2.3.15)

if the sum converges, which it in fact does (see the proof after equation (2.3.31), which is
there conducted for real λi’s but works for the complex ones exactly in the same way). It
follows that

x8 �
8̧

t�1

At�1ξt � N

�
0,

8̧

t�1

At�1ΣpAt�1qT
�
, (2.3.16)

so, once again, the invariant density is Gaussian.

In order to determine the dimension of x8, we again use the Jordan matrix, this time the
real Jordan normal form. It is known (see, e.g., [Handbook of LA, Ch.6.3]) that any square
matrix can be represented in its real Jordan normal form, i.e., there exists an invertible matrix
P P Mn�n and a real Jordan matrix J P Mn�n with A � PJP�1. The real Jordan matrix
is a block diagonal matrix having real Jordan blocks as the diagonal blocks and all other
elements equal to zero. A Jordan block can have two possible forms. For a real eigenvalue λi
of A with the algebraic multiplicity ki, the real Jordan block is a ki � ki matrix of the form

Jλi �

�
������

λi 1 0 � � � 0
0 λi 1 0
...

. . .
. . .

. . .

0 � � � 0 λi 1
0 � � � 0 0 λi

�
�����
. (2.3.17)

For a complex eigenvalue λj � αj� iβj (αi, βi P R, βi � 0)5 with the algebraic multiplicity
kj , the real Jordan block is a 2kj � 2kj matrix of the form

Jλj �

�
������

Sλj I2 02 � � � 02

02 Sλj I2 02
...

. . .
. . .

. . .

02 � � � 02 Sλj I2

02 � � � 02 02 Sλj

�
�����
, (2.3.18)

where

Sλj �
�
αj βj
�βj αj



, I2 �

�
1 0
0 1



and 02 �

�
0 0
0 0



. (2.3.19)

Now we are ready to examine how different covariance matrices Σ influence the dimension
of X . Since the invertible matrix P can be seen as a basis transformation, we also assume
w.l.o.g. that A itself is a real Jordan matrix. For simplicity, we assume that different com-
ponents of ξt are independent, so Σ is a diagonal matrix. We can thus consider the influence
of noise block-by-block. We will see how the structure of the covariance matrix of the noise

5i is here the imaginary unit, to distinguish it from the index i
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affects the dimension of the system X . The overall effect on dimension will be the sum of
effects stemming from each block.

Case 1.1. λi is a real eigenvalue of multiplicity 1 and the corresponding block is Ai �
Ji � pλiq. Then

8̧

t�1

At�1
i ΣipAt�1

i qT � 1

1� λ2
i

σ2
i , (2.3.20)

where σ2
i is the corresponding element of the covariance matrix of ξt. In this case, the block

contributes a value of 1 to the dimension if and only if σ2
i � 0, i.e., there exists non-zero noise

in the corresponding direction.
Case 1.2. λi is a real eigenvalue of multiplicity 2. We have

Ai �
�
λi 1
0 λi



, At�1

i �
�
λt�1
i pt� 1qλt�2

i

0 λt�1
i



(2.3.21)

and

8̧

t�1

At�1
i ΣipAt�1

i qT �
8̧

t�1

�
λt�1
i pt� 1qλt�2

i

0 λt�1
i


�
σ2
i1

0

0 σ2
i2


�
λt�1
i 0

pt� 1qλt�2
i λt�1

i



(2.3.22)

�
8̧

t�1

�
λ

2pt�1q
i σ2

i1
� pt� 1q2λ2pt�2q

i σ2
i2

pt� 1qλ2t�3
i σ2

i2

pt� 1qλ2t�3
i σ2

i2
λ

2pt�1q
i σ2

i2

�
. (2.3.23)

Here it is easy to see that for |λi|   1 the sum converges, but we are not interested in the
exact value. All elements on the principal diagonal are nonnegative, so the principal diagonal
of the sum is also nonnegative and for λi � 0 we get a matrix of the following form:�

a1σ
2
i1
� a2σ

2
i2

bσ2
i2

bσ2
i2

a1σ
2
i2



(2.3.24)

with a1, a2 ¡ 0. For the dimension of X this means that

if σ2
i1
� σ2

i2
� 0, then the block does not contribute to the dimension;

if σ2
i1
� 0, σ2

i2
� 0, then the block contributes a value of 1 to the dimension;

if σ2
i2
� 0, then the block contributes a value of 2 to the dimension.

The latter holds only if the matrix (2.3.24) has full rank, which is indeed the case. If both
σ2
i1

, σ2
i2

are positive, then each matrix in (2.3.22) has positive determinant, so the matrix in
(2.3.23) has positive determinant. Moreover, it is clearly symmetric and thus Hermitian and
positive semidefinite as a product of the form UTU (see, e.g., [Devos, Prop.1.1]) with

UT � At�1
i

�|σi1 | 0
0 |σi2 |



. (2.3.25)

For positive semidefinite Hermitian matrices A P Mn�n and B P Mn�n, the Minkowski
determinant theorem ([Minkowski]) states that

pdetpA�Bqq1{n ¥ pdetAq1{n � pdetBq1{n, (2.3.26)

in particular,
detpA�Bq ¥ detA� detB, (2.3.27)
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which implies that the matrix (2.3.24) has positive determinant and thus full rank.
In case only σi2 is positive, the determinants of all matrices in (2.3.23) are zero. However,

already the sum of the first two matrices has positive determinant:

detpΣi �AiΣiA
T
i q �

∣∣∣∣ σ2
i2

λiσ
2
i2

λiσ
2
i2

p1� λ2
i qσ2

i2

∣∣∣∣ � σ4
i2 ¡ 0. (2.3.28)

Thus, it again follows from the Minkowski determinant inequality that the matrix (2.3.22)
has positive determinant and thus full rank.6

Finally, if λi � 0, then

8̧

t�1

At�1
i ΣipAt�1

i qT � Σi �AiΣiA
T
i �

�
σ2
i1
� σ2

i2
0

0 σ2
i2



, (2.3.29)

so we get the same result as for λi � 0.
Case 1.ki. λi is a real eigenvalue of multiplicity ki. The block Ai is a ki � ki matrix as

in (2.3.17) and, by induction,

At�1
i �

�
�������

λt�1
i pλt�1

i qp1q 1
2!pλt�1

i qp2q � � � 1
pki�1q!pλt�1

i qpki�1q

0 λt�1
i pλt�1

i qp1q � � � 1
pki�2q!pλt�1

i qpki�2q

...
. . .

. . .
. . .

...

0 � � � 0 λt�1
i pλt�1

i qp1q
0 � � � 0 0 λt�1

i

�
������

, (2.3.30)

where pλt�1
i qx denotes the x-th derivative of λt�1

i . It follows that if λi � 0, thenAt�1
i ΣipAt�1

i qT
is a symmetric matrix of the form�

�����
a1σ

2
i1
� � � � � akiσ

2
iki

�
a1σ

2
i2
� � � � � aki�1σ

2
iki

� . . .

a1σ
2
iki

�
����
, (2.3.31)

where every aj , j � 1, ..., ki, is positive. Consequently, if the sum
°n
t�1A

t�1
i ΣipAt�1

i qT con-
verges as nÑ8, it has the same form.

We first show the convergence of
°n
t�1A

t�1
i . An element in the upper triangle of this

partial sum has the form
n�1̧

t�0

1

k!
pλtiqpkq (2.3.32)

for some 0 ¤ k ¤ ki � 1. It holds

n�1̧

t�0

1

k!
pλtiqpkq �

1

k!

�
n�1̧

t�0

λti

�pkq

Ñ 1

k!

�
1

1� λi


pkq
� k � 1

pλi � 1qk�1
for nÑ8,

where the last equality follows by induction. Since |λi|   1, the sum
°n
t�1A

t�1
i converges as

nÑ8.
6Note that in this case one could prove the same result more directly, but we wanted to show this method

on a simple example, since it will be used later, where no other proofs are known.
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Now consider an element of At�1
i ΣipAt�1

i qT . Denoting at�1
jl � pAt�1

i qjl, we have

�
At�1
i ΣipAt�1

i qT �
jl
�

ki̧

m�1

pAt�1
i Σiqjm

�pAt�1
i qT �

ml

�
ki̧

m�1

at�1
jm σ2

ma
t�1
lm �

ki̧

m�maxtj,lu

at�1
jm σ2

ma
t�1
lm . (2.3.33)

Since
°n
t�1A

t�1
i converges, there exsits t� P N such that

��at�1
lm

��   1 for all 1   l,m   ki,
all t ¡ t�. It follows that�����

8̧

t�1

�
At�1
i ΣipAt�1

i qT �
jl

����� ¤
�����
t�¸
t�1

�
At�1
i ΣipAt�1

i qT �
jl

������
8̧

t�t��1

ki̧

m�1

���at�1
jm σ2

m

��� , (2.3.34)

where the r.h.s is finite due to convergence of
°n
t�1A

t�1
i . With the Weierstrass M-test (which

is a version of direct comparison test for series, but works both for real and complex sum-
mands, see, e.g., [Amann and Escher, Thm.V.1.6]) this implies that the sum

°n
t�1A

t�1
i ΣipAt�1

i qT
converges as nÑ8.

For the dimension of X this means that

if σ2
i1
� ... � σ2

iki
� 0, then the block does not contribute to the dimension;

if σ2
i1
� 0 and σ2

i2
� ... � σ2

iki
� 0, then then the block contributes a value of 1 to the

dimension;

if σ2
i2
� 0 and σ2

i3
� ... � σ2

iki
� 0, then then the block contributes a value of 2 to the

dimension;

...

if σ2
iki
� 0, then then the block contributes a value of ki to the dimension;

As in Case 1.2, all but the first two statements here hold only if the corresponding
matrices have full ranks (for dimension increase by x, the upper left x � x submatrix of°8
t�1A

t�1
i ΣipAt�1

i qT should have full rank). Unfortunately, we could not prove it, though
after having computed several examples we strongly believe that this is indeed the case. We
provide here the attempt of the proof by induction on ki and point out the unsolved problem.

If in all cases all the submatrices of the ki�1 � ki�1 matrix have full ranks, it remains to
show for σ2

iki
� 0 that the matrix

°8
t�1A

t�1
i ΣipAt�1

i qT has nonzero determinant irrespectively

of the values of other σ2
ij

’s.

If all the σ2
ij

’s are nonzero, this can be done in the same way as in case 1.2. At�1
i for

all t P N and Σi have positive determinants, so At�1
i ΣipAt�1

i qT has positive deteminant.
Moreover, At�1

i ΣipAt�1
i qT is symmetric and thus Hermitian. It is positive semidefinite as a

product UTU with

UT � At�1
i

�
��
|σi1 | 0

. . .

0 |σiki |

�
�
. (2.3.35)

By the Minkowski inequality,
°8
t�1A

t�1
i ΣipAt�1

i qT has positive determinant and thus full
rank.
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This proof does not work in case some of σ2
ij

’s are zero, since then At�1
i ΣipAt�1

i qT has

zero determinant. Instead, we may argue that the finite sum
°2ki
t�1A

t�1
i ΣipAt�1

i qT has positive
determinant and then use the Minkowski inequality adding to this matrix the other summands
(with zero determinants). This positivity of the determinant of the finite sum is the unsolved
problem. As already pointed out, the positivity was confirmed in all computed examples, but
we could not prove it due to the complexity of the matrices involved.

Finally, if λi � 0, it is easy to compute that
°8
t�1A

t�1
i ΣipAt�1

i qT � °ki
t�1A

t�1
i ΣipAt�1

i qT
equals to �

�����

°ki
j�1 σ

2
ij

0°ki
j�2 σ

2
ij

. . .

0 σ2
iki

�
����
 (2.3.36)

and it is evident that the consequences for the dimension of X are the same as in the λi � 0
case.

Case 2.1. λi � αi � iβi with αi, βi P R, βi � 0 is a complex eigenvalue of multiplicity 1.
We have

Ai �
�
αi βi
�βi αi



(2.3.37)

and At�1
i has the same form �

a b
�b a



(2.3.38)

for some a, b P R. It follows that

At�1
i ΣipAt�1

i qT �
�
a2σ2

i1
� b2σ2

i2
c

�c a2σ2
i1
� b2σ2

i2



(2.3.39)

for some c P R depending on a, b, σi1 and σi2 . Consequently,
°8
t�1A

t�1
i ΣipAt�1

i qT has the
same form. Here it is evident that

°8
t�1A

t�1
i ΣipAt�1

i qT has positive determinant in case
σ2
i1
� 0 or σ2

i2
� 0 and

if σ2
i1
� σ2

i2
� 0, then the block does not contribute to the dimension;

if σ2
i1
� 0 or σ2

i2
� 0, then the block contributes a value of 2 to the dimension.

Case 2.ki. λi � αi� iβi with αi, βi P R, βi � 0 is a complex eigenvalue of multiplicity ki.
Ai has a form defined in (2.3.18) and, by induction,

At�1
i �

�
�������

St�1
λi

pt� 1qSt�2
λi

�
t�1

2

�
St�3
λi

� � � �
t�1
ki�1

�
St�kiλi

02 St�1
λi

pt� 1qSt�2
λi

� � � �
t�1
ki�2

�
St�ki�1
λi

...
. . .

. . .
. . .

...

02 � � � 02 St�1
λi

pt� 1qSt�2
λi

02 � � � 02 02 St�1
λi

�
������

, (2.3.40)

where we assume that the binomial coefficient
�
n
k

�
is zero, whenever k ¡ n.

Note that the structure of this matrix is similar to the one in (2.3.30), but this time it is
impossible to use notation with derivatives. Further, every Stλi has the same rotation-scaling
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form as Sλi :

Stλi �
�
a b
�b a



(2.3.41)

for some a, b P R.
Now, define the 2� 2 matrix Σjpj�1q rewriting Σi

Σi �

�
��

Σ12 0
. . .

0 Σpki�1qki

�
�
. (2.3.42)

At�1
i ΣipAt�1

i qT is then a symmetric 2ki � 2ki-matrix with the j-th principal diagonal 2 � 2
block equal to

St�1
λi

Σp2j�1qp2jqpSt�1
λi

qT � pt� 1q2St�2
λi

Σp2j�1qp2j�2qpSt�2
λi

qT

� � � � �
�
t� 1

ki � j


2

St�ki�j�1
λi

Σp2ki�1qp2kiqpSt�ki�j�1
λi

qT , (2.3.43)

or, concentrating only on the principal diagonal, At�1
i ΣipAt�1

i qT can be written as�
�����

°2ki
j�1 a1jσ

2
ij

�°2ki
j�3 a2jσ

2
ij

. . .

� °2ki
j�2ki�2 ap2kiqjσ

2
ij

�
����
, (2.3.44)

where all coefficients takju are nonnegative and positive if αi is nonzero. Consequently,°8
t�1A

t�1
i ΣipAt�1

i qT has the same form. For the dimension of X in case αi � 0 this means
that

if σ2
i1
� ... � σ2

iki
� 0, then the block does not contribute to the dimension;

if (σ2
i1
� 0 or σ2

i2
� 0) and σ2

i3
� ... � σ2

iki
� 0, then the block contributes a value of 2 to

the dimension;
if (σ2

i3
� 0 or σ2

i4
� 0) and σ2

i5
� ... � σ2

iki
� 0, then the block contributes a value of 4 to

the dimension;
...
if σ2

i2ki�1
� 0 or σ2

i2ki
� 0, then the block contributes a value of 2ki to the dimension;

Again, these statements hold only if the corresponding matrices have full ranks, which is
indeed the case. As in case 1.ki, we do not have the proof and provide the attempt of the
proof by induction on ki. If all σij ’s are nonzero, the Minkowski inequality yields positivity of

the determinant of
°8
t�1A

t�1
i ΣipAt�1

i qT . If some σij ’s are zero, we may argue that the finite

sum
°4ki
t�1A

t�1
i ΣipAt�1

i qT has positive determinant and then use the Minkowski inequality
adding to this matrix the other summmands (with zero determinants).

In case αi � 0 not all coefficients in (2.3.44) are positive. However, one could show that
the corresponding coefficients are positive already for the finite sum

°2ki
t�1A

t�1
i ΣipAt�1

i qT ,
which would imply that the same results as for αi � 0 hold. We strongly believe that this is
true.
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2.3.3 Summary and generalizations

We see that the Gaussian white noise with zero mean increases the dimension of the system.
In general, an m-dimensional Gaussian white noise in Rn (m ¤ n) can increase dimension
from 0 to any integer value from m to n. For an extreme example, suppose that ξt is a one
dimensional Gaussian white noise in Rn, i.e., its covariance matrix is zero up to a positive
element in the lower right corner. If A is a diagonal matrix, the system X will yield dimension
1. If the whole A is a Jordan block for a real eigenvalue (see (2.3.17)), the system X will yield
dimension n.

Though we considered only the case of diagonal Σ, it seems that the same result should
hold for general covariance matrices: additional non-zero elements should not diminish the
rank of matrices we encountered and the resulting dimension should again take any integer
value from m to n.

This dimension effect depends on the direction in which the noise is nonzero. In our
analysis, latter directions within one block influence all preceding directions in the same
block. This is not surprising in view of the structure of the Jordan block. Geometrically, a
Jordan block in its classical form represents a transformation, where latter directions have
influence on the former ones, but not vice versa, and this effect spreads the noise from one
direction into others.

It is not surprising that the additive noise increases the dimension of the attractor. Phys-
ical intuition suggests that the attractor of the disturbed system should be more irregular
than that of the undisturded system and could stretch in more directions of the phase space,
thus having a higher dimension. We conjecture that also for more complex attractors of the
undisturbed systems, the additive noise of some kind, absolutely continuous w.r.t. Lebesgue,
can increase the attractor’s dimension to any intger up to the phase space dimension inde-
pendently of the dimension of the noise itself.
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Chapter 3

Invariant measures for the Rényi
transformations

As we have discussed in the introduction, the invariant measure of a system describes
its attractor fully enough, but it is often very difficult to find. Even so, studying different
dynamical systems, one wants to know, whether there exists an invariant measure and whether
it is unique. Further question is the stability, i.e., which measures, describing the distribution
of the initial states of the system, will eventually converge to the invariant measure. If there
is no invariant measure, one can ask, whether the measure of the system becomes after several
iterations periodic, or at least asymptotically periodic.

In this chapter we focus on the invariant measures of dynamical systems described by
Rényi transformations. The measure space is pr0, 1s,Bpr0, 1sq, λ|r0,1sq, where λ|r0,1s is the
Lebesgue measure constrained to r0, 1s. The independent system Y with initial condition
y0 and trajectory tytutPN and the driven system X with initial condition x0 and trajectory
txtutPN are described by the following transformations:#

yt�1 � byt mod 1

xt�1 � arxt � kpyt � xtqs mod 1,
(3.0.1)

where a, b ¡ 1 and k P r0, 1s. Systems X and Y are thus coupled through a diffusive coupling
Y Ñ X .

System Y is the standard Rényi transformation, first studied by Alfréd Rényi in [Rényi].
In case b � 2 it is the well-known Bernoulli map, and for all b P N one can easily find the
invariant density which is 1 (see example 3.1.7). In order to find this density, one makes
use of the Perron-Frobenius operator, whose fixed point coincides with the invariant density.
Perron-Frobenius operator is a strong tool in the theory of invariant measures and this chapter
is devoted to the discussion of its properties.

For a general b ¡ 1, the invariant density was first found by [Parry, Th.2]. Defining
S0pyq � y and inductively Stpyq � St�1pby mod 1q for all t P N, we can write this invariant
density as

c �
8̧

t�0

1

b
1ty Stp1qu, (3.0.2)

where 1A is the indicator function of the set A and c is the normalising factor. The invariant
measure is thus a step function with an (in general) infinite number of steps.
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While finding the invariant density, Parry did not make use of the Perron-Frobenius
operator. However, the theory of this operator allows to state that the invariant density
(3.0.2) is unique and stable. Indeed, if the initial state of the system is distributed according
to some arbitrary density f ¥ 0,

³1
0 fdx � 1, then after sufficiently many iterations the density

of the states will converge to the invariant density. The precise definition and the proof can
be found in [Lasota and Mackey, 5.6 and Th.6.2.1].

So it turns out that we know quite a lot about the invariant density for the Rényi trans-
formation. The driven Rényi transformation1, governing the system X , yields a much more
complex dynamics, since in each iteration it depends on yt, which is itself a state of another
system, governed by a Rényi transformation. To our knowledge, the driven Rényi transfor-
mation has not been studied in the literature. However, existing theory on Perron-Frobenius
operators allows us to state some result on the invariant measure of the driven Rényi trans-
formation: if the driver system Y has a periodic trajectory, then the density of the states
of the driven system X will eventually become asymptotically periodic, where the periodic
sequence of densities is independent from the density of the initial states.

The rest of the chapter is devoted to the proof of this fact and is organized as follows.
In Section 3.1 we define Markov and Perron-Frobenius operators (the latter is a special case
of the former) and establish their basic properties, above all the connection to the invariant
measure. In Section 3.2 we establish conditions under which the Perron-Frobenius operator
corresponding to the driven Rényi transformation is constrictive, which turns out to be the
essential property for the asymptotic periodicity of the density. The asymptotic periodicity
itself is discussed in Section 3.3, where the theorem about asymptotic periodicity of constric-
tive Markov operators is proved. The consequences for a driven Rényi transformation are
summarized in the last section. This chapter is based on [Lasota and Mackey, Chapters 3-6]
and summarizes the existing material, providing some novelty only in the application to the
driven Rényi transformation.

3.1 Preliminaries

Here we define Markov and Perron-Frobenius operators and give their basic properties
which will be used throughout this chapter. We also discuss notation issues.

We will always consider the σ-finite measure space pX,A, µq unless another assumption is
made explicitly. ||f || will be written for ||f ||1, since the L1 norm will be used most frequently.
Sometimes we consider L1 spaces over X with two different measures µ and µ̄. In this case
we distinguish ||f ||L1pµq and ||f ||L1pµ̄q.

You may now want to recall some basic definitions and facts listed in Section 1.4.

Definition 3.1.1. A linear operator P : L1pXq Ñ L1pXq satisfying for all f P L1, f ¥ 0

(i) Pf ¥ 0

(ii) ||Pf || � ||f ||
is called a Markov operator.

For every function f , we denote

f�pxq � maxtfpxq, 0u and f�pxq � maxt�fpxq, 0u. (3.1.1)

1We use this term for shortness, though it is neither established nor exact.
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Proposition 3.1.2. For every Markov operator P : L1pXq Ñ L1pXq, every f, g P L1,

(i) Pfpxq ¤ Pgpxq, whenever fpxq ¤ gpxq

(ii) pPfpxqq� ¤ Pf�pxq

(iii) pPfpxqq� ¤ Pf�pxq

(iv) |Pfpxq| ¤ P |fpxq| and

(v) ||Pf || ¤ ||f ||.

In particular, Markov operators are (i) monotonic and (v) contractions.

Proof. (i) g � f ¥ 0 implies P pg � fq � Pg � Pf ¥ 0.

(ii) By definition of f� and f�,

pPfq� � pPf� � Pf�q� � maxtPf� � Pf�, 0u ¤ maxtPf�, 0u � Pf�. (3.1.2)

(iii) Analogously to (ii),

pPfq� � pPf� � Pf�q� � maxtPf� � Pf�, 0u ¤ maxtPf�, 0u � Pf�. (3.1.3)

(iv) From (ii) and (iii),

|Pf | � pPfq� � pPfq� ¤ Pf� � Pf� � P pf� � f�q � P |f |. (3.1.4)

(v) From (iv) and by definition of the Markov operator,

||Pf || �
»
X
|Pf |dµ ¤

»
X
P |f |dµ �

»
X
|f |dµ � ||f ||. (3.1.5)

From the general concept of Markov operators we now turn to Perron-Frobenius operator
which is the basic tool for determining invariant measures.

Definition 3.1.3. Let S : X Ñ X be a nonsingular trasnformation. An operator P :
L1pXq Ñ L1pXq such that for every A P A

»
A
Pfdµ �

»
S�1pAq

fdµ (3.1.6)

is called a Perron-Frobenius operator corresponding to S.

In fact, the Perron-Frobenius operator is unique.

Proposition 3.1.4. For any nonsingular transformation S : X Ñ X there exists a unique
Perron-Frobenius operator.
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Proof. First, consider nonnegative f P L1.
Existence. For every A P A, define

νpAq �
»
S�1pAq

fdµ, (3.1.7)

which is a finite measure, since f P L1, integral is linear and

S�1

�¤
i

Ai

�
�
¤
i

S�1pAiq. (3.1.8)

By the Radon-Nikodym theorem, there exists a nonnegative measurable function, which we
denote by Pf , such that for all A P A»

A
Pfdµ �

»
S�1pAq

fdµ. (3.1.9)

Clearly, Pf P L1.
Uniqueness. For any other P̃ f with the same property we have»

A
Pfdµ �

»
A
P̃ fdµ for all A P A. (3.1.10)

Define
A1 � tx : Pfpxq ¡ P̃ fpxqu and A2 � tx : Pfpxq ¤ P̃ fpxqu. (3.1.11)

A1 and A2 are measurable sets, X � A1 YA2 and

0 �
»
A1

pPf � P̃ fqdµ�
»
A2

pPf � P̃ fqdµ �
»
X
|Pf � P̃ f |dµ, (3.1.12)

which implies that Pf � P̃ f a.e. Thus Pf is unique up to a set of measure 0.
For an arbitrary f P L1, write f � f� � f� and define

Pf � Pf� � Pf�. (3.1.13)

Then for all A P A, we have»
A
Pfdµ �

»
S�1pAq

f�dµ�
»
S�1pAq

f�dµ �
»
S�1pAq

fdµ. (3.1.14)

Uniqueness follows with the same arguments as above.

Further,

Proposition 3.1.5. The Perron-Frobenius operator is a Markov operator.

Proof. It is linear, since»
A
P pλ1f1 � λ2f2qdµ �

»
S�1pAq

pλ1f1 � λ2f2qdµ

� λ1

»
S�1pAq

f1dµ� λ2

»
S�1pAq

f2dµ �
»
A
pλ1Pf1 � λ2Pf2qdµ. (3.1.15)
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For every A P A with µpAq ¡ 0, every nonnegative f P L1,»
A
Pfdµ �

»
S�1pAq

fdµ ¥ 0, (3.1.16)

so Pf is nonnegative almost everywhere. Finally,

||Pf || �
»
X
Pfdµ �

»
X
fdµ � ||f ||. (3.1.17)

Having explored the basic properties of the Perron-Frobenius operator, we now want to
discuss its connection to the invariant measure of the transformation.

Perron-Frobenius operator describes the evolution of the distribution of the initial states
of a dynamical system. Consider a transformation S : X Ñ X and suppose that initial states
are distributed according to some density function f0 P D, i.e., for every A P A,

Ppx0 P Aq �
»
A
f0dµ, (3.1.18)

where P denotes probability. What is now the distribution of x1 � Spx0q?
Clearly, x1 P A if and only if x0 P S�1pAq, so

Ppx1 P Aq � Ppx0 P S�1pAqq �
»
S�1pAq

f0dµ (3.1.19)

and, if f1 P D is the density function for the distribution of x1, it should hold»
A
f1dµ �

»
S�1pAq

f0dµ (3.1.20)

for all A P A. This way Pf0 � f1 describes the evolution of densities.
Moreover, any invariant density is a fixed point of the corresponding Perron-Frobenius

operator and vice versa:

Proposition 3.1.6. Let S : X Ñ X be a nonsingular transformation and P the corresponding
Perron-Frobenius operator. A measure µf given by

µf pAq �
»
A
fdµ (3.1.21)

for some nonnegative f P L1 is invariant under S if and only if f is a fixed point of P , i.e.,
Pf � f .

Proof. Assume that µf is invariant. Then µf pAq � µf pS�1pAqq implies»
A
Pfdµ �

»
S�1pAq

fdµ �
»
A
fdµ. (3.1.22)

Conversely, by definition of the Perron-Frobenius operator, Pf � f implies

µf pAq �
»
A
fdµ �

»
S�1pAq

fdµ � µf pS�1pAqq. (3.1.23)
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Finally, we note that in case pX,A, µq � pR,BpRq, λq with Lebesgue measure λ, the
Perron-Frobenius operator can be defined as follows (cf. (3.1.6)):

Pfpxq � d

dx

»
S�1pr�8,xsq

fptqdt (3.1.24)

We give one

Example 3.1.7 (Invariant measure for Rényi transformation in case b P N). In order to find
an invariant measure for the transformation

yt�1 � Spytq � byt mod 1 (3.1.25)

with b P N, we determine a fixed point of the corresponding Perron-Frobenius operator.
Clearly, for every x P p0, 1s,

S�1pr0, xsq �
b�1¤
i�0

�
i

b
,
i� x

b

�
, (3.1.26)

so

Pfpxq �
b�1̧

i�0

d

dx

» pi�xq{b
i{b

fptqdt � 1

b

b�1̧

i�0

f

�
i� x

b



. (3.1.27)

fpxq � 1 is a fixed point of P and thus a measure invariant under S.

In sections to follow, we denote the complement of a set A by Ac.

At some point (proposition 3.3.13), we will use the notion of weak convergence. If a
sequence of functions tfiu converges weakly to a function f , we will write fi

wÝÑ f .

Finally, we give one more definition that we will use already in the proof of proposition
3.2.3.

Definition 3.1.8. A set A � X is called weakly sequentially compact if every sequence
tanu � A contains a subsequence which converges weakly to a point in X.

3.2 Constrictivness of a sequence of Perron-Frobenius opera-
tors for driven Rényi transformations

If we have a sequence of transformations tStu, as it is the case for the driven Rényi system,
we get a sequence of Perron-Frobenius operators tPtu. Since for the density f P D of the
initial states, PtPt�1 � � �P1f corresponds to the density of the states at the t-th iterate, we
are interested in its behavior. One important notion here is the asymptotic periodicity.

Definition 3.2.1. A sequence of Markov operators tPt : L1pXq Ñ L1pXqutPN is called
asymptotically periodic if there exists a periodic operator P̄ : L1pXq Ñ L1pXq, such
that for every f P L1

lim
tÑ8

||PtPt�1 � � �P1f � P̄ tf || � 0. (3.2.1)

If for a Markov operator P , the sequence tPt � P u is asymptotically periodic, then this
operator is called asymptotically periodic.
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Asymptotic periodicity of a sequence of Perron-Frobenius operators implies that the se-
quence of densities, describing the distribution of the system states, will eventually become
asymptotically periodic. As we will see in Section 3.3 (theorem 3.3.1), in order to prove
asymptotic periodicity of a Markov operator, one needs to verify another property - that of
constrictivness.

In this section we define the property of constrictivness for a sequence of Markov operators
and show that the sequence of Perron-Frobenius operators corresponding to the sequence of
driven Rényi transformations has this property under certain conditions.

Definition 3.2.2. Let pX,A, µq be a σ-finite measure space. A sequence of Markov operators
tPn : L1pXq Ñ L1pXqunPN is called constrictive2 if there exists a measurable set B of finite
measure and two constants δ ¡ 0, κ   1, such that for every density f P D, there is an
n0pfq P N for which»

pXzBqYE
PnPn�1 . . . P1fpxqµpdxq ¤ κ for all n ¥ n0pfq

and every set E with µpEq ¤ δ. (3.2.2)

If for a Markov operator P the sequence tPn � P � P � � �Plooooomooooon
n

unPN is constrictive, then this

operator is called constrictive.

In case of a finite measure space, it is easier to verify constrictivness using the following

Proposition 3.2.3. Let pX,A, µq be a finite measure space. A sequence of Markov operators
tPn : L1pXq Ñ L1pXqunPN is constrictive if there is a q ¡ 1 and K ¡ 0, such that for every
density f P D there is an n0pfq P N for which

}PnPn�1 . . . P1f}q ¤ K for all n ¥ n0pfq. (3.2.3)

Proof. We use [Dunford and Schwartz, Cor. IV.8.4 and IV.8.11]. The first corollary states
that a set in Lq-space is weakly sequentially compact if and only if it is bounded. Thus, it
follows from (3.2.3) that the set tPnPn�1 . . . P1fun¥n0pfq is weakly sequentially compact in
Lq for all f P D.

The second corollary states that for a weakly sequentially compact set of functions G in
L1 it holds

lim
µpEqÑ0

»
E
gpxqµpdxq � 0

uniformly for g P G. Since for a finite measure space Lq � L1, tPnPn�1 . . . P1fun¥n0pfq is
weakly sequentially compact in L1 and for a fixed κ   1 there exists a δ ¡ 0, such that for
every density f P D, there is an n0pfq P N for which»

E
PnPn�1 . . . P1fpxqµpdxq ¤ κ for all n ¥ n0pfq if µpEq ¤ δ.

Thus the condition of definition 3.2.2 is fulfilled with B � X.

2We generalize the definition of constrictivness of a Markov operator given in [Lasota and Mackey, Def.
5.3.2]. In the earlier literature, cf. [Komornik and Lasota], the term ”quasi-constrictivness“ was used for the
same notion, whereas ”constrictivness” meant a stronger property.
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Now we turn us to the main result of this section: the sequence of Perron-Frobenius
operators for the transformations

xt�1 � apxt � kpyt � xtqq mod 1 (3.2.4)

with ap1�kq ¡ 1 and k, yt P r0, 1q for all t P N, is constrictive if tytutPN is a periodic sequence

or if a ¥ 2 and k   1� tau
a , where tau is the integer part of a. We will see in Corollary 3.2.9

how these conditions evolve and now state a more general

Proposition 3.2.4. Let tSt : r0, 1q Ñ r0, 1qutPN be a sequence of transformations, satisfying

(i) For each t P N, there is a partition 0 � st0   st1   � � �   strt � 1 of r0, 1s, such that
for each i � 1, .., rt the restriction of St to psti�1, s

t
iq is a linear function. Furthermore,

inft,i Stpsti�1, s
t
iq ¡ 0.

(ii) S1tpxq � λ ¡ 1 for all x � sti, i � 0, .., rt.

(iii) In case λ P p1, 2s, the sequence of transformations tS̃t � StmStm�1 . . . Spt�1qm�1utPN
with m � mintl : λl ¡ 2u, satisfy conditions (i) and (ii) for some new ts̃tiui�0,...,r̃ and
λ̃.

Let tPtutPN be a sequence of Perron-Frobenius operators associated with tStu. Then, for all
f P D, tPtu is constrictive.

Note that λ does not depend on t and condition (iii) is only important in order to ensure
for the new sequence the infimum condition from (i), since other properties always hold.

To prove this proposition, we first need to introduce some basic facts about variations of
functions.

Definition 3.2.5. Let f : ra, bs Ñ R be a real-valued function and a � s0   s1   � � �   sn � b
a partition of ra, bs. Then

bª
a

f � sup
S

ņ

i�1

|fpsiq � fpsi�1q|, (3.2.5)

where supremum is taken over the set S of all possible partitions of ra, bs, is called the vari-
ation of f on ra, bs. If the variation is finite, f is said to be of bounded vartiation on
ra, bs.
Lemma 3.2.6. Let a   b   c be three real numbers, f, f1, .., fn : ra, cs Ñ R - functions of
bounded variation and g : rα, γs Ñ ra, cs - a monotone function. Then

cª
a

pf1 � . . .� fnq ¤
cª
a

f1 � � � � �
cª
a

fn, (3.2.6)

γª
α

f � g ¤
cª
a

f and (3.2.7)

bª
a

f �
cª
b

f �
cª
a

f. (3.2.8)
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The proof is straightforward and can be found in [Lasota and Mackey, Section 6.1]. How-
ever, we copy here the proofs of two other results.

Lemma 3.2.7 (Variation of the product). Let f : ra, bs Ñ R be of bounded variation and
g : ra, bs Ñ R be in C1. Then

bª
a

fg ¤ psup |g|q
bª
a

f �
» b
a
|fpxqg1pxq|dx. (3.2.9)

Proof. Define for every h : ra, bs Ñ R and an arbitrary partition 0 � s0   s1   � � �   sn � 1
of ra, bs

vnphq �
ņ

i�1

|hpsiq � hpsi�1q|. (3.2.10)

Then

vnpfgq �
ņ

i�1

|fpsiqgpsiq � fpsi�1qgpsiq � fpsi�1qgpsiq � fpsi�1qgpsi�1q|

¤
ņ

i�1

p|gpsiq||fpsiq � fpsi�1q| � |fpsi�1q||gpsiq � gpsi�1q|q

¤ psup |g|qvnpfq �
ņ

i�1

|fpsi�1qg1ptiq|psi � si�1q

¤ psup |g|q
bª
a

f �
ņ

i�1

|fpsi�1qg1ptiq|psi � si�1q, (3.2.11)

where ti P psi�1, siq and in the last but one step we used the mean value theorem.
Now, since the last term is an approximation for the integral of |fpxqg1pxq| on ra, bs, taking

on both sides lim supi |si � si�1| Ñ 0, we get equation (3.2.9).

Lemma 3.2.8 (Yorke inequality). Let f : r0, 1s Ñ R be of bounded variation on ra, bs � r0, 1s.
Then

bª
a

f1ra,bs ¤ 2
bª
a

f � 2

b� a

» b
a
|fpxq|dx. (3.2.12)

Proof. We assume w.l.o.g. that partitions of r0, 1s contain points a and b and use vn as defined
in (3.2.10), specifying the interval of the partition where needed. Then

vr0,1sn pf1ra,bsq ¤ vra,bsn pfq � |fpaq| � |fpbq|
¤ vra,bsn pfq � |fpbq � fpcq| � |fpcq � fpaq| � 2|fpcq|

¤ 2
bª
a

f � 2|fpcq|, (3.2.13)

where c P ra, bs is an arbitrary point.
We get equation (3.2.12), choosing c with

|fpcq| ¤ 1

b� a

» b
a
|fpxq|dx, (3.2.14)

which is always possible.
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x

S�1
1 pxq

x

I1pxq I2pxq I3pxq I4pxq

Figure 3.1: Example of a driven Rényi transformation with a � 3.4, k � 0.2 and yt � 0.7.
Intervals I1, . . . , I4 denote the preimage of r0, xs

Proof of Proposition 3.2.4. The proof is organized as follows: first, we compute the Perron
Frobenius operator Pt for the transformation St, and then follow constrictivness from the
fact that lim suptÑ8

�1
0 Pt . . . P1f is bounded. To simplify notation, we omit index t in the

beginning; it will reappear later on.

Step I. For every x P r0, 1q

S�1pr0, xsq �
r¤
i�1

Iipxq, (3.2.15)

where

Iipxq �
#
rsi�1, gipxqs, if x P Spsi�1, siq
H or rsi�1, sis otherwise.

(3.2.16)

Here gipxq � pSiq�1pxq and Si is the restriction of S to psi�1, siq. An example for Ii’s is
shown in Figure 3.1.

The Perron-Frobenius operator is thus

Pfpxq � d

dx

»
S�1r0,xs

fptqdt �
ŗ

i�1

d

dx

»
Iipxq

fptqdt

�
ŗ

i�1

pgiq1pxqfpgipxqq1Spsi�1,siqpxq �
1

λ

ŗ

i�1

fpgipxqq1Spsi�1,siqpxq. (3.2.17)

Step II. Now we are interested in the variation of Pf for an arbitrary f P D of bounded
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variation. It holds

1ª
0

Pfpxq ¤
ŗ

i�1

1ª
0

1

λ
fpgipxqq1Spsi�1,siqpxq

¤ 2
ŗ

i�1

ª
Spsi�1,siq

1

λ
fpgipxqq �

ŗ

i�1

2

λ|Spsi�1, siq|
»
Spsi�1,siq

fpgiqpxq

¤ 2

λ

ŗ

i�1

siª
si�1

fpxq � 2

λ

ŗ

i�1

1

|Spsi�1, siq|
» si
si�1

fpxqdx

¤ 2

λ

1ª
0

fpxq � 2

λ
L, (3.2.18)

where L � maxi
1

|Spsi�1,siq|
. Here we used Lemma 3.2.6 several times, Variation of the product

lemma to pull out λ�1 and the Yorke inequality in the second step.

For a fixed t, straightforward induction yields

1ª
0

PtPt�1 . . . P1fpxq ¤
�

2

λ


t 1ª
0

fpxq �
ţ

i�1

�
2

λ


i
Lt�1�i, (3.2.19)

where Lt � maxi
1

|Stpsti�1,s
t
iq|

.

Recall that tStu is requested to fulfill inft,i Stpsti�1, s
t
iq ¡ 0. We thus can define

L � sup
t
Lt   8 (3.2.20)

and get
1ª
0

PtPt�1 . . . P1fpxq ¤
�

2

λ


t 1ª
0

fpxq �
ţ

i�1

�
2

λ


i
L. (3.2.21)

Step III. lim suptÑ8

�1
0 Pt . . . P1f is bounded. This is obvious for λ ¡ 2: from equation

(3.2.21) one gets

lim sup
tÑ8

1ª
0

Pt . . . P1f ¤ λ

λ� 2
L (3.2.22)

For λ P p1, 2s, by assumption, tS̃t � StmStm�1 . . . Spt�1qm�1utPN with m � mintl : λl ¡ 2u,
satisfy conditions (i) and (ii). Moreover, S̃1t � λm ¡ 2, wherever it is defined, since the linear
coefficient of a composition of linear transformations is equal to the product of their linear
coefficients. It follows that for tS̃tu and the corresponding Perron-Frobenius operators tP̃tu,
we can repeat all arguments of the proof until equation (3.2.22).

Now, for a fixed t P N, find d, q P N with t � dm� q and 0 ¤ q   m. Consider t so large,
that d is sufficiently large for

1ª
0

P̃d1P̃d1�1 . . . P̃1 ¤ K̃ (3.2.23)



50 3. Invariant measures for the Rényi transformations

to hold for all d1 ¥ d and some K̃   8. Then, by virtue of (3.2.21) and (3.2.23), we have

1ª
0

PtPt�1 . . . P1f �
1ª
0

Pdm�qPdm�q�1 . . . Pdm�1P̃dP̃d�1 . . . P̃1f

¤
�

2

λ


q 1ª
0

P̃dP̃d�1 . . . P̃1f �
q̧

i�1

�
2

λ


i
L

¤
�

2

λ


m
K̃ �

m̧

i�1

�
2

λ


i
L (3.2.24)

for all t large enough.

It follows that for all λ ¡ 1 there is some K   8 such that

lim sup
tÑ8

1ª
0

Pt . . . P1f   K. (3.2.25)

Step IV. We finally follow constrictivness of tPtu. Define

F � tg P D :
1ª
0

g ¤ Ku. (3.2.26)

For every g P D defined on r0, 1s it holds

gpxq � gpyq ¤
1ª
0

g

for all x, y P r0, 1s. It follows that for all g P F

gpxq ¤ K � 1 for all x P r0, 1s,

since g P D and there is some y P r0, 1s with gpyq ¤ 1.

Now, for every f P D, it follows from (3.2.25) that
�1

0 Pt . . . P1f P F for all t large enough.
Consequently, for all t large enough, Pt . . . P1f ¤ K � 1 pointwise and

||Pt . . . P1f ||q ¤ Kq � 1 (3.2.27)

with Kq   8 for all q ¥ 1. Constrictivness follows by Proposition 3.2.3.

The main result of the section is now

Corollary 3.2.9. Let tytutPN be a sequence of real numbers with values in r0, 1q. Let k P r0, 1q
and ap1� kq ¡ 1. If tytu is periodic or if a ¥ 2 and k   1� tau

a , then the sequence of Perron-
Frobenius operators associated with the sequence of transformations

Stpxq � apx� kpyt � xqq mod 1 (3.2.28)

is constrictive.
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Proof. We have to show that tStu satisfies conditions (i)-(iii) from Proposition 3.2.4. For
convenience, rewrite

Stpxq � pap1� kqx� akytq mod 1. (3.2.29)

The sequence tstiui�0,...,rt can be determined explicitly. st0 � 0, strt � 1 with

rt � tap1� k � kytqu� takytu� 1ap1�kq�akytRN (3.2.30)

and, for all i � 1, .., rt � 1,

sti �
takytu� i� akyt

ap1� kq . (3.2.31)

Clearly, for all x P psti�1, s
t
iq, i � 1, .., rt, the function Stpxq is linear and S1tpxq � ap1� kq, so

(ii) and the first part of (i) are proved.

Further, Strsti�1, s
t
iq � r0, 1q for all i � 2, .., rt � 1,

Str0, st1q � rakyt mod 1, 1q and (3.2.32)

Strstrt�1, s
t
rtq �

#
r0, ap1� k � kytq mod 1q, if ap1� k � kytq R N
r0, 1q otherwise.

(3.2.33)

First, consider the case where tytu is periodic. Clearly, for all t P N, there are only finitely
many different Str0, st1q and Strstr�1, s

t
rq, so inft,i Stpsti�1, s

t
iq ¡ 0 holds. It remains to show

(iii).

We use induction overm and suppose for fixed t,m P N that S̃t,m � StmStm�1 . . . Spt�1qm�1

satisfies conditions (i)-(ii) with partition 0 � sm0   � � �   smrm � 1 and S̃1t,mpxq � amp1� kqm
for all x P psmi�1, s

m
i q, i � 1, . . . , rt,m. The partition for S̃t,m�1 � Stm�1S̃t,m can be constructed

using the following algorithm (see Figure 3.2 for intuition):

S3pxq

x
s3

1 s
3
2 s

3
3

S1pxq

x

Figure 3.2: Example of a composition of three Rényi transformations (left). Together with a
simple transformation (right), one can forsee how a compostion of four transformations looks
like
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0. sm�1
0 � 0

1. sm�1
1 � mintsm1 ,mints ¡ 0 : Stm�1S̃t,mpsq � 0uu

2. If sm�1
1 � sm1 , then sm�1

2 � mintsm2 ,mints ¡ sm1 : Stm�1S̃t,mpsq � 0uu.
Else sm�1

2 � mintsm1 ,mints ¡ sm�1
1 : Stm�1S̃t,mpsq � 0uu

i+1. For j such that sm�1
i P rsmj , smj�1q,

sm�1
i�1 � mintsmj�1,mints ¡ sm�1

i : Stm�1S̃t,mpsq � 0uu. (3.2.34)

Further, for all x P psm�1
i , sm�1

i�1 q, i � 1, . . . , rt,m�1, where rt,m�1 is defined through the

algorithm, S̃1t,m�1 � am�1p1�kqm�1. Finally, if tytu is periodic, then tS̃t,mutPN is also periodic

for any fixed m, so inft,i S̃t,mpst,mi�1, s
t,m
i q ¡ 0 with the same argument as in the last paragraph.

We proved (iii) for an arbitrary m P N, in particular, for m � mintl : alp1� kql ¡ 2u.
Now, consider the case where tytu is not periodic and can in general be dense in r0, 1q. We

want to find conditions on a and k, which ensure that inft,i Stpsti�1, s
t
iq nevertheless remains

positive. The necessary and sufficient conditions can be determined from equations (3.2.32)
and (3.2.33): for some ε ¡ 0 and all yt P r0, 1s it should hold#

akyt mod 1 ¤ 1� ε

ap1� k � kytq mod 1 ¥ ε
(3.2.35)

Clearly, the first inequality holds for all yt P r0, 1s if and only if ak   1. For the second one,
notice that ap1� k� kytq lies in the interval rap1� kq, as, which should be fully contained in
some ri, i� 1s. Since a P rtau , tau� 1s, (3.2.35) is equivalent to#

k   1
a

tau
1�k   a   tau� 1

ðñ
#
k   1

tau�1
tau

1�k   a
ðñ

#
k   1

tau�1

k   1� tau
a

, (3.2.36)

where the first condition is weaker for a ¡ 1, so that both are equivalent to

k   1� tau

a
. (3.2.37)

Again, this simple condition ensures that inft,i Stpsti�1, s
t
iq ¡ 0. However, if ap1� kq ¤ 2,

we need that a similar condition is satisfied by a sequence of finite compositions tS̃tu of St’s
(recall assumption (iii) of Proposition 3.2.4). But one can easily imagine a sequence tytu
such that inft,i S̃tps̃ti�1, s̃

t
iq � 0. It follows that we need condition ap1 � kq ¡ 2 to ensure

constrictivness.
Finally, together with (3.2.37), it is enough to require a ¥ 2.

3.3 Asymptotic periodicity of constrictive Markov operators

Until now, we have focused on the property of constrictivness of a sequence of Markov
operators. In the special case of a constant sequence, we can show that Markov operator has
a stronger property - that of asymptotic periodicity (recall definition 3.2.1).
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Theorem 3.3.1. Let pX,A, µq be a σ-finite measure space. Let P : L1pXq Ñ L1pXq be a
Markov operator such that tPnu is a constrictive sequence. Then there exist finitely many
densities g1, . . . , gr P D and bounded linear functionals λ1, . . . , λr : L1pXq Ñ R such that for
every f P L1

lim
nÑ8

�����Pn
�
f �

ŗ

i�1

λipfqgi
������ � 0. (3.3.1)

Furthermore,

(i) gi’s have mutually almost disjoint supports, i.e., µpsupppgiqXsupppgjqq � 0 for all i � j.

(ii) There exists a permutation σ : t1, . . . , ru Ñ t1, . . . , ru such that Pgi � gσpiq.

We will later see that g1, . . . , gr are determined by their almost disjoint supportsA1, . . . , Ar,
which are chosen to have positive measure. It holds

gi � 1Ai
µpAiq (3.3.2)

and

λipfq �
»
Ai

fdµ. (3.3.3)

Theorem 3.3.1 guarantees asymptotic periodicity of a constrictive Markov operator. In-
deed, equation (3.3.1) implies that for all f P L1

Pnf �
ŗ

i�1

λipfqgσnpiq � εnpfq, (3.3.4)

where ||εnpfq|| Ñ 0 as nÑ 0. Since tσnu is periodic with period r̃ ¤ r!, P is asymptotically
periodic with P̄nf � °r

i�1 λipfqgσnpiq.
The rest of the section will be devoted to the proof of this theorem. The sketch of the

proof is given in [Komornik and Lasota] with more details provided in [Lasota, Li and Yorke],
[Komornik] as well as in [Lasota and Socala].

First, the special case of a probability measure space pX,A, µq and P1 � 1 is considered.
Subsection 3.3.4 handles the general case.

3.3.1 The σ-algebra of nice sets

Definition 3.3.2. A measurable set A P A is called a nice set if Pn1A is a characteristic
function for all n P N. For a nice set A, the function 1A is called a nice function.

We aim to show that the set of nice sets Ã is a σ-algebra. We first prove

Lemma 3.3.3. The set of nice sets Ã is a Dynkin-system, i.e.,

(i) X P Ã

(ii) for all A1, A2 P Ã with A1 � A2, it holds A2zA1 P Ã

(iii) for countably many mutually disjoint sets A1, A2, � � � P Ã, it holds
�8
i�1Ai P Ã
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Proof. (i) By assumption, P1X � 1X , so Pn1X � 1X for all n P N.

(ii) Suppose that A1, A2 P Ã, A1 � A2 and choose an arbitrary n P N. Then there exist
two sets B1, B2 P X with Pn1A1 � 1B1 and Pn1A2 � 1B2 . By linearity of P ,

Pn1A2zA1
� Pn1A2 � Pn1A1 � 1B2 � 1B1 . (3.3.5)

Now, by monotonicity of P (recall proposition (3.1.2)), it follows from 1A1 ¤ 1A2 that

1B1 � Pn1A1 ¤ Pn1A2 � 1B2 . (3.3.6)

So, B1 � B2 and (3.3.5) becomes

Pn1A2zA1
� 1B2zB1

. (3.3.7)

(iii) Let tAiuiPN be a sequence of disjoint nice sets. We first show that

Pn

�
8̧

i�1

1Ai

�
�

8̧

i�1

Pn1Ai . (3.3.8)

Indeed, the sequence tfk �
°k
i�1 1Aiu converges to f � °8

i�1 1Ai in L1, as it is bounded by the
constant 1 function and ||1|| � 1   8 by assumption on µ. Since f, fk P L1 and f � fk ¥ 0,
we get

||Pnf � Pnfk|| � ||f � fk|| Ñ 0 in L1, (3.3.9)

which together with Pnfk �
°k
i�1 P

n1Ai yields (3.3.8).

Now, fix n P N and for all i P N define Bi as a set with 1Bi � Pn1Ai . Clearly,

1Aj ¤ 1Y8i�1Ai
¤

8̧

i�1

1Ai (3.3.10)

for all j P N. By monotonicity of P and equation (3.3.8),

1Bj ¤ Pn1Y8i�1Ai
¤ Pn

�
8̧

i�1

1Ai

�
�

8̧

i�1

Pn1Ai �
8̧

i�1

1Bi (3.3.11)

for all j P N. It follows from the right inequality that Pn1Y8i�1Ai
pxq � 0 whenever x R Y8

i�1Bi.
Since Pn1Y8i�1Ai

¤ 1 by assumption, left inequalities imply Pn1Y8i�1Ai
pxq � 1 whenever

x P Y8
i�1Bi. So, Pn1Y8i�1Ai

is a characteristic function.

Proposition 3.3.4. The set of nice sets Ã is a σ-algebra.

Proof. Since Ã is a Dynkin-system, it remains to show that for every A1, A2 P Ã, it holds
A1 X A2 P Ã (see, e.g., [Klenke, Th.1.18]). Instead, we can show that the complements and
finite unions of nice sets are also nice, as A1 XA2 � pAc1 YAc2qc.

Fix n P N, denote 1B1 � Pn1A1 and 1B2 � Pn1A2 . Then

Pn1Ac1 � Pn1X � Pn1A1 � 1� 1B1 � 1Bc1 , (3.3.12)

so Ac1 is a nice set.
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For the union, we repeat the argument from the proof of part (iii) of the previous lemma.
For j P t1, 2u,

1Aj ¤ 1A1YA2 ¤ 1A1 � 1A2 . (3.3.13)

By monotonicity of P , for j P t1, 2u,
1Bj ¤ Pn1A1YA2 ¤ 1B1 � 1B2 . (3.3.14)

By the right inequality, Pn1A1YA2pxq � 0 whenever x R B1 Y B2 and, by Pn1A1YA2 ¤ 1
together with the left inequalities, Pn1A1YA2pxq � 1 whenever x P B1 YB2. So, Pn1A1YA2 �
1B1YB2 , which completes the proof.

Our next step is to show that Ã, though possibly infinitely large, contains only a finite
number of interesting sets. To be more precise, there are only finitely many different atoms
in Ã 3.

Definition 3.3.5. A set A P Ā � A is called an atom of Ā if µpAq ¡ 0 and for all measurable
B � A with µpBq   µpAq, it holds µpBq � 0.

We have the following

Lemma 3.3.6. Two atoms of a set Ā are either almost disjoint, i.e., intersect on a set of
measure 0, or almost the same.

Proof. Let A1, A2 be two atoms in Ā. Define A3 � A1XA2, which is clearly a measurable set.
If µpA3q ¡ 0, then µpA3q � µpA1q by definition of an atom, since A3 � A1, and analogously
µpA3q � µpA2q. So, either µpA3q � 0, or µpA1q � µpA2q and A1 is almost the same as A2.

Now we can prove this important

Proposition 3.3.7. Ã has only finitely many different atoms.

Proof. Let A P Ã and µpAq ¡ 0. Define

fA � 1

µpAq1A (3.3.15)

and Bn as a set with 1Bn � Pn1A. Note that Bn is a nice set by definition and µpAq � µpBnq
for all n P N, since P is Markov.

Now, by constrictivness of P , there exist some n0pfAq P N, δ ¡ 0 and κ   1 such that»
E
PnfAdµ ¤ κ for all n ¥ n0pfAq whenever µpEq ¤ δ. (3.3.16)

If µpBnq ¤ δ and n is large enough, then

1 � 1

µpAq
»
Bn

1Bndµ �
»
Bn

PnfAdµ ¤ κ   1, (3.3.17)

which is impossible. It follows that µpAq � µpBnq ¡ δ ¡ 0, i.e., the measure of every nice set
is either 0 or bigger than δ.

Consider all atoms of Ã. By the preceding lemma, two atoms can be either almost disjoint
or almost the same. The measure of the union of all mutually almost disjoint atoms can not
exceed µpXq � 1, so there are only finitely many almost disjoint atoms.

3Recall that we call sets A and B different if AzB or BzA has positive measure
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Note that every nice set either has measure 0 or is a union of atoms. The whole space X
is a nice set and a union of all atoms.

To complete this subsection, we prove that P permutes atoms of positive measure.

Proposition 3.3.8. Let tA0, A1, . . . , Aru be the set of atoms. Then there is a permutation
σ : t1, 2, . . . , ru Ñ t1, 2, . . . , ru, such that P1Ai � 1Aσpiq for all i � 1, . . . , r.

Since P permutes finitely many atoms, there exists some integer r̃ ¤ r! such that σr̃ � id
and P r̃1Ai � 1Ai .

Proof. For every Aj , denote 1Bj � P1Aj . For i � j, we have

1 ¥ P1AiYAj � P1Ai � P1Aj � P1AiXAj � 1Bi � 1Bj � P1AiXAj , (3.3.18)

so Bi X Bj � supppP1AiXAj q. Since µpsupppP1AiXAj qq � 0, it follows that Bi and Bj are
almost disjoint. The sets B1, B2, . . . , Br are mutually almost disjoint nice sets and have
measure ¡ δ, since P is a Markov operator. Clearly, they are atoms and form a permutation
of tA1, A2, . . . , Aru, which is already the statement of the proposition.

3.3.2 Weak convergence in case P1X � 1X, µpXq � 1

In this subsection we prove some convergence similar to that in equation (3.3.1), but in the
weak sense. As also the coming subsections are, this one is quite technical. The main result
here is proposition 3.3.13, but in order to prove it we need some other results. We first aim
at lemma 3.3.11, which treating P as an operator from L2pXq to L2pXq, establishes equality
between the linear subspace of L1 spanned by nice functions and the kernel of some operator.
This equality will be used in the proof of proposition 3.3.13, which first treats the f P L2 case
and then generalizes by a density argument.

Lemma 3.3.9. If f1, f2 P L1 are nonnegative and have the same support, then Pf1 and Pf2

have the same support.

Proof. We show that supppPf1q � supppPf2q. Define B2 � supppPf2q and write

Pf1 � Pf1 � 1B2 � Pf1 � 1Bc2 . (3.3.19)

For c ¡ 2, define fc � min cf2, f1. Since fc ¤ f1 P L1 and fcpxq Ñ f1pxq as c Ñ 8, we
can use the dominated convergence theorem to obtain

||Pf1 � Pf2|| �
»
X
P pf1 � fcqdµ �

»
X
pf1 � fcqdµÑ 0 as cÑ8. (3.3.20)

Since supppPfcq � supppPf2q � B2,

||Pf1 � Pfc|| ¥
»
Bc2

pPf1 � Pfcqdµ �
»
Bc2

Pf1dµ � ||Pf1 � 1Bc2 ||. (3.3.21)

Thus, Pf1 � 1Bc2 � 0, which implies supppPf1q � B2.

The proof of the other inclusion is completely analogous.
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Lemma 3.3.10. 1) The operator P preserves mean values, i.e., for all f P L1

ErPf s � Erf s. (3.3.22)

2) For all 1 ¤ p ¤ 8, the subspace Lp is P -invariant and, for all f P Lp,

||Pf ||p ¤ ||f ||p. (3.3.23)

Proof. 1) For f P L1, write f � f� � f�. Clearly, f�, f� P L1 and, since P is Markov,

ErPf s � ErPf� � Pf�s � ErPf�s � ErPf�s
� Erf�s � Erf�s � Erf� � f�s � Erf s. (3.3.24)

2) We know from Propostion 3.1.2 that for all f P L1,

||Pf ||1 ¤ ||f ||1. (3.3.25)

Since P is also monotonic and µpXq � 1, for all f P L8,

||Pf ||8 � sup
xPX

Pfpxq ¤ sup
xPX

P p||f ||81Xpxqq � ||f ||8 sup
xPX

P1Xpxq � ||f ||8. (3.3.26)

So, P is bounded as an L1 Ñ L1 operator and as an L8 Ñ L8 operator both with norm ¤ 1.
Then, by the Riesz-Thorin interpolation theorem (cf. [Stein and Shakarchi, FA, Chapter 2,
Th. 2.1]), for every 1 ¤ p ¤ 8, P is bounded as an Lp Ñ Lp operator with norm ¤ 1.
Clearly, this implies P -invariance of Lp spaces.

In particular, ||P ||2 ¤ 1, so one can consider P as an operator on L2 and define its adjoint
U � P �.

Let Q be the linear subspace of L1 spanned by nice functions.

Lemma 3.3.11. Their exists a symmetric operator A : L2pXq Ñ L2pXq such that for every
f P L2,

lim
nÑ8

||Af � UnPnf ||2 � 0 and (3.3.27)

xAf, fy � lim
nÑ8

||Pnf ||22. (3.3.28)

Moreover,

Q � KerpI �Aq, (3.3.29)

where I is the identity operator.

Proof. First, as for all adjoint operators, we have ||U ||2 � ||P ||2, so, by lemma 3.3.10, both
P and U are contractions. It follows that for every f P L2,

||f ||2 ¥ ||UPf ||2 ¥ � � � ¥ ||UnPnf ||2 ¥ � � � ¥ 0, (3.3.30)

so

I ¥ UP ¥ � � � ¥ UnPn ¥ � � � ¥ 0, (3.3.31)

which implies (3.3.27). Equation (3.3.28) follows, since xPnf, Pnfy � xUnPnf, fy.
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Now, we show that

KerpI �Aq � tf P L2 : xAf, fy � ||f ||22u (3.3.32)

� tf P L2 : ||Pnf ||2 � ||f ||2 for all n P Nu, (3.3.33)

from which Q � KerpI�Aq will follow. The second equality follows from (3.3.28) and the fact
that P is a contraction. For the first one, if pI �Aqf � 0, then xAf, fy � xf, fy. Conversely,
if xAf, fy � ³X f2dµ, then

||pI �Aq1{2f ||22 �
»
|f2 �Af � f |dµ � 0, (3.3.34)

so f �Af � 0.
Further, for all n P N, an arbitrary nice set A and a set B with 1B � Pn1A,

||Pn1A||2 � ||1B||2 � ||1B||1 � ||1A||1 � ||1A||2, (3.3.35)

so by (3.3.32), 1A P KerpI � Aq, which implies Q � KerpI � Aq, since any kernel is a linear
subspace.

It remains to show that KerpI �Aq � Q. Since Pn1X � 1X , it follows from (3.3.33) that
1X P KerpI �Aq. Accordingly, for all c P R, c � c1X P KerpI �Aq and f � c P KerpI �Aq,
if f P KerpI �Aq.

Take arbitrary f P KerpI �Aq, f � f� � f�. By lemma 3.3.10,

||f ||22 � ||Pf ||22 � ||Pf�||22 � ||Pf�||22 � 2xPf�, Pf�y
¤ ||f�||22 � ||f�||22 � 2

»
Pf� � Pf�dµ

� ||f ||22 � 2

»
Pf� � Pf�dµ, (3.3.36)

so Pf� � Pf� � 0, as both Pf� and Pf� are nonnegative. Hence, Pf� and Pf� have
disjoint supports.

Analogously, for all c P R and all n P N, Pnpf�cq� and Pnpf�cq� have disjoint supports.
Take an arbitrary c P R and suppose first that µpf�1pcqq � 0. Define

h1 � 1f�1p�8,cq, h2 � 1f�1rc,�8q. (3.3.37)

Clearly,
suppph1q � suppppf � cq�q, suppph2q � suppppf � cq�q, (3.3.38)

so, by lemma 3.3.9, Pnh1 and Pnh2 have disjoint supports for every n P N. On the other
hand,

Pn1h1 � Pn1h2 � Pn1 � 1, (3.3.39)

so Pnh1 is a characteristic function and f�1p�8, cq is a nice set.
Finally, suppose that µpf�1pcqq ¡ 0. Since µpXq � 1   8 and, as for every func-

tion, f�1pcq are disjoint for different c ¡ 0, there are at most countably many c ¡ 0 with
µpf�1pcqq � 0. It follows that tc P R : µpf�1pcqq � 0u is dense in R and contains an increasing
sequence tciu with ci Ñ c. Then

f�1p�8, cq �
8¤
i�1

f�1p�8, ciq (3.3.40)
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is a nice set, since nice sets form a σ-algebra.
Thus, f�1p�8, cq is a nice set for every c P R

Recall that r̃ is defined as a number for which P r̃1Ai � 1Ai , i � 1, . . . , r.

Corollary 3.3.12. For all f P Q,
U r̃f � f. (3.3.41)

Proof. Take an arbitrary f P Q � KerpI �Aq. Using (3.3.31) in the first and third steps, we
get

0 ¤
����I � U r̃P r̃

�1{2
f
���2
2
� @f, �I � U r̃P r̃

�
f
D ¤ xf, pI �Aq fy � 0, (3.3.42)

so pI � U r̃P r̃qf � 0, which implies If � U r̃f .

Now we are ready to state the main result of this section. Define R � P r̃ and, for all
i � 1, . . . , r,

Li � tf1Ai : f P L1u. (3.3.43)

Proposition 3.3.13. 1) Li’s are R-invariant and
2) for all f P Li, i � 1, . . . , r,

Rnf
wÝÑ λipfq 1Ai

µpAiq as nÑ8, (3.3.44)

where

λipfq �
»
Ai

fdµ (3.3.45)

where the weak convergence is considered with respect to Li space.

Proof. Fix an arbitrary 1 ¤ i ¤ r.
1) The operator R is defined in such a way that R1Ai � 1Ai . For all f P L1 X L8,

f1Ai ¤ ||f ||81Ai and
Rpf1Aiq ¤ Rp||f ||81Aiq � ||f ||81Ai , (3.3.46)

which implies that Rpf1Aiq � g1Ai P Li for some g P L1.
Now, L1 X L8 is dense in L1 ( since C8

c � L1 X L8 and C8
c is dense in L1 - see, e.g.

[Teschl, Th.0.36]). For every f P L1, there is a sequence tfju P L1 X L8 with ||f � fj ||1 Ñ 0
as j Ñ8. It follows that

}R pf1Aiq �R pfj1Aiq}1 ¤ ||f1Ai � fj1Ai ||1 Ñ 0 as j Ñ8, (3.3.47)

which implies that R pf1Aiq is 0 almost everywhere on Aci for and is thus equal to g1Ai P Li
for some g P L1.

2) Let now f P LiXL2. As tPnfu, tRnfu is bounded and thus weakly sequentially compact
in L2 (cf. [Dunford and Schwartz, Cor. IV.8.4]). By definition, there exist a function g P L2

and a subsequence tnkukPN such that Rnkf
wÝÑ g as k Ñ8.

Moreover, g P Li X L2. Indeed, Li is weakly-closed, since it is convex and closed (see,
e.g., [Werner, Th. III.3.8]). It is convex as a linear subspace of L1. To see why it is closed,
consider tfl1Aiu P Li and h P L1 with ||fl1Ai � h||1 Ñ 0. Then

||h1Aci ||1 � ||pfl1Ai � hq1Aci ||1 Ñ 0 as lÑ8, (3.3.48)
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so h is supported almost only on Ai. It follows, first, that

lim
nÑ8

xRnkf, gy � xg, gy � ||g||22, (3.3.49)

so

lim
kÑ8

||Rnkf ||22 � lim
kÑ8

||Rnkf � g||22 � 2 lim
kÑ8

xRnkf, gy � xg, gy
� lim

kÑ8
||Rnkf � g||22 � ||g||22. (3.3.50)

Second, for every fixed m P N and h P L2,

xRnk�mf, hy � xRnkf,R�mhy Ñ xg,R�mhy � xRmg, hy as k Ñ8, (3.3.51)

so Rnk�mf
wÝÑ Rmg and, using (3.3.50) and lemma 3.3.10,

lim
kÑ8

||Rnk�mf ||22 � lim
kÑ8

||Rnk�mf �Rmg||22 � ||Rmg||22
¤ lim

kÑ8
||Rnkf � g||22 � ||Rmg||22

� lim
kÑ8

||Rnkf ||22 � ||g||22 � ||Rmg||22, (3.3.52)

which, by virtue of (3.3.28), is equivalent to

xAf, fy ¤ xAf, fy � ||g||22 � ||Rmg||22. (3.3.53)

By lemma 3.3.10, for every m P N, we have

||Rmg||2 � ||g||2 (3.3.54)

and, together with (3.3.33), it yields

g P QX Li. (3.3.55)

It follows that g is constant on Ai, g � λ̃ipfq1Ai for some λ̃ipfq P R. For all m P N,
Rmg � g, so it follows from the fact that Rnk�mf

wÝÑ Rmg for all m P N, that Rnf
wÝÑ g as

nÑ8. Further,

λ̃ipfq � µpAiq �
»
X
λ̃ipfq1Aidµ � xg, 1Aiy � lim

kÑ8
xRnkf, 1Aiy

� lim
kÑ8

xf,R�nk1Aiy � xf, 1Aiy �
»
Ai

fdµ, (3.3.56)

where we used corollary 3.3.12 in the last but one step. Thus, for all f P Li X L2, we have

Rnf
wÝÑ λ̃ipfq1Ai � λipfq 1Ai

µpAiq as nÑ8. (3.3.57)

Finally, we show that this weak convergence holds for all f P Li. Define for every f P L1,

Sf � λipfq 1Ai
µpAiq (3.3.58)
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and Tnf � Rnf � Sf for all n P N. Since ||Rn|| ¤ 1 and ||S|| � 1, ||Tn|| ¤ 2   8.
Now, similarly to part 1), we use the density argument. Since L2 is dense in L1, Li X L2

is dense in Li. For every f P Li, there is a sequence tfju P Li X L2 with ||f � fj ||1 Ñ 0 as
j Ñ8. By definition of the weak convergence in the L2 space, for every j P N,»

X
|v � Tnfj |dµÑ 0 as nÑ8 (3.3.59)

for all v P L2, in particular for all v P L8, since µpXq � 1   8 and so L8pXq P L2pXq.
For the weak convergence in the L1 space, we need to consider all v P L8. It holds»
X
|v � Tnf |dµ ¤

»
X
|v � Tnpf � fjq|dµ�

»
X
|v � Tnfj |dµ

¤ ||v||8 � ||Tnpf � fjq||1 �
»
X
|v � Tnfj |dµ

¤ 2||v||8 � ||pf � fjq||1 �
»
X
|v � Tnfj |dµÑ 2||v||8 � ||pf � fjq||1 (3.3.60)

as nÑ8 by (3.3.59). Since j can be chosen so that ||pf � fjq||1 is arbitrarily small, we have

that Tnf � Rnf � Sf
wÝÑ 0 by definition.

3.3.3 Strong convergence in case P1X � 1X, µpXq � 1

In this subsection, we prove Theorem 3.3.1 in case P1X � 1X and µpXq � 1. We start with
lemma 3.3.16 that will be used in the proof.

Definition 3.3.14. For two functions f, g : X Ñ R we define

pf ^ gqpxq � mintfpxq, gpxqu. (3.3.61)

Definition 3.3.15. Nonnegative functions f1, . . . , fk P L1 are called ρ-orthogonal if there
exist nonngeative functions h1, . . . , hk P L1 with mutually disjoint supports such that ||fi �
hi||1 ¤ ρ for all i � 1, . . . , n.

Lemma 3.3.16. Let pX,A, µq be a σ-finite measure space. Let P : L1 Ñ L1 be a Markov
operator such that P1X � 1X and for every f P L1,

Pnf
wÝÑ
»
X
fdµ. (3.3.62)

If for some f̃ P L1 the strong limit of Pnf̃ does not exist, then for every ρ ¡ 0 and every N P N,
there exists a sequence of densities f1, . . . , fN such that Pnf1, . . . , P

nfN are ρ-orthogonal for
every fixed n P N.

The proof of this lemma is a compilation of different results from [Komornik]. First, we
summarize some helpful statements in

Lemma 3.3.17. (i) Let f1, . . . , fk P L1 be ρ-orthogonal and ||fi|| ¥ ε ¡ 0. Then

f1

||f1|| , . . . ,
fk
||fk|| (3.3.63)

are ρ{ε-orthogonal.
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(ii) Let f1,1, . . . , f1,k1 P L1 be ρ1-orthogonal and f2,1, . . . , f2,k1 P L1 be ρ2-orthogonal. Then
k1 � k1 functions f1,i1 ^ f2,i2 with i1 P t1, . . . , k1u and i2 P t1, . . . , k1u are ρ1 � ρ2-
orthogonal.

(iii) Let tfi,1, fi,2uiPt1,...,su � L1 be ρ-orthogonal pairs of functions. Then the 2s functions
f1,i1 ^ f2,i2 ^ � � � ^ fs,is with il P t1, 2u for all l P t1, . . . , su are s � ρ-orthogonal.

(iv) Let f1, . . . , fk be nonnegative L1 functions with ||fi||8 ¤ M0 for some M0 ¡ 0 and all
i P t1, . . . , ku. Then

Erf1 ^ f2 ^ � � � ^ fks ¥ Erf1 � f2 � � � fks{M s�1
0 (3.3.64)

and the sequence

tErPnf1 ^ Pnf2 ^ � � � ^ Pnfksu8n�1, (3.3.65)

is nondecreasing in n.

Proof. (i) Let h1, . . . , hk be nonnegative L1 functions with mutually disjoint supports and
such that ||fi � hi||1 ¤ ρ for all i � 1, . . . , n. Clearly, h1{||f1||, . . . , hk{||fk|| have disjoint
supports and ���� fi

||fi|| �
hi
||fi||

���� � ||fi � hi||
||fi|| ¤ ρ

ε
. (3.3.66)

(ii) Let h1,1, . . . , h1,k1 and h2,1, . . . , h2,k1 be two groups of L1 functions with disjoint sup-
ports corresponding to f1,1, . . . , f1,k1 and f2,1, . . . , f2,k1 respectively by the definition of ρ-
orthogonality. Clearly, the k1 �k1 functions h1,i1^h2,i2 with i1 P t1, . . . , k1u and i2 P t1, . . . , k1u
have disjoint supports.

Further, for all a, b, c P R,

|a^ c� b^ c| ¤ |a� b|, (3.3.67)

so

||f1,i1 ^ f2,i2 � h1,i1 ^ h2,i2 || ¤ ||f1,i1 ^ f2,i2 � f1,i1 ^ h2,i2 || � ||f1,i1 ^ h2,i2 � h1,i1 ^ h2,i2 ||
¤ ||f2,i2 � h2,i2 || � ||f1,i1 � h1,i1 || ¤ ρ1 � ρ2. (3.3.68)

(iii) follows from (ii) by induction.

(iv) Since 0 ¤ fi{M0 ¤ 1X for all i P t1, . . . , nu,
f1

M0
� f2

M0
� � � fk

M0
¤ f1

M0
^ f2

M0
^ . . .

fk
M0

� f1 ^ f2 ^ . . . fk
M0

. (3.3.69)

Further, for all m P N and all i � 1, . . . , n,

PmpPnf1 ^ � � � ^ Pnfkq ¤ Pm�nfi (3.3.70)

so

PmpPnf1 ^ � � � ^ Pnfkq ¤ Pm�nf1 ^ � � � ^ Pm�nfk (3.3.71)

and the second statement follows from the fact that P preserves mean values (see Lemma
3.3.10).
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Proof of Lemma 3.3.16. W.l.o.g. we may assume that f̃ P L8. If it is not, there exists
another function f̃ 1 P L8 for which the strong limit of Pnf̃ 1 does not exist. Indeed, L8

is dense in L1 (see the proof of proposition 3.3.13), so there exists a sequence of functions
tfiuiPN � L8 with ||f̃ � fi||1 Ñ 0. If for all i the strong limit of Pnfi exists, then for some
fixed i,

lim
nÑ8

����Pnf̃ �
»
X
f̃dµ

���� ¤ lim
nÑ8

����Pnf̃ � Pnfi

���� ����Pnfi �
»
X
f̃dµ

����



¤ lim
nÑ8

�����Pnfi �
»
X
fidµ

�����
����
»
X
fidµ�

»
X
f̃dµ

����



�
����
»
X
fidµ�

»
X
f̃dµ

���� (3.3.72)

is arbitrarily small which contradicts the absence of the strong limit for Pnf̃ .
Let

M0 � ||f̃ ||8. (3.3.73)

Let ρ ¡ 0 and N P N be given. We will construct the sequence f1, . . . , fN in 3 steps.
Step I. Define

λ �
»
X
f̃dµ (3.3.74)

and

M1 � 1

2
lim
nÑ8

||Rnf̃ � λ||, (3.3.75)

where R � P r̃ as in the previous section and the limit always exists, since

||Rnf̃ � λ|| � ||Rnpf̃ � λq|| (3.3.76)

is nonincreasing in n and bounded from below by 0. We have M1 ¡ 0, since otherwise Pnf
would have the strong limit λ.

Define m P N so that

M1 ¤ 1

2
||Rmf̃ � λ|| ¤M1 � ρ

x
(3.3.77)

for some fixed x ¡ 0, whose exact value will be defined in the end of the proof.
For all l P N0, define

e1,l �
�
Rm�lf̃ � λ

	�
and e2,l �

�
Rm�lf̃ � λ

	�
(3.3.78)

as well as

g1,l � Rle1,0 � Rl
��

Rmf̃ � λ
	�


and g2,l � Rle2,0 � Rl
��

Rmf̃ � λ
	�


. (3.3.79)

Let

s � tlog2N u� 1. (3.3.80)

For i P t1, 2us and l P Ns0 with lj   lj�1 for all j � 1, . . . , s� 1, define

hi,l � ei1,l1 ^ ei2,l2 ^ � � � ^ eis,ls (3.3.81)
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and
fi,l � gi1,l1 ^ gi2,l2 ^ � � � ^ gis,ls . (3.3.82)

We now show that tfi,luiPt1,2us are s � ρ{x-orthogonal for a fixed l. By lemma 3.3.17(iii),
it is enough to show that g1,l and g2,l are ρ{x-orthogonal for a fixed l P N.

Clearly, e1,l and e2,l have disjoint supports. Further,

0 � E
�
f̃ � λ

�
� E

�
Rmpf̃ � λq

�
� E

�
Rmf̃ � λ

�
� Ere1,l � e2,ls � Ere1,ls � Ere2,ls � ||e1,l|| � ||e2,l||, (3.3.83)

so

||e1,l|| � ||e1,l|| � 1

2
||Rmf̃ � λ||. (3.3.84)

By monotonicity of P and, thus, R,�
Rm�lf̃ � λ

	
� Rl

�
Rmf̃ � λ

	
¤ Rl

��
Rmf̃ � λ

	�

, (3.3.85)

so
e1,l ¤ g1,l. (3.3.86)

Analogously, �
λ�Rm�lf̃

	
� Rl

�
λ�Rmf̃

	
¤ Rl

��
Rmf̃ � λ

	�

, (3.3.87)

so
e2,l ¤ g2,l. (3.3.88)

Together with inequality (3.3.77), we get for j P t1, 2u
||gj,l � ej,l|| � Ergj,ls � Erej,ls ¤ ρ{x. (3.3.89)

Step II. Recall that f1, . . . , fN should be densities. The functions tfi,luiPt1,2us , divided by
their L1 norms, are good candidates, but we need to be sure that these norms are bounded
from below. For this, we will specify l P Ns0.

If there exists an l̃ P Ns0 such that for all i P t1, 2u

E
�
gi1,l̃1 � gi2,l̃2 � � � gis,l̃s

�
¥M s

1 , (3.3.90)

then, by lemma 3.3.17, (iv) and (i),#
fi,l̃
||fi,l̃||

+
iPt1,2us

are
M s

0 � s � ρ
M s

1 � x
-orthogonal. (3.3.91)

Such an l̃ indeed exists. Since all tgij ,l̃juj�1,...,s are in L8 (and µpXq � 1   8), they are also

in L2. Proposition 3.3.13 implies that, for a fixed l P Ns0,

lim
nÑ8

E rgi1,l1 � gi2,l2�ns � lim
nÑ8

E rgi1,l1 �Rngi2,l2s � lim
nÑ8

E

�
gi1,l1 �

ŗ

j�1

Rn
�
gi2,l2 � 1Aj

��

�
ŗ

j�1

E

�
gi1,l1 � 1Aj

³
Aj
gi2,l2dµ

µpAjq

�
� E rgi1,l1s � E rgi2,l2s (3.3.92)



3.3 Asymptotic periodicity of constrictive Markov operators 65

and, by induction,

lim
n1,...,nsÑ8

E rgi1,l1�n1 � gi2,ls�n2 � � � gis,ls�nss � E rgi1,l1s � E rgi2,l2s � � �E rgis,lss

�
�
||Rmf̃ � λ||

2

�s
¥M s

1 . (3.3.93)

It follows that for all l ¥ l̃, i.e., l with lj ¥ l̃j for all j P t1, . . . , su,"
fi,l
||fi,l||

*
iPt1,2us

are
M s

0 � s � ρ
M s

1 � x
-orthogonal. (3.3.94)

Step III. Now we need to ensure that Pnf1, . . . , P
nfN are ρ-orhtogonal for all n P N. We

fix n and write l̃ � n for pl̃1 � n, . . . , l̃s � nq. Clearly, thj,l̃ujPt1,2us have disjoint supports.
Further, for all i P t1, 2us,���Pnfi,l̃ � hi,l̃�n

��� ¤ ���Pnfi,l̃ � fi,l̃�n

���� ���fi,l̃�n � hi,l̃�n

��� . (3.3.95)

It was already shown in step I that the second norm on the r.h.s. is not larger than s � ρ{x.
For the first norm, notice that

Pnfi,l̃ ¤ Pngij ,l̃j for all j � 1, . . . , s, (3.3.96)

so
Pnfi,l̃ ¤ Pngi1,l̃1 ^ � � � ^ Pngis,l̃s � fi,l̃�n (3.3.97)

and ���Pnfi,l̃ � fi,l̃�n

��� � E
�
fi,l̃�n

�
� E

�
Pnfi,l̃

�
� E

�
fi,l̃�n

�
� E

�
fi,l̃

�
. (3.3.98)

From lemma 3.3.17(iv) we know that
!
E
�
fi,l̃�n

�)
nPN

is nondecreasing in n. Since µpXq � 1,

this sequence is bounded by M0. Define m̃ P N so that

E
�
fi,l̃�m̃�n

�
� E

�
fi,l̃�m̃

�
¤ s � ρ{x (3.3.99)

and, consequently, ���Pnfi,l̃�m̃ � hi,l̃�m̃�n

��� ¤ 2s � ρ
x

. (3.3.100)

We can finally define

x � M s
1

2M s
o � s

(3.3.101)

and

fi �
fi,l̃�m̃
||fi,l̃�m̃||

for all i P t1, 2us. (3.3.102)

These are 2s ¥ N functions, which are ρ-orthogonal.

Now we give the



66 3. Invariant measures for the Rényi transformations

Proof of Theorem 3.3.1 in case P1X � 1X and µpXq � 1. For all i � 1, . . . , r and f P L1,
define

λipfq �
»
Ai

fdµ and (3.3.103)

gi � 1Ai
µpAiq . (3.3.104)

Note that we use the same definition of λipfq as in proposition 3.3.13.

Clearly, gi’s are densities and statements piq and piiq were already proved in Subsection
3.3.1 (remember that P1Ai � 1Aσpiq implies µpAiq � µpAσpiqq).

Fix n P N and find k,m P N, 0 ¤ m   r̃, with n � kr̃ �m. Then, by propositions 3.1.2,
3.3.13 and the triangle inequality,

�����Pn
�
f �

ŗ

i�1

λipfqgi
������ �

�����PmRk
�

ŗ

i�1

f � 1Ai �
ŗ

i�1

λipfq1Ai
������

¤
ŗ

i�1

���Rk pf1Ai � λipfq1Aiq
���Ñ 0 as nÑ8. (3.3.105)

Thus, it remains to show that convergence in (3.3.44) is strong.

Suppose that for some i P t1, . . . , ru and some function fi P Li, convergence in (3.3.44)
is not strong. Clearly, since P is constrictive, so is R with the same δ ¡ 0 and κ   1. Fix
some 0   ρ   p1 � κq{2 and N ¡ 1{δ. Setting X � Ai, we can apply lemma 3.3.16 by
virtue of (3.3.44). Thus, there exist N densities f1, . . . , fN P Li such that Rnf1, . . . , R

nfN
are ρ-orthogonal for every fixed n P N. By constrictivness, for every k � 1, . . . , N , there exist
an n0pfkq P N with

»
E
Rnfkdµ ¤ κ for all n ¥ n0pfkq if µpEq ¤ δ. (3.3.106)

Fix some n ¥ n0. By ρ-orhogonality, there exist nonnegative functions h1, . . . , hN P Li with
disjoint supports and ||Rnfi�hi|| ¤ ρ for all i � 1, . . . , N . For every k � 1, . . . , N , µpEq ¤ δ,

»
E
hkdµ �

»
E
|hk|dµ �

»
E
|Rnfk|dµ�

»
E
|Rnfk � hk|dµ ¤ κ� ρ. (3.3.107)

Since N ¡ 1{δ, µ is a probability measure and hk’s have disjoint supports, there is some
k P t1, . . . , Nu with µpsuppphkqq ¤ δ. For E � suppphkq we get

||hk|| ¤ κ� ρ   1� ρ. (3.3.108)

At the same time, since Rnfk is a density,

1� ||hk|| � ||Rnfk|| � ||hk|| ¤ ||Rnfk � hk|| ¤ ρ. (3.3.109)

We get a contradiction, so for all f P Li, i � 1, . . . , r, the convergence is strong.
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3.3.4 Proof of the general case

Here we release both condition µpXq � 0 and condition P1X � 1X . The strategy will be to
reduce the general case to the one already proved in the previous subsection. We first prove
lemma 3.3.20, which states the existence of an invariant density for a constrictive Markov
operator.

Recall that D is a set of densities on X.

Definition 3.3.18. Let P : L1 Ñ L1 be a Markov operator on a σ-finite measure space
pX,A, µq. An invariant density g P D of P is said to have maximal support if

µpsupppfqzsupppgqq � 0 (3.3.110)

for every invariant density f P L1 for P .

Lemma 3.3.19. Let pX,A, µq be a σ-finite measure space. Let P : L1 Ñ L1 be a Markov
operator. If there exist a set B̃ P A of finite measure and a number δ ¡ 0 such that for every
E � B̃ with µpEq   δ

lim sup
nÑ8

»
pXzB̃qYE

Pnfdµ   1, (3.3.111)

then P has an invariant density nonvanishing on B̃.

The proof of this lemma can be found in [Socala, Th.1].

Lemma 3.3.20. Let pX,A, µq be a σ-finite measure space. For every constrictive Markov
operator P : L1 Ñ L1, there exists an invariant density with maximal support.

Proof. First, we note that a constrictive Markov operator satisfies condition (3.3.111), since
it is just weaker than constrictivness. Thus, P has at least one invariant density.

Since X is σ-finite, there exists a density f0 with f0pxq ¡ 0 for all x P X. Denote
Af � supppfq, define a new measure

µ0pAq �
»
A
f0dµ (3.3.112)

for every A P A, and a number

M � sup tµ0pAf q : f P D,Pf � fu . (3.3.113)

Choose a sequence tfnu P D with µ0pAfnq ÑM and define

g �
8̧

n�1

1

2n
fn. (3.3.114)

By the monotone convergence theorem, g is an invariant density and then µ0pAgq �M .
Now, take some arbitrary invariant density f . Clearly, h � 1

2pf � gq is also invariant and
Ah � Ag Y Af . At the same time µ0pAhq ¤ M , so Ah � Ag. We get Af � Ah � Ag, which
yields that the support of g is maximal.

Clearly, the maximal support corresponding to the operator P is unique up to a set of
measure 0. Denote it by GpP q.
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Lemma 3.3.21. For a constrictive Markov operator P : L1 Ñ L1 on a σ-finite measure space
pX,A, µq, it holds

lim
nÑ8

»
XzGpP q

Pnfdµ � 0 for every f P D. (3.3.115)

Proof. Let B and κ come from the definition of constrictivness, i.e., µpBq   8, κ   1 and
for some δ ¡ 0 and every density f P D, there is an n0pfq P N for which»

pXzBqYE
Pnfdµ ¤ κ for all n ¥ n0pfq, µpEq ¤ δ (3.3.116)

First, we show that for every f P D

lim inf
nÑ8

»
XzGpP q

Pnfdµ ¤ κ. (3.3.117)

Define B̃ � BzGpP q and fix some f P D. If condition (3.3.111) would hold for this B̃, there
would exist an invariant density nonvanishing on B̃, which is impossible, since GpP q is the
maximal support. It follows that there exists some E � B with µpEq ¤ δ such that

lim sup
nÑ8

»
pXzB̃qYE

Pnfdµ � 1 (3.3.118)

or

lim inf
nÑ8

»
B̃zE

Pnfdµ � 0. (3.3.119)

Since XzGpP q � ppXzBq Y Eq Y pB̃zEq, (3.3.116) and (3.3.119) imply (3.3.117).
Now define

a � inf

#
b P R : lim inf

nÑ8

»
XzGpP q

Pnfdµ ¤ b for f P D
+
. (3.3.120)

We already know that b   1. Choose some 0   ε   1� a and fix f P D. For some k P N, we
have »

Pk
fdµ ¤ a� ε. (3.3.121)

Further, since supp
�
1GpP qP

kf
� � supppgq and P is monotonic, it holds for all n P N

supp
�
Pn
�

1GpP qP
kf
	�

� supppPngq � supppgq � GpP q. (3.3.122)

It follows

lim sup
nÑ8

»
XzGpP q

Pn�kfdµ � lim inf
nÑ8

»
XzGpP q

Pn
�

1XzGpP qP
kf
	
dµ

�
���1XzGpP qP kf��� � lim inf

nÑ8

»
XzGpP q

Pnhkdµ ¤ pa� εqa, (3.3.123)

where hk � p1XzGpP qP kfq{
��1XzGpP qP kf��. Since f was arbitrary, we get a ¤ pa � εqa and,

thus, a � 0. Since every Markov operator is a contraction on L1, the sequence in (3.3.117) is
nonincreasing and limit inferior is just a limit.
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Proof of theorem 3.3.1. The proof is organized as follows: first, we find the space pX,A, µ̄q
and the operator P̄ for which µ̄pXq � 1 and P̄1X � 1X and the desired convergence holds.
This implies similar convergence under P for a special class of functions. Second, we follow
the convergence for arbitrary f P L1, but some unknown λipfq’s and special gi’s. Finally, we
show that these λipfq’s and gi’s have the properties stated in the theorem.

Step I. By lemma 3.3.20, there exists an invariant density g P D for P with maximal
support G. By lemma 3.3.21, for every f P L1,

lim
nÑ8

»
XzG

Pnfdµ � 0. (3.3.124)

Define a new measure µ̄ on X through

µ̄pAq �
»
A
gdµ (3.3.125)

for all A P A, and an operator P̄ through

P̄ hpxq �
#
P phgqpxq{gpxq, if x P G
0 otherwise.

(3.3.126)

Clearly, pX,A, µ̄q is a probability space and P̄ is a Markov operator on pX,A, µ̄q with P̄1X �
1X . Moreover, P̄ is constrictive. To see this, notice first that the measure µ restricted to G is
absolutely continuous with respect to µ̄, since gpxq ¡ 0 for x P G. Now let B, κ and δ come
from the definition of constrictivness of the operator P . Choose δ̄ ¡ 0 such that µ̄pEq ¤ δ̄
would imply µpE X Gq ¤ δ. It follows that there exists some n0phgq P N such that for all
h P L1

»
pXzBqYE

P̄nhdµ̄ �
»
pXzBqYpEXGq

Pnphgqdµ ¤ κ for all n ¥ n0phgq, µ̄pEq ¤ δ̄, (3.3.127)

which is constrictivness of P̄ .

By the proof in Subsection 3.3.3, we know that equation (3.3.1) holds for P̄ on pX,A, µ̄q.
Together with (3.3.104), it follows that for all h P L1

P̄nh �
ŗ

i�1

λiphq
1Aσnpiq
µ̄pAσnpiqq

� εnphq, (3.3.128)

for the corresponding nice sets Ai, i � 1, . . . , r, and some tεnu P L1 with ||εnphq||L1pµ̄q Ñ 0 as
nÑ 0.

Now, straightforward induction yields

P̄nhpxq �
#
Pnphgqpxq{gpxq, if x P G
0 otherwise,

(3.3.129)

which implies

Pnphgq �
ŗ

i�1

λiphqgσpiq � gεnphq, (3.3.130)
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where gi � g
1Ai
µ̄pAiq

and

||gεnphq||L1pµq �
»
X
gεnphqdµ �

»
X
εnphqdµ̄ � ||εnphq||L1pµ̄q Ñ 0, (3.3.131)

so for all functions of the form hg P L1 we get a decomposition similar to the one we need.

Step II. We want to consider an arbitrary f P L1. Fix ε ¡ 0 and take the nonnegative
density f0 from the proof of lemma 3.3.20. Choose a number c1 ¡ 0 large enough for

��pc1f0 � |f |q���   ε

4
(3.3.132)

to hold. Then for q1 � pc1f0 � |f |q� P L1 we have that |f | ¤ c1f0 � q1 pointwise. Further, by
lemma 3.3.21, there exists an m P N such that»

XzG
Pmfdµ ¤ ε

4c1
. (3.3.133)

Then, by monotonicity of P ,»
XzG

|Pmf |dµ ¤
»
XzG

Pm|f |dµ

¤ c1

»
XzG

Pmf0dµ�
»
XzG

Pmq1dµ ¤ ε

4
� ε

4
� ε

2
. (3.3.134)

Similarly, choose a number c2 ¡ 0 large enough for

��pc2g � 1G|Pmf |q�
��   ε

4
(3.3.135)

to hold. Then for q2 � pc2g � 1G|Pmf |q� P L1 we have that supppq2q � G and 1G|Pmf | ¤
c2g � q2 pointwise. Define

hpxq �
#
p1G � Pmf � q2q {gpxq, if x P G
0 otherwise.

(3.3.136)

Then 1G � Pmf � hg � q2 and

Pmf � 1GcP
mf � 1GP

mf

� 1GcP
mf � hg � q2 � hg � q3, (3.3.137)

where

||q3|| ¤ ||1GcPmf || � ||q2||   ε{2� ε{4 � 3ε{4. (3.3.138)

Coming back to equation (3.3.130), find n P N large enough for ||gεnphq||   ε{4 to hold. Then

Pn�mf � Pnphgq � Pnq3

�
ŗ

i�1

λiphqgσnpiq � gεnphq � Pnq3, (3.3.139)
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where �����Pn�mf �
ŗ

i�1

λiphqgσnpiq
�����   3

4
ε� 1

4
ε � ε. (3.3.140)

It remains to show that this is equivalent to the asymptotic decomposition (3.3.1).
First, notice that λiphq depends on h and thus on ε, whereas gi does not. Second, ε ¡ 0

was arbitrary, and for every ε one could choose m with σm � σ and thus σn�m � σn. It
follows that there exist sequences tnkukPN and tCki pfqukPN, such that

lim
kÑ8

�����Pnkf �
ŗ

i�1

Cki pfqgσnk piq
����� � 0. (3.3.141)

We show that for all i � 1, . . . , r, tCki pfqukPN is a bounded sequence. Suppose that it is
unbounded for some i. Then, using triangular inequality in the first step and the fact that
gi’s have almost disjoint supports in the second one, we get�����Pnkf �

ŗ

i�1

Cki pfqgσnk piq
����� ¥

������
ŗ

i�1

Cki pfqgσnk piq
������ ||Pnkf ||

�

�
�

ŗ

i�1

|Cki pfq| �
��gσnk piq��� ||Pnkf ||

�
Ñ8 (3.3.142)

at least for some subsequence tklu � tku, since 0 ¤ ||Pnkf || ¤ ||f ||   8 and ||gi|| � 1 ¡ 0
(cf. (3.3.146)). This contradicts (3.3.141). As bounded sequences in R, tCki pfqukPN converge
to some λipfq, i � 1, . . . , r, and, for simplification of notation, assume w.l.o.g. that we don’t
need to extract convergent subsequences.

Further, Pgi � gσpiq for all i � 1, . . . , r. Indeed, in this proof σ first appeared in equation
(3.3.128) and has the property

P̄

�
1Ai
µ̄pAiq



� 1Aσpiq
µ̄pAσpiqq

, (3.3.143)

from which one gets

Pgi � P

�
g

1Ai
µ̄pAiq



� P̄

�
1Ai
µ̄pAiq



� g � 1Aσpiq

µ̄pAσpiqq
� g � gσpiq (3.3.144)

Now, define

εn �
�����Pn

�
f �

ŗ

i�1

λipfqgi
������ . (3.3.145)

From (3.3.141) and (3.3.145), we know that εnk Ñ 0 as k Ñ8. Moreover, εn is nonincreasing
by monotonicity of P . It follows that εn Ñ 0 as nÑ8.

Step III. Since, by construction, gi’s have almost disjoint supports and we proved the
permutation condition (ii) from the theorem in (3.3.144), it remains to show that gi is a
density and λipfq is linear and bounded, i � 1, . . . , r.

For gi, we have

||gi||L1pµq �
»
X
g

1Ai
µ̄pAiqdµ �

1

µ̄pAiq
»
Ai

dµ̄ � 1. (3.3.146)
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For λipfq, observe that εn Ñ 0 and the fact that gi’s are almost disjoint imply

||P r̃nf � 1Ai || Ñ ||λipfqgi|| as nÑ8, (3.3.147)

where r̃ � mintr : σr � idu. Since P is a contraction and ||gi|| � 1, for every f P L1

|λipfq|
||f || ¤ |λipfq|

||P r̃nf || �
||λipfqgi||
||P r̃nf || ¤ ||λipfqgi||

||P r̃nf � 1Ai ||
Ñ 1 (3.3.148)

as nÑ8, which implies that λi is a bounded operator.
Further, εn Ñ 0 implies that λ : L1pXq Ñ R is unique. Indeed, for another λ̃ : L1pXq Ñ R

with the same property, we get

|λipfq � λ̃ipfq| � ||λipfqgi � λ̃ipfqgi||
¤ ||λipfqgi � P r̃nf � 1Ai || � ||P r̃nf � 1Ai � λ̃ipfqgi|| Ñ 0 (3.3.149)

as nÑ8. Since�����Pn
�
f1 �

ŗ

i�1

λpf1qgi
������Ñ 0 and

�����Pn
�
f2 �

ŗ

i�1

λpf2qgi
������Ñ 0 (3.3.150)

imply �����Pn
�
f1 � f2 �

ŗ

i�1

pλpf1q � λpf2qgi
������Ñ 0, (3.3.151)

it holds λipf1q � λipf2q � λipf1 � f2q, so the operator λi is linear.

3.4 Asymptotic periodicity for the driven Rényi transforma-
tion

Finally, we want to summarize results of Sections 3.2 and 3.3 to make a precise statement
on the dynamics of the density under the driven Rényi transformation.

Theorem 3.3.1 states that the Perron-Frobenius operator corresponding to a transfor-
mation is asymptotically periodic, if it is constrictive. By corollary 3.2.9, the sequence of
Perron-Frobenius operators corresponding to the sequnce of driven Rényi transformations

Stpxq � apx� kpyt � xqq mod 1 (3.4.1)

is constrictive if tytu is periodic or if a ¥ 2 and k   1 � tau
a . Unfortunately, the second

condition of constrictivness is not enough. If tytu is not periodic, we have an infinite sequence
of different Perron-Frobenius operators and cannot follow asymptotic periodicity.

Suppose that tytu is periodic with period k. Let tPtu be the sequence of Perron-Frobenius
operators corresponding to tStu. Define

P � PkPk�1 � � �P1. (3.4.2)

Clearly, P is constrictive, since tPtu is a constrictive sequence. By theorem 3.3.1, P is asymp-
totically periodic with some period r̃   8. It follows, that the sequence tPtu is asymptotically
periodic with period r̃k   8.
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So the condition for the asymptotic periodicity of tPtu is the periodicity of tytu. When is
tytu periodic? Recall that tytu is the trajectory of a system determined by a Rényi transfor-
mation:

yt�1 � Rpytq � byt mod 1 (3.4.3)

with b ¡ 1 and y0 P r0, 1s. Whether tytu is periodic, depends both on b and the initial state
y0. In fact, one can consider the transformation Rt as a shift operator applied t times to the
initial state y0 in b-adic representation. Periodicity of tytu is then equivalent to the periodicity
of y0 in b-adic representation.

If b P N, then all and only y0 P Q X r0, 1s have periodic b-adic representations. This can
be easily shown using direct computation in the “only” direction and the division algorithm
for “all”.

For b R N, to determine y0 which have periodic representations is a much more complex
question. However, [Schmidt] managed to give a comprehensive classification. We first need
some definitions.

Definition 3.4.1. A Pisot-Vijayaraghavan number (also a Pisot number) is a real root
of a monic polynomial, i.e., a polynomial with coefficient 1 by the term with highest power,
which is greater than 1 and such that all other roots are less than 1 in absolute value.

Definition 3.4.2. A Salem number is a real root of a monic polynomial, which is greater
than 1 and such that all other roots are not greater than 1 in absoulte value, whereas at least
one of them has absolute value exactly 1.

Golden ratio p1�?
5q{2 is an example of a Pisot number. The smallest Salem number is

the largest root of the polynomial

x10 � x9 � x7 � x6 � x5 � x4 � x3 � x� 1. (3.4.4)

All integers greater than 1 are Pisot numbers and, conversely, every rational Pisot number is
an integer. Moreover, Pisot numbers are nowhere dense in r1,8q (cf. [Salem, Chapter II]4)
and the same was conjectured, but not yet proved, for Salem numbers.

Finally, define the field extension

Qpbq � tλ1 � λ2b : λ1, λ2 P Qu. (3.4.5)

Now, it follows from [Schmidt] that

(i) If b is a Pisot number, then all and only y0 P Qpbq X r0, 1q have periodic b-adic repre-
sentations.

(ii) If b is not a Pisot number, then only some y0 P Qpbq X r0, 1q have periodic b-adic
representations.

(iii) If b is neither Pisot nor Salem, then those y0 that have periodic b-adic representations
are nowhere dense in r0, 1q.

In numerical computations one can only simulate rational numbers. It follows that accu-
rate numerical computations can yield periodic tytu orbits for all (rational) y0 only if b is a
rational Pisot number, i.e., an integer greater than 1.

4There closedness of the set of Pisot numbers is proved. An arbitrary interval in r0, 1q contains a dense
subset of rational numbers, which are not Pisot. By closedness, any convergent sequence of Pisot numbers
converges to a Pisot number, so Pisot numbers cannot be dense in the interval.
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Chapter 4

Cross-transitivity estimators for
two coupled systems

In this chapter we study the relation of the cross-transitivity estimators for two coupled
systems.

In the first section we numerically compute the transitivity estimator (2.0.2) and the
cross-transitivity (1.1.6) (which is also an estimator in the sense that it is computed from
a finite data set and not using the invariant measure) in the same way as [Feldhoff et al.]
do. As explained in the introduction, [Feldhoff et al.] study only one system — the Rössler
system — and find out that if the systems X and Y are governed by the Rössler equations
and are coupled via diffusive coupling so that system Y is independent and system X is
driven by system Y, then T̂ XY ¡ T̂ YX for all values of the coupling strength which yield
significantly different T̂ XY and T̂ YX . This illustrated the hypothesis that such a relation of
cross-transitivities is typical for the unidirectional coupling.

We reproduce the result of [Feldhoff et al.] and compute estimators for different other
systems both in continuous and discrete time. We find out that in general both relations
T̂ YX ¡ T̂ XY and T̂ XY ¡ T̂ YX are possible. The results are discussed further at the end of
the section.

In the second section we propose four simple models for attractors of two coupled systems
on the plane, illustrating how different geometry of the attractors could lead to different
relations between cross-transitivities.

4.1 Estimation of (cross-)transitivities for different systems

In the following we plot transitivity dimensions for different coupled systems of the same
type. We always consider unidirectional coupling, where system Y is independent and drives
system X . Following [Feldhoff et al., Sec.3], for different values of the coupling strength k,
ensembles of 200 realisations are considered. Values of k are chosen from the interval r0, 1s
or a smaller one in case cross-transitivities start to have similar behaviour long before k � 1,
with a step of at most 0.02. Only for the Lorenz system (equation (4.1.5)) we considered
values of k also beyond 1, since the transitivities demonstrated “smooth” behaviour on the
interval r0, 5s. In this case the step is equal to 0.1.

For continuous-time systems, the first-order differential equations are integrated with a
step size h � 0.01 for a total time T � 5000, leading to 500, 000 points on each simulated
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trajectory. After discarding 100, 000 first points, which probably correspond to the transient
phase, N � 1500 points are chosen randomly to construct the recurrence network.1 For
discrete-time systems, the maps are iterated 500, 000 times and the same procedure is used
afterwards.

The networks are constructed with fixed recurrence rates RRX � RRY � 0.02 and
RRXY � RRYX � 0.03, where for the inter-system adjacency matrix A defined by (1.1.3),

RRX � 1

NpN � 1q
¸

i,jPt1,...,Nu

AX
ij (4.1.1)

and

RRXY � 1

NM

¸
iPt1,...,Nu,jPt1,...,Mu

AXY
ij (4.1.2)

with N P N — the number of vertices in the network of the system X and M P N — of the
system Y (cf. [Donner et al., 2010, Sec.3.1.2]). Fixed recurrence rates determine thresholds,
which thus slightly vary, but normally satisfy εX � εY and εXY � εYX ¡ εX , εY . This
approach allows to preserve the density of the network and thus to compare networks of
different systems without normalising their time series beforehand. The exact values are
chosen following [Feldhoff et al., Sec.3].

We normally consider some frequency mismatch, i.e., systems X and Y are described by
the same equations (up to coupling), but with slightly different coefficients. This is done to
prevent the systems from completely synchronising at very low coupling strengths.

Since much of this thesis is dedicated to dimensions, we estimate here not the (cross)-
transitivities, but the (cross)-transitivity dimensions, using the following estimators for some
choice of ε:

D̂T̂ X � log T̂ X

logp3{4q and D̂T̂ XY � log T̂ XY

logp3{4q . (4.1.3)

This does not change the analysis, since the transformation is monotonic. Ensemble means
and standard deviations (error bars) for D̂T̂ X , D̂T̂ Y as well as for D̂T̂ XY and D̂T̂ YX are
given. Note that in our case, where the coupling direction is from Y to X (Y Ñ X ), we
expect T̂ XY ¡ T̂ YX according to [Feldhoff et al.]. Since logp3{4q   0, this corresponds to
D̂T̂ YX ¡ D̂T̂ XY .

For calculations the python language and the software package pyunicorn have been used
on the IBM iDataPlex Cluster of the Potsdam Institute of Climate Impact Research.

The choice of the systems, parameters and variables for coupling is rather subjective. In
view of the limited time and the goals of the thesis it was impossible to conduct a comprehen-
sive analysis. It is in line with the tradition of the current research, since the zoo of chaotic
systems is already very big and the chaotic systems can demonstrate very different behaviour
for different parameters, making researchers concentrate on specific cases.

1This is the widely used bootstrapping technique, see [Efron and Tibshirani] for the explanations.
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4.1.1 Continuous time systems

1. Rössler system

$'&
'%

9x1 � �p1� nqx2 � x3

9x2 � p1� nqx1 � ax2 � kpy2 � x2q
9x3 � b� x3px1 � cq

$'&
'%

9y1 � �p1� nqy2 � y3

9y2 � p1� nqy1 � ay2

9y3 � b� y3py1 � cq
(4.1.4)

In order to reproduce the results of [Feldhoff et al.], we consider the so-called funnel regime
with a � 0.2925, b � 0.1 and c � 8.5 and choose the ensemble of initial conditions randomly
from the set r0, 1q3. [Rössler] initially proposed different parameters and the funnel regime
was studied in [Osipov et al., 1997] and [Osipov et al., 2003].
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Figure 4.1: Coupling analysis for two Rössler systems (eq. (4.1.4)) with mismatch (a) n �
�0.02 and (b) n � 0.02

As also for all following systems, we discuss the results in the end of this section.

2. Lorenz system

$'&
'%

9x1 � p1� nqσpx2 � x1q
9x2 � �x1x3 � p1� nqρx1 � x2 � k1py2 � x2q
9x3 � x1x2 � p1� nqβx3 � k2py3 � x3q

$'&
'%

9y1 � p1� nqσpy2 � y1q
9y2 � �y1y3 � p1� nqρy1 � y2

9y3 � y1y2 � p1� nqβy3

(4.1.5)

Here different variables are coupled: in case (a), the systems are coupled via the second
variable (k2 � 0), and in case (b) — via the third variable (k1 � 0). We take the canonical
parameters σ � 10, ρ � 28 and β � 8{3 proposed by [Lorenz] and approximate β by 2.6667.
The ensemble of initial conditions is chosen for the third variable randomly from the interval
r20, 24q, the two first variables are fixed at 1.
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Figure 4.2: Coupling analysis for two Lorenz systems (eq. (4.1.5)) with coupling via (a) the
second or (b) the third variable, with frequency mismatch n � 0.02 in both cases

3. Thomas’ cyclically symmetric operator

$'&
'%

9x1 � �p1� nqbx1 � sinx2

9x2 � �p1� nqbx2 � sinx3

9x3 � �p1� nqbx3 � sinx1 � kpy3 � x3q

$'&
'%

9y1 � �p1� nqby1 � sin y2

9y2 � �p1� nqby2 � sin y3

9y3 � �p1� nqby3 � sin y1

(4.1.6)

We consider b � 0.18 as proposed by [Thomas]. The ensemble of initial conditions is chosen
randomly from the set r0, 1q3.
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Figure 4.3: Coupling analysis for two Thomas systems (eq. (4.1.6)) with mismatch (a) n �
�0.02 and (b) n � 0.02. Note that part of the difference in the variability of dimensions in
figures (a) and (b) is due to the different scaling of the y-axes

4.1.2 Discrete time systems

1. Rényi transformation

xt�1 � apxt � kpyt � xtqq mod 1

yt�1 � p1� nqayt mod 1 (4.1.7)
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The Rényi transformation is a generalization of the Bernoulli shift map for which a � 2.
[Rényi] began the thorough study of this class of transformations and did not propose any
specific value for a. Since then there exists no canonical value of a in the literature. We take
two examples: a � 1.5 and a � 2.7. The ensemble of initial conditions is chosen randomly
from the set r0, 1q � r0, 1q.
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Figure 4.4: Coupling analysis for two Rényi systems (eq. (4.1.7)) for parameters (a) a � 1.5
and (b) b � 2.7, both with frequency mismatch n � 0.03

2. Logistic map

xt�1 � p1� nqapxt � kpyt � xtqqp1� pxt � kpyt � xtqqq
yt�1 � p1� nqaytp1� ytq (4.1.8)

The logistic map (popularized by [May]) demonstrates very different behaviour depending on
a. We want to consider a � 3.7 and the often used a � 4, both of which correspond to the
chaos regime (see [Sprott, Sec.2.3]). a � 4 is approximated by 3.9999999, since multiplication
of rational numbers in the binary machine representation with a power of 2 soon leads to
degenerate values. The ensemble of initial conditions is chosen randomly from the set r0, 1q�
r0, 1q in accordance with [Sprott, A.1.1].
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Figure 4.5: Coupling analysis for two Logistic systems (eq. (4.1.8)) for (a) a � 3.7 and
frequency mismatch n � 0.02 and (b) a � 3.9999999 and no frequency mismatch
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3. Arnold’s cat map

#
x1
t�1 � px1

t � px2
t � kpy2

t � x2
t qqq mod 1

x2
t�1 � px1

t � 2px2
t � kpy2

t � x2
t qqq mod 1

#
y1
t�1 � py1

t � y2
t q mod 1

y2
t�1 � py1

t � 2y2
t q mod 1

, (4.1.9)

where zit denotes the i-th component of z, i � 1, 2, z P tx, yu.
Arnold’s cat map, the best known example of the so-called Anosov isomorphism was

proposed in the given form by [Arnold and Avez, Sec.3.13]. The ensemble of initial conditions
is chosen randomly from the set r0, 1q � r0, 1q.

4. Baker’s map

px1
t�1, x

2
t�1q �

#
p2px1

t � kpy1
t � x1

t qq, x2
t {2q, if 0 ¤ px1

t � kpy1
t � x1

t qq   1{2
p2� 2px1

t � kpy1
t � x1

t qq, 1� x2
t {2q, if 1{2 ¤ px1

t � kpy1
t � x1

t qq   1

py1
t�1, y

2
t�1q �

#
p2y1

t , y
2
t {2q, if 0 ¤ y1

t   1{2
p2� 2y1

t , 1� y2
t {2q, if 1{2 ¤ y1

t   1
(4.1.10)

where zit denotes the i-th component of z, i � 1, 2, z P tx, yu.
This is the standard Baker’s map, cf. [Driebe, Sec.5.1], with coupling via the first variable.

Since for any rational initial conditions one gets yt � 0 after a low number of iterations, we
substitute all 2’s in the equations with 1.9999999’s, as proposed in [Sprott, Sec.2.5.4].

The map acts on r0, 1q2, so the ensemble of initial conditions is chosen randomly from the
set r0, 1q2.
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Figure 4.6: Coupling analysis for (a) two Arnold’s cat maps (eq. (4.1.9)) and (b) two Baker’s
maps (eq. (4.1.10)) with no mismatch

5. Henon map

#
x1
t�1 � x2

t � 1� apx1
t � kpy1

t � x1
t qq2

x2
t � bx1

t

#
y1
t�1 � y2

t � 1� p1� nqapy1
t q2

y2
t�1 � by1

t

(4.1.11)
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We consider a � 1.4 and b � 0.3 as proposed in the original article by [Henon]. The ensemble
of initial conditions is chosen randomly from the interval r0, 1q for the first variable of each
system and from the interval r0, 0.1q for the second variable. This was chosen by trial and is
in line with the initial conditions p0, 0q proposed in [Sprott, Sec.5.2.2].
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Figure 4.7: Coupling analysis for two Henon systems (eq. (4.1.11)) with a � 1.4, b � 0.3 and
(a) frequency mismatch n � 0.03 or (b) no mismatch (n � 0)

6. Burger’s map

#
x1
t�1 � apx1

t � kpx2
t � x1

t qq � px2
t q2

x2
t � p1� nqbx2

t � px1
t � kpx2

t � x1
t qqx2

t

#
y1
t�1 � ay1

t � py2
t q2

y2
t � p1� nqby2

t � y1
t y

2
t

(4.1.12)

We consider a � 0.75 and b � 1.75 as proposed in [Sprott, A.2.5]. The ensemble of ini-
tial conditions is chosen randomly from the interval r�0.15,�0.05q for the first variable of
each system and from the interval r0.05, 0.15q for the second variable in line with the initial
conditions p�0.1, 0.1q proposed in [Sprott, ebd.].
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Figure 4.8: Coupling analysis for two Burger systems (eq. (4.1.12)) with a � 0.75, b � 1.75
and (a) no frequency mismatch or (b) frequncy mismatch (n � 0.02). Note that both figures
differ
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7. Kaplan-Yorke map

#
x1
t�1 � p2px1

t � kpy1
t � x1

t qq mod 1

x2
t�1 � p1� nqax2

t � cosp4πx1
t q

#
y1
t�1 � p2y1

t q mod 1

y2
t�1 � p1� nqay2

t � cosp4πy1
t q

, (4.1.13)

where zit denotes the i-th component of z, i � 1, 2, z P tx, yu.
We consider a � 0.2 as proposed by [Grassberger and Procaccia, Sec.2.2].
Since direct numerical simulation with a rational initial condition will lead to y1

t � 0
after a low number of iterations, we compute the trajectory using a different, but equivalent
algorithm. E.g., for y1

t , we compute

ȳ1
t�1 � p2ȳ1

t q mod 514229

y1
t�1 � ȳ1

t�1{514229.

Here, 514229 is an arbitrarily chosen prime number. Any other large prime number would
work as well.

Initial conditions are random from the interval r0, 1q for each coordinate. For the imple-
mentation, x̄0 and ȳ0 are random from the interval r0, 514229q.

8. Chirikov standard map

#
x1
t�1 � px1

t � kpy1
t � x1

t q � x2
t�1q mod 2π

x2
t�1 � px2

t � a sinpx1
t � kpy1

t � x1
t qqq mod 2π

#
y1
t�1 � py1

t � y2
t�1q mod 2π

y2
t�1 � py2

t � a sinpy1
t qq mod 2π

,

(4.1.14)
where zit denotes the i-th component of z, i � 1, 2, z P tx, yu.

We consider a � 1 as proposed by [Sprott, Sec.A.3.1]. Initial conditions are random from
the interval r0, 1q for each coordinate.
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Figure 4.9: Coupling analysis for (a) two Kaplan-Yorke systems (eq. (4.1.13)) with mismatch
n � 0.02 and (b) two Chirikov systems (eq. (4.1.14)) with no mismatch

4.1.3 Discussion of results

We start with the observation that the estimated values normally make sense as estimations
for the attractors’ dimensions. Attractors that look like curves and are embedded in the three-
dimensional space have estimated values between 1 and 2 (Rössler, many values for the Lorenz
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systems); Rényi system, whose attractor is visually represented by a combination of isolated
points and intervals, yields values between 0 and 1. Two-dimensional maps (Arnold’s cat,
baker’s, Chirikov) yield values between 1 and 2. However, there are pathological cases such as
Lorenz for coupling strength between 1 and 2, Thomas for small coupling strengths, logistic
map for a � 3.7, and Burger’s for larger coupling strengths.

For different systems, both D̂T̂ XY and D̂T̂ YX can demonstrate very different behaviour.
The range of the variability of the mean values of these estimators depending on k is normally
large (especially Lorenz, Thomas, Burger systems), but can also be much lower (Rössler and,
for the absolute values, Rényi systems). For low coupling strengths, the values of both
estimators are similar, then they start to change significantly, getting similar again for higher
values of k. From some value of k both estimators do not change much, however, this value
differs significantly for different systems. Kaplan-Yorke and Chirikov systems do not yield
any clear change in the estimators in dependence on k.

In most cases, one of the D̂T̂ XY , D̂T̂ YX has higher variability than the other. Normally,

both D̂T̂ XY and D̂T̂ YX deviate in the same direction, but different directions are also possible
(Rössler, logistic map for a � 3.7 and some values of k, Burger’s map).

Both relations D̂T̂ XY ¡ D̂T̂ YX and D̂T̂ YX ¡ D̂T̂ XY are possible for different, both con-
tinuous (cf. Rössler and Thomas) and discrete (cf. Rényi and Arnold’s cat or baker’s) time
systems. For any specific system, there is only one interval of significant difference and there
one specific estimator is always higher than the other one. Burger’s map yields two intervals
with different relations.

Finally, most systems demonstrate a smooth change of estimators in dependence on k.
The logistic map for a � 3.7 is an exception. Most systems have one extremum for the
estimators, at one value of k for both estimators. The logistic and Henon maps may have
several extrema.

The transitivity dimension estimator D̂T̂ X also demonstrates interesting behaviour, though
its variability in specific systems and across systems is not as high as for cross-transitivity
dimension estimators (clearly, some tiny variability of D̂T̂ Y is solely due to a finite number of

realisations, since system Y does not depend on k). We do not discuss D̂T̂ X thoroughly, one
can study the figures above to see the range and direction of the variability, possible positive
or negative correlation with D̂T̂ XY and D̂T̂ YX , the intervals of stabilisation and extrema.

Clearly, the whole range of phenomena on these figures remains mainly unexplained. How-
ever, most results seem to be plausible and only several issues raise specific questions. These
include the very high values of D̂T̂ XY for the Thomas operator and low coupling strength and

extremely low values of D̂T̂ XY for the Burger’s mapping and k P r0.6, 0.9s. In any case, the
behaviour of the estimators is not random and deserves a deeper study.

In the end of this subsection, we want to emphasize that unfortunately our analysis does
not allow us to test the conjecture of Section 2.3, i.e., whether the transitivity dimension of
the driven system has integer value for small coupling strengths. To compute good estimators
of dimension, we need to consider very small thresholds ε and thus to construct very large
networks (otherwise small thresholds would imply zero density of the network). However,
the algorithms and the memory of the computer used do not allow computations with a
significantly higher number of vertices.
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4.2 Sample models for two attractors of coupled systems with
different relations of cross-transitivities

Here we demonstrate what kind of geometrical relation between the two attractors could
lead to different relations of T̂ XY and T̂ XY . We consider four simple models with attractors
on the plane. In each case, system Y’s trajectory is just a regular one-dimensional grid.
System X has more complex behaviour. We believe that system X would rather correspond
to the driven system: it shows more variability, since it is being constantly disturbed. Points
of Y are depicted as black balls and points of X - as red crosses. We recall that

T̂ XYpεq �
°
vPVX , p,qPVY

AvppεqAvqpεqApqpεq°
vPVX , p,qPVY , p�q

AvppεqAvqpεq . (4.2.1)

1. Oscillation, T̂ XY ¡ T̂ YX

Suppose that after the transient time, system X oscillates around system Y as a sine
wave with the peak-to-peak amplitude more than twice the distance between two subsequent
points of Y. We observe only the “peak” and “zero” points and take ε less than the half of
the peak-to-peak amplitude, but more than the distance between two subsequent points of
Y. See the figure below with three ε-balls:
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�

�

�

�

�

�

Half of the red points do not have any black points inside the ε-balls around them. The
other half has three points in each ball and thus 3 � 2 � 6 triples and 4 triangles. It follows
that

T̂ XYpεq �
1
2 � 0� 1

2 � 4
1
2 � 0� 1

2 � 6
� 2

3
.

Half of the black points have one red point inside their ε-balls, which corresponds to one triple
and zero triangles. The other half has two red points, but more than ε far away from each
other, which corresponds to four triples and zero triangles. Thus, T̂ YX pεq � 0.

2. Oscillation, T̂ XY � T̂ YX

We consider the same model as above, but with the sine amplitude less than twice the
distance between two subsequent points of Y.
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In terms of the supremum norm we use here, this model is equvalent to just two identical
regular one-dimensional grids. Every point has three points of the other system inside the
ε-ball around it, which corresponds to 6 triples and 4 triangles. We get

T̂ XYpεq � T̂ YX pεq � 2

3
.

3. Drag and push, T̂ YX ¡ T̂ XY , T̂ XY � 0
Here both systems are on the same one-dimensional submanifold of the plane. The system

X evolves in the same direction as system Y, but its motion is not steady: sometimes it is
slower, sometimes faster. Below you can see one example of this “drag and push” trajectory
with three ε-balls:

� �� �� �� �

Red points have at most one black point inside the ε-ball around them, so there are no
triangles and T̂ XY � 0.

Half of the black points have two red points inside their ε-balls, which means that there
are 2 triples and 2 triangles. The other half has no red points. It follows that

T̂ YX pεq �
1
2 � 0� 1

2 � 2
1
2 � 0� 1

2 � 2
� 1.

4. Drag and push, T̂ YX ¡ T̂ XY , T̂ XY � 0
This is a more complex “drag and push” model. One section of the repeating pattern

starts with two red points, which are very close to each other, and ends before the next such
two points, thus containing five points. We take ε so that balls contain more points. In the
figure below, letters indicate centres of the three given ε-balls and numbers indicate how many
points of another system are in the ε-ball around the given point.

� �� � � � �� � � � �� �
c1 c2 c3

44 4 3 44 4 4 4 3

For the one black point (out of five in a single section of the repeating pattern) there are
3 red points inside its ε-ball, which corresponds to 6 triples and 4 triangles. Out of other four
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points in a single section, for two (such as c2) the 4 red points inside the ε-ball correspond
to 8 triangles, and for the other two - to 10 triangles. The 4 points always correspond to
4 � 3 � 12 triples. It follows that

T̂ YX pεq �
1
5 � 4� 2

5 � 8� 2
5 � 10

1
5 � 6� 4

5 � 12
� 20

27
.

6 triples and 4 triangles correspond to every red point with 3 black points inside the ε-ball.
12 triples and 6 triangles correspond to every red point with 4 black points. Consequently,

T̂ XYpεq �
1
5 � 4� 4

5 � 6
1
5 � 6� 4

5 � 12
� 14

27
.

Finally, we want to note that the first model might be attributed to continuous time systems
such as the Rössler or the Lorenz systems, whereas the third and the first models might be
some approximations of one-dimensional maps such as the Rényi map. We see that the results
for cross-transitivity estimators coincide qualitatively. A detailed study of the trajectories is
needed to be able to formulate better approximating models.



Summary and outlook

In this thesis we discussed several aspects of dimensions and clustering in recurrence net-
works. We proved that the transitivity and the Rényi entropy dimensions have integer values
of the phase space dimension in case the invariant measure is absolutely continuous w.r.t.
Lebesgue and the corresponding Radon-Nikodym derivative is bounded and has at least one
point of continuity in its support. We studied how this result can be generalized for measures,
that are absolutely continuous with respect to some smooth submanifold of the phase space.
Further, we showed how the transitivity estimator converges to the value expected with a
rising number of observations.

We demonstrated the approach of approximating a weak coupling of two systems with
stochastic noise. For the simple case of a system with fixed point and Gaussian white noise
we showed that noise will raise the dimension of the attractor to some integer up to the phase
space dimension.

Turning to specific complex system, the theory of the invariant measure of the Rényi
transformation, developed by Prof. Lasota and colleagues, was presented and applied to the
driven Rényi transformation.

Finally, we gave numerical estimations for (cross-)transitivity dimensions of several cou-
pled systems and presented four simple models, aiming to explain how different geometry
of the attractors in a two-dimensional space can result in different relation between the two
cross-transitivities.

Several further steps follow directly from the work presented here. The generalization of
the proof of the integer dimension to the case of absoulute continuity w.r.t. a submanifold
of the phase space should be elaborated. The sufficient conditions on the submanifold for
the generalization to work should be specified. An example of an attractor with invariant
measure, which is absolutely continuous w.r.t. Lebesgue, but with a nowhere continuous
Radon-Nikodym derivative and non-integer dimension, would make the Proposition sharp.

A comprehensive study of a wide range of chaotic systems with respect to the cross-
transitivities could result in a new method of detecting coupling. We have seen that there
is no straightforward relationship between coupling direction and the relation of both cross-
transitivities. However, one could probably classify systems according to this relation. We
suggest conducting the same estimations as in the last chapter with all the systems given,
e.g., in [Sprott, Appendix]. The estimations can be supplemented by plots of the systems’
trajectories for different coupling strengths, allowing better understanding of the attractors’
geometry leading to different relation of cross-transitivities. Consequently, more models,
similar to those in the last section, can be created.

A more far-reaching theoretical task is to understand the behaviour of dimensions for
invariant measures, which are not absolutely continuous w.r.t. Lebesgue. We have seen that
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dimensions defined as limits should not necessarily exist, so one task is to specify the properties
of measures which guarantee the existence of limits. Since all estimators of dimensions involve
two limits — in the number of observations and in the threshold ε, it is also important to
understand the properties of the estimators’ convergence and the interdependence of both
limits.
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