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Exercise 24. Let ,9 € S(RY), the Schwartz space of smooth functions with rapid decrease
in dimension d > 1, and let F be the Fourier transform® on S(R?). Prove Theorem 2.13,
part (g), stated in the class. le., prove that F(py) = (27)"%2F(¢) * F(¢), that is, the
Fourier transform of the (pointwise) product of two Schwartz functions is, up to a pre-factor,
the convolution of the Fourier transform of each function. (Compare this statement with the
discussion of Exercise 22.)

Exercise 25. Let ¢ € C°(R), ¢ #0. i.e., a non-zero compactly supported smooth function.
Prove that F, its Fourier transform, cannot have compact support. (Hint: assume by con-
tradiction that & — (Fp)(§) is compactly supported, extend it from £ € R to £ € C and show
that you get an holomorphic function. Then. . .)

Exercise 26. Let a > 0. Say in which sense (i.e., as elements of which space) the R — R
functions
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admit Fourier transform and compute it. Verify the Fourier inversion formula in this cases.

Iremember that the convention adopted in the class is (Ff)(€) = (2m)~%/? Jra f(@)e~ e dx



