Advanced Mathematical Quantum Mechanics – Homework 4

Mathematisches Institut der LMU - SS2009 Prof. Dr. L. Erdős, Dr. A. Michelangeli

To be discussed on: 27.05.2009, 8,30 - 10 a.m., lecture room B-132 (tutorial session) Questions and infos: Dr. A. Michelangeli, office B-334, michel@math.lmu.de

Exercise 4.1. (Asymptotics of Thomas-Fermi density in the neutral case). Consider the Thomas-Fermi equation $\gamma \rho^{2/3}(x) = [\phi_{\rho}(x) - \mu]_+, \ \phi_{\rho}(x) = -V(x) - (\frac{1}{|x|} * \rho)(x)$, with all the usual notation. Consider the *neutral case* $\mu = 0$: let ρ be a solution and ϕ be the corresponding ϕ_{ρ} .

(a) Take the distributional Laplacian in the TF equation and write the TF "differential equation" thus obtained. Note that the latter involves ϕ only. Check that the function $\psi(x) := \gamma^3 (\frac{3}{\pi})^2 |x|^{-4}$ solves the TF differential equation for |x| > 0 and away from the R_i 's. Check also that it is the only power-law function that does so. (This was first noted by Sommerfeld, who thus argued heuristically that $\psi(x)$ gives the asymptotics of $\phi(x)$, and consequently the asymptotics $|x|^{-6}$ of $\rho(x)$.)

Here the goal is to prove rigorously that $\phi(x) \approx \psi(x)$ as $|x| \to \infty$. So let R > 0 be larger than the distance of any nucleus from the origin and consider $|x| \ge R$. To conveniently estimate the ratio ϕ/ψ from above and below and prove that this ratio converges to 1, define $\phi_{\pm}(r)$ to be the max (the min) of $\phi(x)$ on |x| = r and $C_{\pm}(r) := \phi_{\pm}(r)/\psi(r)$.

- (b) By comparing the functions $\gamma^{-3}\phi(x)$, $\gamma^{-3}\psi(x)$, and $\gamma^{-3}C_{\pm}(R)\psi(x)$ and by means of the "maximum principle argument" proved in Exercise 2.2, prove that (for all $|x| \ge R$)
- (c) Prove that $C_{\pm}(r)$ is continuous. Check that proving $\limsup C_{+}(r) \leq 1$ and $\liminf C_{-}(r) \geq 1$ 1 leads to $C_{\pm}(r) \to 1$ as $r = |x| \to \infty$. Show in detail that $\limsup C_{+}(r) \leq 1$ follows trivially unless when $C_+(R) > 1$ and $C_+(r) > 1 \quad \forall r \ge R$. If this is the case, prove that $C_+(r)$ is non increasing and the limit $C_+(\infty) := \lim_{r \to \infty} C_+(r)$ exists and $C_+(\infty) \ge 1$.
- (d) It remains to investigate the case $C_+(R) > 1$, $C_+(r) > 1 \quad \forall r \ge R$, $C_+(\infty) > 1$. To this aim, consider the sphere $|x| = R_1 \geq R$ for some arbitrarily large R_1 . On this sphere compare the function ϕ with some $\tilde{\psi}$ which is slightly larger than ψ on $|x| = R_1$, e.g., $\widetilde{\psi}(x) := \gamma^3 (\frac{3}{\pi})^2 (|x| - bR_1)^{-4}$ for some 0 < b < 1 to be fixed conveniently. Show that it is possible to choose b so that $\phi(x) \leq \widetilde{\psi}(x)$ on $|x| = R_1$. Then show that one can apply the same "maximum principle argument" as in (b) to deduce that $\phi(x) \leq \widetilde{\psi}(x)$ on $|x| \geq R_1$ and, consequently, that $C_{+}(\infty) \leq 1$. Hence necessarily $C_{+}(\infty) = 1$. This, together with the other possible cases, yields the conclusion $\limsup C_+(r) \leq 1$.
- (e) Revert inequalities and signs in the argument in (c) and (d) so to have $\liminf C_{-}(r) \ge 1$.

Exercise 4.2. Consider the Thomas-Fermi density ρ in the "atomic case". Prove that ρ is a symmetric and decreasing function. (*Hint:* one possible way is to evaluate the TF energy functional in the density ρ^* given by the symmetric decreasing rearrangement of ρ and to check term by term that $\mathcal{E}^{\mathrm{TF}}(\rho^*) \leq \mathcal{E}^{\mathrm{TF}}(\rho)$, thereby proving the statement.) Which of the two desired properties of ρ can be derived from the uniqueness of ρ ? And which of the two properties can be derived from the Newton's theorem?