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1. NLS: the equation

i∂tu(x , t) = −∆u(x , t) + V (x)u(x , t)± Q(x)|u(x , t)|2σu(x , t)

where x ∈ Rn, t > 0 , u : Rn → C, σ > 0 and V ,Q : Rn → R;
Q > 0 and −/+ focusing/defocusing;

2. NLS: paradigm of nonlinear wave propagation: dispersion,
scattering, bound states, breathers, solitons, stability...;

3. NLS: many physical systems described by NLS: e.m. pulse
propagation in Kerr media, dynamics of BEC (Gross-Pitaevskii
equation)...;

4. NLS: V and Q model inhomogeneities of the medium (impurities,
external fields...) and give rise often to stable localized structures in
the form of standing waves.

5. NLS: point defects (−∆ + V → −∆ + αδ , −∆ + βδ′ · · · )
and concentrated nonlinearities (Q → δ)
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Here we are interested in spatially modulated nonlinearity

i∂tu(x , t) = −∆u(x , t)− Q(x)|u(x , t)|2σu(x , t)

where again x ∈ Rn, t > 0 , u : Rn → C and Q : Rn → R;

if Q has very small support, ideally pointlike, we have concentrated
nonlinearities

In the same order of ideas: mean field nonlinear interaction

i∂tu(x , t) = −∆u(x , t)− |〈ρ, u(·, t)〉|2σ〈ρ, u(·, t)〉ρ(x)

or more generally

i∂tu(x , t) = −∆u(x , t)− F (〈ρ, u(·, t)〉)ρ(x)
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Do make sense nonlinearities concentrated at a point?

The linear case σ = 0; dimension 1

consider V ∈ L1(Rn) the Schrödinger operator

−∆u(x , t) +
1

ε
V (

x

ε
)u(x , t) := −∆ + Vε

for n = 1, − d2

dx2 + 1
εV ( x

ε )
R−→ − d2

dx2 + αδ0 (α =
∫
R V (x) dx);

the well known Schrödinger operator with ”δ potential” ;

domain: u ∈ H2(R \ {0}) ∩ H1(R) s.t. u′(0+)− u′(0−) = αu(0)

action: (− d2

dx2 + αδ0)u = − d2

dx2 u, x 6= 0 and interaction shifted to the
boundary condition
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The linear case σ = 0; dimension 3

−∆u(x , t) +
1

ε3
V (

x

ε
)u(x , t) := −∆ + Vε

for n = 3 and every reasonable V the previous operator is trivial (≡ −∆)
in the limit ε→ 0;

instead, if the potential V

- has a zero energy resonance;

- undergoes the ”anomalous” scaling 1+εµ
ε2 V ( x

ε ), µ ∈ R ;

then
−∆ + Vε

R−→ Hα ;

the s.a. Hα is called ”point” or ”delta” interaction with strength α
(depending on µ, V and its resonance function ξ: α = −µ〈|V | 12 , ξ〉).
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In any case:

D(Hα) =

{
u ∈ L2(R3) : u = φ+ qG0,

φ ∈ L2
loc(R3),∇φ ∈ H1(R3), q ∈ C

φ(0) = αq

}
where G0(x) = 1

4π|x| ; q is called charge of the element domain u and φ

regular part; the action of the operator is

Hαu = −∆φ . (1)

The linear case σ = 0; approximation via finite rank perturbation

in d = 3 consider the mean field operator

−∆u(x , t)− αε〈ρε, u(·, t)〉ρε(x) with ρε(·) =
1

ε3
ρ(
.

ε
)

w−→ δ0 ; (2)

the limit exists and coincides with Hα after a suitable ”renormalization”:

1

α
=

1

αε
− 1

ε
〈−∆−1ρ, ρ〉 .
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Now a largely open problem comes:

What about the limit if existing, of the family of nonlinear operators

−∆u(x , t)− Vε(x)F (u(x , t)) as ε −→ 0 ?

and analogously which is the limit, if existing, of the family

−∆u(x , t)− F (〈ρε, u(·, t)〉)ρε(x) as ρε
w−→ δ0 ?

Corresponding problems for evolution equations (e.g. Schrödinger, Heat,
Wave) in the limit.
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So, how to proceed? Euristics suggests that the nonlinearity effects
concentrate at the singularity; it is not unreasonable to embody them in
the boundary condition.

In d = 1 case q = u(0), and one sets

u′(0+)− u′(0−) = α(q)q = α|q|σ, q = u(0)

Large activity on the one dimensional concentrated nonlinearities,
especially in physical applications in the effort to model localized
inhomogeneities with a nonlinear response to propagation of light pulses
or matter waves.

Rigorous results in Adami-Teta (2001): well posedness for α > 0, σ > 0
and α < 0, σ ∈ (0, 1); blow-up for α < 0, σ ≥ 1.
Weaker results in Komech-Komech (2007), but consideration of other
nonlinearities.
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Let us consider the approximation issue (Cacciapuoti,Finco,N.,Teta
(2014))
Regularized problem in weak form:

ψε(t, x) = U(t)ψε(0, x) +

− i

∫ t

0

ds

∫
dy U(t − s, x − y)

1

ε
V (

y

ε
) |ψε(s, y)|2σψε(s, y)

Limit problem in weak form:

ψ(t, x) = U(t)ψ(0, x)− iα

∫ t

0

ds U(t − s, x) |ψ(s, 0)|2σψ(s, 0)

and pick initial data ψε(0, x) = ψ(0, x) = ψ0 ∈ H1(R)

If V ∈ L1(R, (1 + |x |)dx) ∩ L∞(R) and V ≥ 0 or σ ∈ (0, 1) , then

sup
t∈[0,T ]

‖ψε(t)− ψ(t)‖H1 → 0 as ε→ 0 ∀ T ∈ R+ . (3)
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Some comments:

1. Well posedness in the regularized problem holds for α > 0, σ > 0
and for α < 0, σ ∈ (0, 2) : in the limit there is a (consistent) loss in
well posedness; what is the fate of regularized solutions in
α < 0, σ ∈ [1, 2) ?

2. If
∫

V > 0 but V is not everywhere positive convergence is for
σ ∈ (0, 1) and not for σ > 0 , at variance with the repulsive limit
problem with α > 0; is this just a technical issue?

3. Present proof: convergence is in H1([0,T ]) ∀T but not in H1(R)

4. A completely analogous result holds true for NLS with concentrated
nonlinearities at N points y1 , · · · , yN .

5. Work in progress on the 3d case.
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In d = 3 the definition is slightly less transparent; recall that

u = φ+ qG , φ(0) = αq and Hαu = −∆φ ;

a power nonlinearity is then defined as

α = α(q) = γ|q|2σ σ ≥ 0, γ ∈ R.

From the boundary condition one sees that the nonlinearity is
concentrated at the origin.

There is few physical work; on the mathematical side,

Adami, Dell’Antonio, Figari, and Teta ’03, ’04; well posedness and
blow-up of the NLS model

N-Posilicano ’05; analogous propertes for NL wave model

Adami-N-Ortoleva ’13; Adami-N-Ortoleva ’14; stability and
asymptotic stability of standing waves
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NLS with concentrated nonlinearity

i
d

dt
u = Hα(q)u. (C-NLS)

Local existence, uniqueness and continuity with respect to data hold true
for σ > 0; for γ > 0 or 0 < σ < 1 there is global existence for all data,
and mass M and energy E conservation:

M(u(t)) =
1

2
‖u(t)‖2

L2

E (u(t)) =
1

2
‖∇φ(t)‖2

L2 +
γ

2σ + 2
|q(t)|2σ+2.

Analogous properties hold for finite energy solutions, in the energy
domain

V =
{

u ∈ L2(R3) : u = φ+ qG0, φ ∈ H1
loc(R3),∇φ ∈ L2(R3)

}
.
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Stationary states

NLS with concentrated nonlinearity

i
d

dt
u = Hα(q)u. (C-NLS)

Standing waves are solutions of the form

u(t, x) = e iωtΦω(x) ;

these solve the stationary equation

Hα(q)Φω(x) + ωΦω(x) = 0 x ∈ R3.

There are standing solutions if and only if ω > 0 and γ < 0;
moreover

Φω(x) = qω
e−
√
ω|x|

4π|x |
and qω =

( √
ω

4π|γ|

)1/2σ
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Orbital stability

Recall that NLS has U(1), or phase, symmetry.
There cannot be stability of equilibrium points, but (maybe) of
equilibrium orbits:

e iωtΦω(x) is orbitally stable if ∀ε > 0 ∃δ > 0 such that ∀u0 ∈ D(Hα(q))

with ‖u0 − e iθΦω‖V < δ, (C-NLS) has a global solution u(t) with initial
datum u0 and

sup
t∈R

inf
θ∈R
‖u(t)− e iθΦω(x)‖V < ε.
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Lyapunov stability up to symmetries (only U(1) symmetry here).

Φω is unstable if it is not stable.

Main strategy to prove orbital stability: constrained linearization with
control of nonlinear remainders.

Main references: Weinstein (NLS, ’83), Grillakis-Shatah-Strauss (general
theory of stability and instability and application to various dispersive
hamiltonian equations, 87-90);

Previous more heuristic but seminal analysis: Vakhitov-Kolokolov ’70,
Zakharov ’70, Benjamin (KdV, early ’70)

Sometimes a standing wave Φω is a ground state: absolute minimum of
energy at constant mass (Cazenave-Lions ’82 via concentration
compactness). For orbital stability it is sufficient (and necessary) a local
constrained minimum of energy at constant mass.
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One would like to construct a Lyapunov function for the Hamiltonian
system with symmetry using conserved quantities
In the present case a Lyapunov function is the so called Action

Sω(Ψ) = E (Ψ) + ω||Ψ||22

Notice that S ′ωΨ = 0 is just the stationary equation, solved by Φω.

For every ε if δ is small enough one has

ε2 > Sω(u0)− Sω(Φω) = Sω(u(t))− Sω(Φω)

= Sω(e iθu(t))− Sω(Φω) = Sω(Φω + v(t) + iw(t)))− Sω(Φω)

= 〈L+v(t), v(t)〉+ 〈L−w(t),w(t)〉+ R

If there exist positive C− ,C+ such that

(L+v(t), v(t)) ≥ C+||v(t)||2V , (L−w(t),w(t)) ≥ C−||w(t)||2V

and nonlinear remainder R is controlled, the result follows.
But much more complicated state of affairs...
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Linearization around Φω: u = e iωt(Φω + R), and d
dt R = LR

L = JD = J

[
Hα1 + ω 0

0 Hα2 + ω

]
=

[
0 Hα2 + ω

−Hα1 + ω 0

]
α1(q) = γ(2σ + 1)|qω|2σ and α2(q) = γ|qω|2σ are now fixed;
J is the standard symplectic matrix, D = (L+ , L−) .
Notice that D is selfadjoint but L is not selfadjoint nor skewadjoint.

Spectral information:

σ(Hα1 + ω) = {−4σ(σ + 1)} ∪ [ω,∞),

σ(Hα2 + ω) = {0} ∪ [ω,∞),

hence σ(D) = {−4σ(σ + 1), 0} ∪ [ω,∞);

So, L− has a nontrivial (1d) kernel and L+ has a negative eigenvalue:
dangerous directions.
Nothwistanding, Weinstein and GSS with these spectral conditions give
stability/instability if Vakhitov-Kolokolov condition holds

d

dω
||Φω||2 > 0 /

d

dω
||Φω||2 < 0

.
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Orbital stability result

More precisely in this case (Adami, N., Ortoleva ’13):
e iωtΦω(x) is:

orbitally stable if 0 < σ < 1;

orbitally unstable if σ > 1;

unstable by blow up if σ = 1

Completely analogous results in 1d .
Orbital stability holds true in the same range of global existence.
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Asymptotic stability

The solution near an orbitally stable standing wave in principle could
wander near the orbit without relaxing toward anything.
Let us define the solitary (or soliton) manifold:

M = {u ∈ D(Hα(q)) : u(x) = e iθΦω(x) with θ ∈ R, ω > 0}.

Question:

∃ε > 0 : distV (u0,M) < ε⇒ lim
t→+∞

distV (u(t),M) = 0 ?

More precisely:

M is asymptotically stable if ∀ω > 0 ∃ε > 0 ∃ω+ > 0 (depending on ω)
such that given u0 = u(0) ∈ D(Hα(q)) with ‖u0 − Φω‖V < ε, the
evolution u(t) satisfies

lim
t→+∞

‖u(t)− e iω+tΦω+‖V = 0.
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General theory: Soffer and Weinstein ’90-’92 and Buslaev and Perelman
’92-’95 and many more recent contributions.
1d NLS with concentrated nonlinearity: Buslaev, Komech, Kopylova, and
Stuart ’08-’12;
3d NLS with concentrated nonlinearity here discussed: Adami, N.,
Ortoleva ’13-’14.

The following Ansatz is made:

u(t, x) = e iΘ(t)
(
Φω(t)(x) + χ(t, x)

)
,

where

Θ(t) =

∫ t

0

ω(s)ds + γ(t).

The solution is decomposed in a finite dimensional component (ω, γ)
along the solitary manifold and an infinite dimensional ”fluctuation” χ.
There are three unknown quantities and a single original equation: one
has to put some restriction to make determined the above representation.
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Modulation equations

Remark

L2(R3,C) is a symplectic manifold when considered as a real Hilbert
space of couples u ≡ (Re u, Im u) with

Ω(u, v) =
∫
R3 (Re (u) Im (v)− Im (u) Re (v))dx.

⇓

M is a symplectic submanifold of L2(R3,C) invariant for the flow, with
tangent space (if σ 6= 1)

TΦω
= Ng (L) =

{(
JΦω,

dΦω

dω

)}
.

⇓

project the flow onto M and its symplectic complement (≡ PcV ).

In the above Ng (L) is the generalized kernel of L .
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Projecting on Ng (L)⊥ = PcV one obtains modulation equations:

If χ(x , t) is such that χ ∈ PcV for all t ≥ 0 and ω(t) , γ(t) ∈ C 1, then
(ϕω = dΦω

dω ,Qα,Lin = quadratic form of L, N = nonlinear remainder)

(
i
dχ

dt
(t), v

)
L2

= Qα,Lin(χ(t), v) + γ̇(t)(Φω(t) + χ(t), v)L2 +

+ ω̇(t)

(
−i

dΦω(t)

dω
, v

)
L2

+ N(qχ, qv ) ∀v ∈ V .

ω̇ =
((χ, ϕω)L2 + (ϕω,Φω)L2 )N(qχ, qiΦω

)− (χ, iΦω)L2 N(qχ, qϕω
)

(ϕω,Φω)2
L2 − (χ, ϕω)2

L2

γ̇ =
((χ, ϕω)L2 − (ϕω,Φω)L2 )N(qχ, qϕω

) + (χ, i d
dωϕω)L2 N(qχ, qiΦω

)

(ϕω,Φω)2
L2 − (χ, ϕω)2

L2

The nonlinear remainder N is complicated but it depends only on charges.
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The general scheme

A(t) = {ω(t), γ(t)} finite dimensional component, χ fluctuating part
Finite dimensional part (‖ · ‖w−1 a weighted space):

Ȧ(t) = R1(A(t), χ(t)), |R1(A(t), χ(t))| 6 ‖χ(t)‖2
w−1

Finite dimensional parameters along the solitary manifold change slowly if
χ is small and dispersive: they are adiabatic invariants of the dynamics.
Infinite dimensional part:

χ̇(t) = L(t)χ(t) + R2(A(t), χ(t)), ‖R2(A(t), χ(t))‖w 6 ‖χ(t)‖2
w−1

1) The goal is to show that the solution of the χ equation disperses as it
needs for t →∞
2) Linearized operator is non autonomous: choose t1 and freeze the
dynamics at t1 posing L(t) = L(t1) + (L(t)− L(t1)), use the propagator
of the freezed dynamics and then show uniformity in time.
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Spectral analysis of L

Proposition

(a) σess(L) = {λ ∈ C : Re (λ) = 0 and | Im (λ)| ≥ ω}
(b) If σ ∈ (0, 1/

√
2), the only eigenvalue of L is 0 with algebraic

multiplicity 2.

(c) If σ = 1/
√

2, L has resonances ±iω at the border of the essential
spectrum and the eigenvalue 0 with algebraic multiplicity 2.

(d) If σ ∈ (1/
√

2, 1), L has two simple eigenvalues
±iξ == ±i2σ

√
1− σ2ω and the eigenvalue 0 with algebraic

multiplicity 2.

(e) If σ = 1, the only eigenvalue of L is 0 with algebraic multiplicity 4.

(f) If σ ∈ (1,+∞), L has two simple eigenvalues ±2σ
√
σ2 − 1ω and the

eigenvalue 0 with algebraic multiplicity 2.
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σ flow of eigenvalues

σ ∈ (0, 1√
2

) σ = 1√
2 σ ∈ ( 1√

2
, 1) σ = 1 σ > 1
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Dispersive estimates on the propagator of L

The following weighted Lp spaces are needed

L1
w (R3) =

{
f : R3 → C :

∫
R3 w(x)|f (x)|dx < +∞

}
,

L∞w−1 (R3) =
{

f : R3 → C : esssupx∈R3 (w(x))−1|f (x)| < +∞
}
,

where w(x) = 1 + 1
|x| .

Theorem

Assume σ 6= 1/
√

2, then there exist a constant C > 0 such that

‖Pc f ‖L∞
w−1

6 Ct−
3
2 ‖f ‖L1

w
,

for any f ∈ L1
w (R3), where Pc is the projection onto the essential

spectrum of L.
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Time decay of solutions

One want to prove time decay transversal component χ(t).
Suppose first that σ ∈ (0, 1√

2
) i.e. no nonvanishing eigenvalues

Majorant method (Buslaev and Perelman ’93, ’95; Buslaev-Sulem ’02;
other subsequent refinements).

For any T > 0 define the majorant

M(T ) = sup
06t6T

[
(1 + t)3/2‖χ(t)‖L∞

w−1
+ (1 + t)3(|γ̇(t)|+ |ω̇(t)|)

]
.

It is shown that the majorant is in fact uniformly bounded in T .
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Concluding the proof of asymptotic stability

Majorants ⇒ ω(t)→ ω∞, and Θ(t)− ω∞t → 0, as t → +∞.

Ansatz: z(t, x) = u(t, x)− e iΘ(t)Φω(t)(x).

⇓
z(t, x) = Ut ∗ z0(x) + i

∫ t

0
Ut−τ (x)qz(τ)dτ − i

∫ t

0
Ut−τ ∗ f (s(τ))dτ ,

where f (s) = γ̇s − i ω̇ ds
dω .

The thesis follows estimating the L2 norm of

φ∞ = z0 +
∫∞

0
U−τ (x)qz(τ)dτ +

∫∞
0

U−τ ∗ f (s(τ))dτ ,
r∞ =

∫∞
t

Ut−τ (x)qz(τ)dτ +−
∫∞
t

Ut−τ ∗ f (s(τ))dτ .
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Asymptotic stability result in the case σ ∈ (0, 1/
√
2)

Theorem

Assume σ ∈ (0, 1/
√

2). Let u(t) ∈ C (R+,V ) be a solution of equation
(C-NLS) with u(0) = u0 ∈ D(Hα) ∩ L1

w and denote

d = ‖u0 − e iθ0 Φω0‖V∩L1
w
,

for some ω0 > 0 and θ0 ∈ R. Then if d is sufficiently small, the solution
u(t) can be asymptotically decomposed as follows

u(t) = e iω∞tΦω∞ + Ut ∗ φ∞ + r∞, as t → +∞,

where ω∞ > 0 and φ∞, r∞ ∈ L2(R3) with

‖r∞‖L2 = O(t−5/4) as t → +∞.
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The case σ ∈ (1/
√
2, 1)

Now the ansatz is

u(t, x) = e iΘ(t)
(
Φω(t)(x) + χ(t, x)

)
, (4)

with

Θ(t) =

∫ t

0

ω(s)ds + γ(t), (5)

χ(t, x) = z(t)Ψ1(t, x) + z(t)Ψ2(t, x) + f (t, x) ≡ ψ(t, x) + f (t, x), (6)

with Ψ1 and Ψ2 eigenvectors associated to ±iξ and ω(t), γ(t), z(t) and
f (t, x) satisfying their modulation equations.
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Comments:

Extra modulation equations for terms associated to the purely
imaginary eigenvalues.

Modulation equations are better handled when rewritten in Poincar
(or Birkhoff) normal form; the oscillator z(t) corresponding to ±iξ
has to be shown to be ”dissipative” in the future.
A nonlinear Fermi Golden Rule (introduced by Sigal ’93) enters the
game: suppose 2iξ > ω and 〈N, u(2iξ)〉 > 0 where N is the
nonlinear remainder and u(2ξ) is the improper eigenfunction of
linearization L at 2iξ. This means that a higher (second in this case)
harmonic of iξ falls in the continuous spectrum, and it has a
nonvanishing interaction with the dispersive part releasing (> 0 in
FGR) energy to it; dissipation is provided by dispersion.

Main references:
NLS general theory, Buslaev-Sulem ’03; NLS with regular potentials,
Gang-Sigal 05-07; recent work by Cuccagna-Mizumachi (2008) and
Bambusi (2013) with strong improvements; concentrated NLS 1-d model,
Komech-Kopylova-Stuart 08’-’12 .
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Asymptotic stability in the case σ ∈ (1, 1+
√

3
2
√

2
]

Notice that 2ξ > ω if σ ∈ (1,
√

3+1
2
√

2
] . In this case one has the following

Theorem

Let u(t) ∈ C (R+,V ) be a solution of equation (C-NLS) with

u(0) = e iω0t+γ0 Φω0 + e iω0t+γ0 [(z0 + z0)Ψ1 + i(z0 − z0)Ψ2] + f0∈

V ∩ L1
w (R3),

for some ω0 > 0, γ0, z0 ∈ R and f0 ∈ L2(R3) ∩ L1
w (R3). Furthermore,

assume that the initial datum u0 is ε−close in V to a solitary wave.
Then the solution u(t) can be asymptotically decomposed as follows

u(t) = e i(ω∞t+b1 log(1+εk∞t))Φω∞ + Ut ∗ φ∞ + r∞, as t → +∞,

where ω∞, εk∞ > 0, b1 ∈ R and φ∞, r∞ ∈ L2(R3) with

‖r∞‖L2 = O(t−1/4) as t → +∞ in L2(R3)
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Some final comments

Decay in the presence of non vanishing eigenvalues is slower

The case σ = 1√
2

where a threshold resonance appears in the

linearization L is open. Treatment of threshold resonances is difficult
and out of reach with the present technology independently of the
model considered. This because of the poor dispersion, which does
not allow decay of continuous part and convergence of solitary wave
parameters.

Asymptotic stability is proved in the interval (1, 1+
√

3
2
√

2
] where

√
3+1

2
√

2
∼= 0.96: it remains the small gap σ ∈ (

√
3+1

2
√

2
, 1). Requiring

that 3iξ ∈ [iω, i∞) one can push the normal forms of modulation
equations to a next order and cover in principle also this last gap.

Finally notice that the asymptotic stability results obtained are for
subcritical nonlinearities of concentrated type. For usual power
nonlinearities asymptotic stability holds true if nonlinearity is flat at
the origin and at least supercritical.
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