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1 Introduction

[Bethe­Peirls 1931]: due to the small radius of (nuclear) forces many
low­energy properties of a two­body system (deuteron) practically
do not depend on the interaction details. Only one parameter is
sufficient, the scattering length a. Assuming h̄ = 1 and µ = 1

2, the
potential may be replaced by the boundary condition

d
dr

ln [rψ(r)]
∣∣∣∣
r=0

=−1
a
, (1.1)

where r is the relative position vector of the particles.

[Berezin­Faddeev 1961]: one­parametric extensions of −∆ restricted
to C∞

0 (R3 \{0}).

http://dx.doi.org/10.1007/BF01040400
http://dx.doi.org/10.1007/BF01040400
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Till now a source of explicitly solvable problems for various areas
of physics (see, e.g., the fundamental book [Albeverio, Gesztesy,
Høegh­Krohn and Holden 1988/2005]).

Zero­range interactions in a three­body problem produce mathe­
matical difficulties [Minlos­Faddeev 1961] that are not present in
the case of “regular” interactions. This comes from the fact that the
supports of point interactions in two­body subsystems α = 1,2,3,
are 3­dim hyperplanes Mα. Codimension of Mα w.r.t. the configu­
ration space R6 is too high. The triple collision point X = 0, the only
intersection point of Mα’s plays a crucial role. A natural switching
on zero­range interactions produces a symmetric Hamiltonian [which
is behind Skornyakov–Ter­Martirosyan equations (1956)] with non­
zero deficiency indices. An extension is needed. Danilov conditions
(1961) lead to a Hamiltonian that is not semibounded from below
(Thomas effect 1935). Regularizing → three­body forces.
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It is a priori clear that any generalization of the zero­range poten­
tial (that still remains non­trivial only at r = 0) should produce the
scattering wave functions ψ(r,k) satisfying

d
dr

ln [rψ(r,k)]
∣∣∣∣
r=0

= k cotδ (k),

where k is the modulus of the relative momentum and δ (k) the
scattering phase shift. The low­energy expansion

k cotδ (k) =
E↓0

−1
a
+

1
2

r0E +Ar2
0E2+ ... (1.2)

where E = k2 > 0 is the energy, and r0 the effective radius (of the
interaction).

[Shondin 1982], [LE Thomas 1984]: first example of a semibounded
three­body Hamiltonian with δ ­like interaction, efficiently with extra
degrees of freedom: L2(R3) was extended to L2(R3)⊕C; r0 ̸= 0.
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Another approach [Pavlov 1984], [Pavlov­Shushkov 1988]: a joint
extension of

∆|C∞
0 (R3\{0})⊕A|DA, DA ⊂ Hin

where A is a (self­adjoint) operator on an auxiliary, rather arbi­
trary Hilbert space Hin (describing “internal degrees of freedom”).
Pavlov’s “restriction­extension” model involves the deficiency ele­
ments of restricted channel operators. An equivalent direct de­
scription in [Makarov 1992] (boundary conditions) and [M. 1993]
(singular potentials and singular coupling operators).

[M. 1993]: a two­channel operator matrix

ĥ =

(
−∆̂+V̂h B

B+ A

)
, (1.3)

where ∆̂ is the Laplacian understood in the distributional sense;
the operator A describes the internal degrees of freedom; V̂h is a
generalized singular potential corresponding to the standard zero­
range interaction; B and B+ are (singular) coupling operators.
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The spectral problem for ĥ reduces to the “external” channel equa­
tion (

−∆̂+ ŵ(z)− z
)

Ψ = 0

with the energy dependent interaction

ŵ(z) = V̂h−B(A− zI)−1B+. (1.4)

If Hin is a finite­dimensional (and, thus, A finite rank), the corre­
sponding function (−kctgδ ) is a rational Herglotz function of the
energy z of the form

− k ctgδ (k) =
PN(z)
QN(z)

, z = k2, (1.5)

where PN and QN are polynomials of the power N ≤ dim(Hin) (notice
that necessarily r0 ≤ 0).

The question was how to include the point interaction with internal
degrees of freedom into the three­body Hamiltonian. We followed
an idea first developed in the case of a singular interaction with a
surface support [Kuperin­Makarov­Merkuriev­M.­Pavlov, 1986].
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Then — Faddeev equations. Two cases, depending on the asymp­
totic behavior of the two­body scattering matrices:

If sα(E) → −1 as E → +∞, α = 1,2,3 (or at least two of them)
then the three­body Hamiltonian is not semibounded from below
[Makarov 1992] and Faddeev equations are not Fredholm [Makarov­
Melezhik­M., 1995].

If sα(E)→ +1 as E → +∞, α = 1,2,3, we have both the opposite
statements, in particular, the semiboundedness (cf. [Pavlov 1988]).
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2 Two­body problem, some details

2.1 “Structureless” point interaction

First, recall the definition of the standard zero­range potential.

Let x, x ∈ R3 be the relative variable (Jacobi coordinate) for the
system of two particles. Introduce a function class

D̂ = {ψ ∈ W̃ 2
2 (R3 \{0}),

ψ(x) =
x→0

a
4π|x|

+b+o(1)}, for some a,b ∈ C. (2.1)

(D̂ is simply the domain of the adjoint of ∆0 := ∆|C∞
0 (R3\{0}).)

The Hamiltonian h acts as the Laplacian −∆ on D(h) ⊂ D̂ fixed by
the condition

a = γb for some γ ∈ R (2.2)

γ parametrizes all possible self­adjoint extensions of −∆0 in L2(R3).
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Furthermore, − γ
4π

= a is just the scattering length.

Equivalent (weak sense) formulation in terms of a quasipotential.

The initial Hamiltonian h is associated with a generalized Hamiltonian
ĥ understood in the distributional sense, say, over C∞

0 (R3). The
operator ĥ should be such that for f ∈ L2(R3), z ∈ C, the equations

(ĥ− z)ψ = f , ψ ∈ D̂, (2.3)

and
(h− z)ψ = f , ψ ∈ D(h), (2.4)

are equivalent.
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To describe the generalized Hamiltonians, we use the natural func­
tionals a and b on D̂, defined by

a : ψ 7→ a , aψ = lim
x→0

4π|x|ψ(x), (2.5)

b : ψ 7→ b , bψ = lim
x→0

(
ψ(x)− aψ

4π|x|

)
. (2.6)

In terms of these functionals, the condition (2.2) reads

aψ = γ bψ. (2.7)

The generalized Laplacian −∆̂ acts on D̂ according to the formula

− ∆̂ψ =−∆ψ +δ (x)aψ , (2.8)

where −∆ is the classical Laplacian (on W̃ 2
2 (R3 \0)). It then follows

that the condition (2.7) is automatically reproduced if

ĥ =−∆̂+V̂h,

with the generalized potential (quasipotential)

V̂hψ =−γδ (x)bψ . (2.9)
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Actually, in this case (ĥ− z)ψ = f for ψ ∈ D̂, transforms into

(−∆− z)ψ +δ (x)(a− γb)ψ = f (2.10)

Separately equating regular and singular terms on the both sides of
(2.10), one arrives at

(h− z)ψ = f , ψ ∈ D(h)

and
aψ = γ bψ. (2.11)

That is, one comes to the original boundary value problem associ­
ated with the zero­range interaction. (In other words, the require­
ment of regularity of the image of the generalized Hamiltonian ĥ is
equivalent to condition (2.11)...)
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2.2 Point interactions with internal structure

Let A be a (for simplicity) bounded self­adjoint operator on a Hilbert
space Hin. Introduce a (generalized) 2×2 matrix Hamiltonian

ĥ =

(
−∆̂+V̂h B

B+ A

)
, (2.12)

on the orthogonal sum H = L2(R3)⊕Hin of the “external”, L2(R3),
and “internal”, Hin, spaces. Domain: D̂⊕Hin. Here(

V̂hψ
)
(x) = δ (x)

µ12

µ11
bψ, ψ ∈ D̂, (2.13)

(Bu)(x) =−δ (x)
1

µ11
⟨u , θ⟩, u ∈ Hin, (2.14)

B+ψ = θ (µ21a+µ22b)ψ, (2.15)

θ is a arbitrary fixed element from Hin, and

µi j ∈ C, i, j = 1,2, µ11 ̸= 0.
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The regularity requirement f ex ∈ L2(R3) of the external component
f ex of the vector

f = (ĥ− z)U , f = ( f ex , f in), f in ∈ Hin,

for U ∈ D̂⊕Hin, U = (ψ , u), yields the following equations{
(−∆− z)Ψ = f ex

θ (µ21a+µ22b)ψ +(A− z)u = f in (2.16)

and boundary condition

µ11aψ +µ12bψ = ⟨u , θ⟩. (2.17)

Thus, in this sense the generalized Hamiltonian ĥ is equivalent to
the “regular” operator

h
(

ψ
u

)
=

(
−∆ψ
Au+θ (µ21a+µ22b)ψ

)
(2.18)

on the domain D(h) ⊂ D̂⊕Hin defined by the boundary condition
(2.17).
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The operator h is self­adjoint if and only if

det
(

µ11 µ̄12

µ21 µ̄22

)
=−1, µ11µ̄21 ∈ R, µ12µ̄22 ∈ R. (2.19)

In the following, conditions (2.19) will be always assumed.

After excluding the internal component, in the external channel
equation we have an energy­dependent quasipotential:(

−∆̂+ ŵ(z)− z
)

ψ = 0, (2.20)

ŵ(z) = V̂h+B(zI −A)−1 B+ = δ (x)w(z) (2.21)

where the functional w(z) acts on D̂ and is given by

w(z) =
µ12

µ11
b+

µ21

µ11
ρ(z)a+

µ22

µ11
ρ(z)b.

Here,
ρ(z) = ⟨rA(z)θ , θ⟩ where rA(z) = (A− zI)−1 .

The quasipotential ŵ(z) yields the boundary condition

aψ = w(z)ψ
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or, equivalently,

d
d|x|

ln [|x|ψ(x)]
∣∣∣∣
x=0

=−4πd0(z),

where

d0(z) =
µ11+µ21ρ(z)
µ12+µ22ρ(z)

.

Notice that if dim(Hin)< ∞ and A has the eigenvalues ε1, ε2, ..., εN,
then

ρ(z) =
N

∑
j=1

l j

∑
k=1

|β j,k|2

ε j − z
,

where β j,k = ⟨θ ,u j,k⟩ with u j,k the eigenvectors of A for the eigen­
value ε j, l j – multiplicity. Hence, d0(z) is rational,

d0(z) =
PN(z)
QN(z)

.

Furthermore, d0 is Herglotz. If µ12 = 0, then the degree of QN is
N −1.
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2.3 Two classes of point interactions

In the model under consideration, the scattering matrix is given by

s(k̂, k̂′,z) = δ (k̂, k̂′)− i
8π2

1

d0(z)+
i
√

z
4π

,

z = E ± i0, E > 0, k̂, k̂′ ∈ S2. It differs from the identity operator only
in the s­state (L = 0). The s­state component reads

s(z) =
4πd0(z)− i

√
z

4πd0(z)+ i
√

z
.

Notice that in the case of the standard zero range interaction

s(z) =
−4πγ−1− i

√
z

−4πγ−1+ i
√

z
.
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Behavior of s(E ± i0) as E → +∞ is determined by the asymptotics
of d0(z).

Two cases
A) µ12 ̸= 0, (2.22)

R) µ12 = 0. (2.23)

In the case (A) the function d0(E ± i0) is bounded =⇒ “anomalous”
behavior of the scattering matrix,

s(E ± i0) →
E→+∞

−1.

The class (A) contains the standard zero­range interactions V̂h (for
θ = 0 and γ =−µ12/µ11).

In the case (R), on the contrary, d0(E± i0) is unbounded as E →+∞,

d0(E ± i0) =
E→+∞

cE +o(E)

with some c > 0. Hence, we have the “regular” high­energy behav­
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ior
s(E ± i0) →

E→+∞
1.

In other words, only the potential V̂h is responsible for the “anomaly”.
It is the zero­range interaction V̂h that leads to the non­semiboundedness
of the three­body Hamiltonian and to the “bad” properties of the
corresponding version of Faddeev equations (due to Skornyakov–
Ter­Martirosyan).

If V̂h = 0 then none of these two problems arizes [Makarov 1992],
[Makarov­Melezhik­M. 1995].
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3 Three­particle system with point interactions

3.1 Hamiltonian Hα

Center­of­mass frame; reduced Jacobi variables xα, yα, α = 1,2,3.
For example,

x1 =

(
2m2m3

m2+m3

)1/2

(r2− r3)

y1 =

[
2m1(m2+m3)

m1+m2+m3

]1/2(
r1−

m2r2+m3r3

m2+m3

)
Configuration space R6; six­vectors X = (xα, yα). Transition from
one to another set of Jacobi variables:(

xα
yα

)
=

(
cαβ sαβ
−sαβ cαβ

)(
xβ
yβ

)
,

where cαβ , sαβ depend only on the particle masses and form an
orthogonal (rotation) matrix.
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First, the case where only the particle of a pair α interact. Gen­
eralized Hamiltonian Ĥα is build of the two­body Hamiltonian ĥα
as

Ĥα = ĥα ⊗ Iyα + Iα ⊗ (−∆yα)

Here, Iyα and Iα are the identity operators in L2(R3
yα) and Hin

α , resp.

The operator Ĥα acts from

Gα = Hα ⊗L2(R3
yα) = G ex⊕G in

α ,

The external and internal channel spaces:

G ex = L2(R6), G in
α = L2(R3

yα ,H
in
α ).

U ∈ Gα ⇔ U = (Ψ,uα) , Ψ ∈ G ex, uα ∈ G in
α .

The operator Ĥα is defined on

D̂α =
(

D̂α ⊕Hin
α

)
⊗W 2

2 (R3
yα) = D̂ex

α ⊕Din
α , (3.1)

where

D̂ex
α = D̂α ⊗W 2

2 (R3
yα) and Din

α = Hin
α ⊗W 2

2 (R3
yα).
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Thus, D̂α is formed of the vectors U = (Ψ,uα) whose external com­
ponents Ψ, Ψ ∈ D̂ex

α , behave like

Ψ(X) ∼
xα→0

aα(yα)

4π|x|
+bα(yα)+o(1), (3.2)

with aα, bα ∈W 2
2 (R3

yα), and

Ψ ∈ W̃ 2
2 (R6 \Mα), Mα = {X ∈ R6 |xα = 0}

Internal components: uα ∈ Din
α =W 2

2 (R3
yα ,H

in
α ). One may identify Din

α
with W 2

2 (Mα,H
in
α ).

The Hamiltonian Ĥα (on D̂α) may be viewed as a 2×2 block matrix,

Ĥα =

(
−∆̂xα +V̂ (α)

h −∆yα Bα
B+

α Aα −∆yα

)
=

(
−∆̂X +V̂ (α)

h Bα
B+

α Aα −∆yα

)
.

The Laplacian −∆̂X =−∆̂xα −∆yα should be understood in the sense
of distributions over C∞

0 (R6).
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Then the generalized Hamiltonian Ĥα is equivalent to the self­
adjoint operator

Hα

(
Ψ
uα

)
=

(
(−∆X + vα)Ψ
(Aα −∆yα)uα +θα

(
µ (α)

21 aα +µ (α)
22 bα

)
Ψ

)
(3.3)

whose domain D(Hα) consists of those elements from D̂α that
satisfy the boundary condition([

µ (α)
11 aα +µ (α)

12 bα

]
Ψ
)
(yα) = ⟨uα(yα) , θα⟩. (3.4)
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3.2 Total Hamiltonian H

If every pair subsystem has an internal channel, the generalized
three­body Hamiltonian is introduced as the following operator ma­
trix

Ĥ =


−∆̂X +∑

α
V̂ (α)

h B1 B2 B3

B+
1 A1−∆y1 0 0

B+
2 0 A2−∆y2 0

B+
3 0 0 A3−∆y3

 , (3.5)

considered in the Hilbert space G = G ex ⊕
3⊕

α=1
G in

α . The operator Ĥ

acts in G on the set

D̂ = D̂ex⊕
3⊕

α=1

Din
α ,
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where Din
α = Hin

α ⊗W̃ 2
2 (R3

yα \{0}). The external component D̂ex con­
sists of the functions

Ψ ∈ W̃ 2
2

(
R6 \

3
∪

β=1
Mβ

)
,

possessing the asymptics (3.2) for any α = 1,2,3 with the coeffi­
cients

aα,bα ∈ W̃ 2
2 (R3

yα \{0}).
The structure of the matrix (3.5) demonstrates by itself the truly pair­
wise character of the point interactions in Ĥ (in contrast to [Pavlov
1988]).

A state of the system is a four­component vector U = (Ψ,u1,u2,u3),
Ψ ∈ G ex, uα ∈ G in

α .

Further, for U ∈ D̂, impose the regularity requirement for its im­
age ĤU ... And obtain the corresponding Hamiltonian H that is
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understood in the usual sense:

HαU =

−∆XΨ
3⊕

α=1

[
(Aα −∆yα)uα +θα

(
µ (α)

21 aα +µ (α)
22 bα

)]
Ψ

 (3.6)

The domain D(H) consists of those elements from D̂ that satisfy the
boundary conditions([

µ (α)
11 aα +µ (α)

12 bα

]
Ψ
)
(yα) = ⟨uα(yα) , θα⟩, ∀α = 1,2,3. (3.7)

By inspection, H is symmetric on D(H). Furthermore, if µ (α)
12 = 0,

∀α = 1,2,3 [class (R)], H is self­adjoint and semibounded from be­
low [Makarov 1992]. This follows, e.g., from the study of the cor­
responding Faddeev equations (see [Makarov­Melezhik­M. 1995]).

If µ (α)
12 ̸= 0 at least for two of α ’s [class (A)], one encounters the

same problems as in the Skornyakov­Ter­Martirosyan case.
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The study of the spectral properties of H is reduced to the study of
the resolvent R(z) = (H − z)−1 which is a 4×4 matrix with the com­
ponents Rab (a,b = 0,1,2,3) (0 – external channel; 1,2,3 – internal
channels). All the study is reduced to that of R(z) := R00(z).
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3.3 Faddeev integral equations

R(z) satisfies the resolvent identities (Lippmann­Schwinger equa­
tions)

Rα(z) = Rα(z)−Rα(z) ∑
β ̸=α

Ŵβ(z)R(z) (α = 1,2,3), (3.8)

where Rα(z) is the external component the resolvent (Hα − z)−1.
This equations are non­Fredholm.

Introduce M̂α(z) = Ŵα(z)R(z), α = 1,2,3. Clearly,

R(z) = R0(z)−R0(z)∑
α

M̂α(z),

and, from (3.8),

M̂α(z) = Ŵα(z)Rα(z)−Ŵα(z)Rα(z) ∑
β ̸=α

M̂β(z) (α = 1,2,3), (3.9)

the Faddeev integral equations. Extract δ ­factors δ (xα) in M̂α
and pass to the regular kernels (functions) Mα (yα,X ′,z), M̂α(z) =
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δ (xα)Mα(z). This results in

Mα(z) =Wα(z)Rα(z)−Wα(z)Rα(z) ∑
β ̸=α

δβMβ(z), (3.10)

where δβ is multiplication by the δ ­function δ (xβ).

If one deals with the (R) case, all further study follows the usual
Faddeev procedure: good, improving iterations with a nicer and
nicer asymptotic behavior of the iterated kernels. The fourth itera­
tion gives a compact operator (+ known estimates concerning the
behavior with respect to z).

In case (A) one can not prove that the kernel (Wα(z)Rα)(yα,X ′,z)
is integrable over a domain where X ′ ∈ Mβ , β ̸= α and |x′α| and
|yα − y′α| are both small (this is just the neighborhood of the triple
collision point). Details in [Makarov­Melezhik­M. 1995]. [Makarov­
Melezhik 1996] used the momentum space representation.

Recall that if θ = 0 (i.e. the standard zero­range interactions), equa­
tions (3.10) are nothing but the Skornyakov­Ter­Martirosyan ones.
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