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1 Introduction

[Bethe-Peirls 1931]: due to the small radius of (nuclear) forces many
low-energy properties of a two-body system (deuteron) practically
do not depend on the interaction details. Only one parameter is
sufficient, the scattering length a. Assuming 7=1 and u = %, the
potential may be replaced by the boundary condition

Linpry)| =1 (1.1)

dr —0 a
where r is the relative position vector of the particles.

[Berezin-Faddeev 1961]: one-parametric extensions of —A restricted
to C3(R?\ {0}).
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Till now a source of explicitly solvable problems for various areas

of physics (see, e.g., the fundamental book [Albeverio, Gesztesy,
Hgegh-Krohn and Holden 1988 /2005]).

Zero-range interactions in a three-body problem produce mathe-
matical difficulties [Minlos-Faddeev 1961] that are not present in
the case of "regular” interactions. This comes from the fact that the
supports of point interactions in two-body subsystems o =1,2,3,
are 3-dim hyperplanes .#,. Codimension of .#Z, w.r.t. the configu-
ration space R® is too high. The triple collision point X =0, the only
intersection point of .#Z,'s plays a crucial role. A natural switching
on zero-range interactions produces a symmetric Hamiltonian [which
is behind Skornyakov-Ter-Martirosyan equations (1956)] with non-
zero deficiency indices. An extension is needed. Danilov conditions
(1961) lead to a Hamiltonian that is not semibounded from below
(Thomas effect 1935). Regularizing — three-body forces.
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It is a priori clear that any generalization of the zero-range poten-
tial (that still remains non-trivial only at r = 0) should produce the
scattering wave functions y(r, k) satisfying

%m e k)| = keotd(k),

r=0
where k is the modulus of the relative momentum and 0(k) the
scattering phase shift. The low-energy expansion

1 1
kcotﬁ(k)ETO—g+§roE +ArSE* + ... (1.2)

where E = k? > 0 is the energy, and ry the effective radius (of the
interaction).

[Shondin 1982], [LE Thomas 1984]: first example of a semibounded
three-body Hamiltonian with 0-like interaction, efficiently with extra
degrees of freedom: L,(IR?) was extended to L,(R>) ® C; ry #O.
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Another approach [Pavlov 1984], [Pavlov-Shushkov 1988]: a joint
extension of
Alesmavjoy) PAlpy, Da CH”

where A is a (self-adjoint) operator on an auxiliary, rather arbi-
trary Hilbert space $)" (describing “internal degrees of freedom”).
Pavlov's “restriction-extension” model involves the deficiency ele-
ments of restricted channel operators. An equivalent direct de-
scription in [Makarov 1992] (boundary conditions) and [M. 1993]
(singular potentials and singular coupling operators).

[M. 1993]: a two-channel operator matrix

. —K—l-‘?hB
i (AT, 13

where A is the Laplacian understood in the distributional sense;
the operator A describes the internal degrees of freedom; V,is a
generalized singular potential corresponding to the standard zero-
range interaction; B and B* are (singular) coupling operators.
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The spectral problem for h reduces to the “external” channel equa-
tion
(—KJrW(z) —z)‘P:O
with the energy dependent interaction
w(z)=V,—B(A—zI)"'B". (1.4)
If H™ is a finite-dimensional (and, thus, A finite rank), the corre-

sponding function (—kctgo) is a rational Herglotz function of the
energy z of the form

—kctgo(k) = S]\’v((zz))’ 7=k, (1.5)

where Py and Qy are polynomials of the power N < dim($)") (notice
that necessarily ry <0).

The question was how to include the point interaction with internal
degrees of freedom into the three-body Hamiltonian. We followed
an idea first developed in the case of a singular interaction with a
surface support [Kuperin-Makarov-Merkuriev-M.-Pavlov, 1986].
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Then — Faddeev equations. Two cases, depending on the asymp-
totic behavior of the two-body scattering matrices:

If s(E) — —1 as E — 4o, & =1,2,3 (or at least two of them)
then the three-body Hamiltonian is not semibounded from below

[Makarov 1992] and Faddeev equations are not Fredholm [Makarov-
Melezhik-M., 1995].

If so(E) — +1 as E — +oo, ¢ = 1,2,3, we have both the opposite
statements, in particular, the semiboundedness (cf. [Paviov 1988]).



2 Two-body problem, some details

2.1 “Structureless” point interaction

First, recall the definition of the standard zero-range potential.

Let x, x € R® be the relative variable (Jacobi coordinate) for the
system of two particles. Introduce a function class

D={ye sz(l%; \10}),

— . (2.1
ll/(x)x—>047r]x|+b+0(l)}’ for some a,bc C. (2.1)

(D is simply the domain of the adjoint of Ay := A’C6°(R3\{O})')

The Hamiltonian & acts as the Laplacian —A on Z(h) C D fixed by
the condition

a=17Yb for some yER (2.2)

y parametrizes all possible self-adjoint extensions of —Aj in L,(R?).



Furthermore, —% — a is just the scattering length.

Equivalent (weak sense) formulation in terms of a quasipotential.

The initial Hamiltonian £ is associated with a generalized Hamiltonian
h understood in the distributional sense, say, over C7(R?). The

operator 7 should be such that for f e LZ(R3), z € C, the equations
(h—2)y=f, weD, (2.3)

and
(h—2)y = f, vy € D(h), (2.4)

are equivalent.
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To describe the generalized Hamiltonians, we use the natural func-
tionals a and b on D, defined by

a:v—a, al/lein% 4r|x|w(x), (2.5)
x—
b:w—b, by=ln(yQ) - —¥ (2.6)
; = X) — : :
v ’ v x—0 v 47'L'|X‘
In terms of these functionals, the condition (2.2) reads
ay = ybv. (2.7)

The generalized Laplacian —A acts on D according to the formula
— Ay = —Ay+8(x)ay, (2.8)

where —A is the classical Laplacian (on W2(R3\0)). It then follows
that the condition (2.7) is automatically reproduced if

ifl\ — —K—I—‘/}h,
with the generalized potential (quasipotential)

Viy = —y8(x)by . (2.9)
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Actually, in this case (Z—Z)l//: f for y e D, transforms into
(FA—z)y+o(x)(a—1b)y=f (2.10)

Separately equating reqgular and singular terms on the both sides of
(2.10), one arrives at

(h—2y=f, wePh)
and
ay = ybv. (2.11)
That is, one comes to the original boundary value problem associ-
ated with the zero-range interaction. (In other words, the require-

ment of regularity of the image of the generalized Hamiltonian /4 is
equivalent to condition (2.11)...)
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2.2 Point interactions with internal structure

Let A be a (for simplicity) bounded self-adjoint operator on a Hilbert
space . Introduce a (generalized) 2 x 2 matrix Hamiltonian

. —K—F‘/}hB
h = :
(A8, 212

on the orthogonal sum 7 = L,(R’) ® $H™ of the "external”, L,(R?),
and “internal”, $™, spaces. Domain: D@ ™. Here

(Viw) () =8(0)" by, web, (2.13)
Hii

(Bu) (x) = —5(X)i<u, 0),  ucH" (2.14)

BTy = 0 (uz1a+ pxb) v, (2.15)

0 is a arbitrary fixed element from $™, and

,LLZ']'EC, iajzlvzv “11#0'
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The regularity requirement £ € L,(R’) of the external component
¢ of the vector

f=Mh=2)%, f=(f", fres”
for % e D®H™, U = (v, u), yields the following equations

(—A—2)¥ = [«
{ 0 (Ur1a+ Upb) W+ (A—z)u= fm" (2.16)

and boundary condition
Hllal//+u12bl//: <I/t, 9> (217)

Thus, in this sense the generalized Hamiltonian h is equivalent to
the “regular” operator

v\ _ ([ —Ay
h( u) B (Au+9(,uzla+u22b)l//) (2:18)

on the domain Z2(h) C D& $™ defined by the boundary condition
(2.17).
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The operator h is self-adjoint if and only if

det ( Hai 'L—le) =—1, unfipr €R, Uppflln €R. (2.19)
Ha1 U2

In the following, conditions (2.19) will be always assumed.

After excluding the internal component, in the external channel
equation we have an energy-dependent quasipotential:

(~A+i()—z) y =0, (2.20)
w(z)=Vyi+B(d —A) " BT =8§(x)w(z) (2.21)
where the functional w(z) acts on D and is given by
Hi,  Hoi Moo
w(z) = —b+=—p(z)a+—p(z)b.
) Hii Mllp( ) Mup( )

Here,
p(z) = (ra(z)0,0) where ri(z)=A—z)"".

The quasipotential w(z) yields the boundary condition
ay = w(z)y
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or, equivalently,

d
——In[lx|ly(x)]| = —4mdy(z),
d’x‘ x=0
where
do(2) = M1 +u21P(z).
Wi+ Uoop (2)
Notice that if dim($)") < oo and A has the eigenvalues ¢, &, ..., &y,
then

N j 2
; ; Lf}]_k‘z

where 3, = (0,u;x) with u;; the eigenvectors of A for the eigen-
value g;, [; — multiplicity. Hence, dy(z) is rational,

dO (Z) — ]Q)]]\\]/((Z)) ‘

Furthermore, d is Herglotz. If u;; =0, then the degree of Qy is
N —1.
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2.3 Two classes of point interactions

In the model under consideration, the scattering matrix is given by

s(k,K,z) = 8(k, k') — — —,
87 d()(Z)‘F%

z=E+i0, £ >0, /k\,/k\’ c $2. It differs from the identity operator only
in the s-state (L = 0). The s-state component reads

B 47Ido(Z) — i\/E
(2) = drdy(z) +i\/Z

Notice that in the case of the standard zero range interaction

() = —4ny ' —iy/z
M= —4ny ' +iy/z
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Behavior of s(E +i0) as E — +oo is determined by the asymptotics
of d()(Z).

Two cases
A) A0, (2.22)
R)  up=0. (2.23)
In the case (A) the function dy(E £i0) is bounded = "anomalous”
behavior of the scattering matrix,

S(EiiO)E%+ —1.
—> 100

The class (A) contains the standard zero-range interactions V), (for

0 =0 and y=—up/U).
In the case (R), on the contrary, dy(E +i0) is unbounded as E — +oo,

d()(Eﬂ:lO)E = CE—|—O(E)

—+

with some ¢ > 0. Hence, we have the "“regular” high-energy behav-
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lor

s(E+£i0) — 1.
E—>4-o0

In other words, only the potential V) is responsible for the “anomaly”.

It is the zero-range interaction V, that leads to the non-semiboundedness
of the three-body Hamiltonian and to the “bad"” properties of the
corresponding version of Faddeev equations (due to Skornyakov-
Ter-Martirosyan).

If V, =0 then none of these two problems arizes [Makarov 1992],
[Makarov-Melezhik-M. 1995].
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3 Three-particle system with point interactions

3.1 Hamiltonian H,

Center-of-mass frame; reduced Jacobi variables x,, yo, ¢ =1,2,3.

For example,
) 1/2
B moInsj (I’ , )
X1 = J—
~(2mm)?
B lzml(m2+m3)r/z (r _m2r2+m3r3>
. mj + my + ms 1 mp +msj

Configuration space R®; six-vectors X = (x4, ys). Transition from
one to another set of Jacobi variables:

()= () ()
Yo —SaB Cap VB ’

where cqp, sqp depend only on the particle masses and form an
orthogonal (rotation) matrix.
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First, the case where only the particle of a pair o interact. Gen-
eralized Hamiltonian ﬁa is build of the two-body Hamiltonian ﬁa
as R

Hy =ho @1y, + 16 ® (—Ay,)
Here, I, and I, are the identity operators in Lz(Ria) and ', resp.
The operator H,, acts from

G, = @LQ(R;’Q) =Y
The external and internal channel spaces:
G =[,(R®), GIr=L,(R] ,H").

Yo’

U €Yy U =Yuy) ,¥YEG, ug €9,

The operator H, is defined on

AN

Do = (Da® 9% ) © W7 (R],) = Dg & D, (3.1)
where

D& =Dy @WZ(R? ) and D =9t @WA(R] ).

(04
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Thus, Dy, is formed of the vectors % = (¥, u,) whose external com-
ponents ¥, ¥ € D%, behave like

N Ao ()’a)
.Xa—>0 47'C|X’

with ay, by € sz(Ria), and
Ve WAHRO\ Ay, My={X €R®|xe=0}

Internal components: uy, € D? = sz(Ria,ﬁg?)- One may identify Dy
with Wi (A s, H™).

P(X)

+bo(ya) +o(1), (3.2)

The Hamiltonian H, (on ]A)a) may be viewed as a 2 x 2 block matrix,

p,OC(AmV;f“)Aya B, )(AXW;S“) B, >

Bjx_ AOC—A}’OC Bgc_ AOC_AYOC

AN

The Laplacian —Ax = —Ay, —
of distributions over C7°(R®).

A,, should be understood in the sense
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Then the generalized Hamiltonian Hy is equivalent fo the self-
adjoint operator

H (LP)_ (—Ax +vq) ¥ (3.3)
"Nug )\ (Ag—Ay, ) ug+ 64 (Héf‘)aa + uz(g‘)ba) Y .

whose domain Z(H,) consists of those elements from Dy that
satisfy the boundary condition

([Hl(?)aa ‘|‘.u1((21)boc} \P) (Y(x) — <u(x()’a)> 9a>- (3.4)
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3.2 Total Hamiltonian H

If every pair subsystem has an internal channel, the generalized
three-body Hamiltonian is infroduced as the following operator ma-
trix

(—KX%—ZV;I(OC) B B, B; \
(04
H= Bf Ai—4,, 0 0 | (3.5)
B; 0 Ay—A, O
\ B; 0 0 A3 _Ay3)

3. ~
considered in the Hilbert space ¥ =9 @ P ¥.'. The operator H
o=1

acts in ¢ on the set

3
D = D“ o P D,
o=1
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where D' = 532}@12722(1[%{5@ \ {0}). The external component D con-
sists of the functions

~ 3

possessing the asymptics (3.2) for any o = 1,2,3 with the coeffi-
cients N

ag, b € W5 (R \{0}).
The structure of the matrix (3.5) demonstrates by itself the truly pair-
wise character of the point interactions in H (in contrast to [Pavlov

1988]).

A state of the system is a four-component vector % = (W, u;,u;,u3),
¥ e9™, uyc9n,

Further, for % €D, impose the regularity requirement for its im-
age H7%/... And obtain the corresponding Hamiltonian H that is
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understood in the usual sense:
—AxW

el =\ B [(Aa— M) e+ 0 (120 + 100 ) |

o=1

(3.6)

The domain Z(H) consists of those elements from D that satisfy the
boundary conditions

({“f?)aa‘F/le(g)ba} \P) (Va) = (Ua(Ya), Oa), Vo=1,23. (3.7)

By inspection, H is symmetric on Z(H). Furthermore, if ul(;x) =0,
Va =1,2,3 [class (R)], H is self-adjoint and semibounded from be-
low [Makarov 1992]. This follows, e.g., from the study of the cor-
responding Faddeev equations (see [Makarov-Melezhik-M. 1995]).

If ,ul(;x) =+ (0 at least for two of a's [class (A)], one encounters the
same problems as in the Skornyakov-Ter-Martirosyan case.
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The study of the spectral properties of H is reduced to the study of
the resolvent R(z) = (H —z)~' which is a 4 x 4 matrix with the com-
ponents R, (a,b=0,1,2,3) (0 — external channel; 1,2,3 - internal
channels). All the study is reduced to that of R(z) := Ry (z)-
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3.3 Faddeev integral equations

R(z) satisfies the resolvent identities (Lippmann-Schwinger equa-
tions)

Ra(z) =Ra(z) —Ra(2) Y Wa(2)R(z) (a=1,2,3), (3.8)
f7a

where R,(z) is the external component the resolvent (H, —z)7!.
This equations are non-Fredholm.

Introduce My (z) = Wy (2)R(z), o =1,2,3. Clearly,

R(z) = Ro(z) = Ro(2) Y, Ma(2),

and, from (3.8),

Mo (z) = Wa(2)Ra(z) = Wa(2)Ra(2) Y Mp(z) (=1,2,3), (3.9)
fZo

the Faddeev integral equations. Extract S-factors 8(xy) in M,
and pass to the regular kernels (functions) My (v, X',2), My(z) =
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0(xq)My(z). This results in
My (z) = Wa(2)Ra(z) — Wa(2)Ra(z) Y 8sMp(2), (3.10)
b7a
where 0g is multiplication by the o-function 6(xg).

If one deals with the (R) case, all further study follows the usual
Faddeev procedure: good, improving iterations with a nicer and
nicer asymptotic behavior of the iterated kernels. The fourth itera-
tion gives a compact operator (+ known estimates concerning the
behavior with respect to z).

In case (A) one can not prove that the kernel (Wy(z)Ry)(vo,X',2)
is integrable over a domain where X' € .#Zp, B # o and |x,| and
Vo — V| are both small (this is just the neighborhood of the triple

collision point). Details in [Makarov-Melezhik-M. 1995]. [Makarov-
Melezhik 1996] used the momentum space representation.

Recall that if 8 =0 (i.e. the standard zero-range interactions), equa-
tions (3.10) are nothing but the Skornyakov-Ter-Martirosyan ones.
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