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Many body Hamiltonians

General
setting

System of n quantum particles in R3, interacting via a zero-range, two-body
interaction. Formally

n 1 n
H==D 5Bt > i 0(xi = %)),
i=1 ! ij=1
i<j

where x; € R3, i =1,...,n, m; is the mass, A is the Laplacian relative to x;,
and pj € R. We set h = 1.

Motivation: Nuclear Physics, ultra-cold quantum gases.
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General
setting

System of n quantum particles in R3, interacting via a zero-range, two-body
interaction. Formally

H=-3" zimiAx, + D wi 0(xi = xp),
i=1

ij=1
i<j

where x; € R3, i =1,...,n, m; is the mass, A is the Laplacian relative to x;,
and pj € R. We set h = 1.

Motivation: Nuclear Physics, ultra-cold quantum gases.

Mathematical problem: rigorous construction and stability
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General
setting

Many body Hamiltonians

Elements in the domain of H are regular away from {x; — x; = 0} but we must
specify a boundary condition at the coincidence planes (Bethe-Peierls contact
condition).

For n = 2, in the relative coordinate x
H= -1 At5(x)
T o2m
The domain is ¥ € L*(R®) N H?(R3\ {0}) satisfying the b.c. at the origin

w(x):ﬁ—kaq—ko(l), for [x] =0, qeC,aeR

For n > 2, by analogy, one considers the Skornyakov-Ter-Martirosyan (STM)
Hamiltonian Hq, defined on L*(R3") N H?(R3"\ U;;j{x; = x;}) and s.t.

?/)(Xl,...,xn):ﬁ—FO[qij-i—O(l), for |xi—xj| -0, a€R
i Xj

gij functions on {x; = x;} and « parametrizes strength of the interaction
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not s.a. and any s.a. extension is unbounded from below due to the presence
of infinitely many eigenvalues E, accumulating at —oo, i.e. the Thomas
effect.
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Three body Hamiltonians

General
setting

Already for n = 3 problems appears: in many cases the STM Hamiltonian is
not s.a. and any s.a. extension is unbounded from below due to the presence
of infinitely many eigenvalues E, accumulating at —oo, i.e. the Thomas
effect.

o three identical bosons [Faddeev, Minlos 1961]
o three particles with equal masses [Minlos 1987]

o three particles with different masses [Mel'nikov, Minlos 1991]

One way to prevent the collapse of the system is to introduce fermionic
symmetry (Kkills part of the interaction)
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and a test
particle

For some values of the physical parameters m and N it is possible to define
this Hamiltonian ad a bounded from below s.a. operator
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N fermions and a test particle

Consider 2 fermions of mass 1 and a test particle of mass m

1 1 1
H= fﬂAxo — EAXI — EAXZ + ad(x0 — x1) + ad(xo — x2)
For some values of the physical parameters m and N it is possible to define

this Hamiltonian ad a bounded from below s.a. operator

Stability for N = 2

There is a threshold m* = 0.0735 = (13.607) " such that the system is stable
for m > m™ and unstable otherwise.
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Quadratic forms

We shall use quadratic forms as the mail tool in constructing H,.

Theorem (Representation Theorem)

The set of self adjoint semi bounded Hamiltonians is in 1 to 1 correspondence
with semi bounded closed quadratic forms.

Advantages
@ simpler than searching for all s.a. extensions of a symmetric operators
@ construction is quicker

One has to guess a quadratic form and then has to prove that it is closed and
bounded from below

We shall consider the following quadratic form F, defined on L*(R®), (we can
subtract the center of mass motion)



Quadratic form F,

D(Fa) = {w € 2(R%st.0 = ¢* + GO¢, 6 € HE(R®), € € H1/2(R3)}

;:rticle A ki. ko) = €(k1) — f(k2)
g£(17 2) k2—|—k'2—|—mi+1k-k'+)\

Falt] + A l|E2gey = Fol6™] + M6 2y + @™ [€]




Quadratic form F,

D(Fa) = {w € 2(R%st.0 = ¢* + GO¢, 6 € HE(R®), € € H1/2(R3)}

TR+ K2+ 2k k A
2 _ A A2 A,
Falb] + MY ll2wsy = Folo™] + Allo” lizmsy + 7% (€]

;:?tiiém gkg(kl k2) €(k1) — f(k2)

OM[E] = dF[E] + P[E] + €]



Quadratic form F,

D(Fa) = {w € 2(R%st.0 = ¢* + GO¢, 6 € HE(R®), € € H1/2(R3)}

_ — ¢(k2)
particle k k ( ) 5( 2
g 5( 1, 2) k2—|—k'2—|—mi+1k-k'+)\

Falt] + A l|E2gey = Fol6™] + M6 2y + @™ [€]

OM[E] = dF[E] + P[E] + €]

ol[¢] = 2 /,/’(”Ifqmjlz)kuﬂg )P dk

o] = / k/2+ 2 k k,+/\dkdk

‘m+1
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Partial wave decomposition on ®*

We exploit rotational invariance and reduce to the subspace of angular
momentum /

®[f] = 22 /Ooo , /%/@ +AF(K) K2 dk

KK FRIF(K)

Partial wave

oo 1
o) [f]=2 / dk dk’ / dy P
' J[f] LA _1y/(y)k2+k,2+m%kk,+/\
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Partial wave decomposition on ®*

We exploit rotational invariance and reduce to the subspace of angular
momentum /

®[f] = 22 /Ooo , /%/@ +AF(K) K2 dk

[e's) 1 k2k/2
¢3f:2/ dkdk’/dP FK)F(K'
] A _1yz(y)k2+k/2+m%kk,+k()()

Proposition

The off diagonal term has definite sign depending on the parity of / and it is
monotone w.r.t. to A that is

0 0 < &) [f] < &, [f] for even |
o &, [f] < ®),[f] <0 for odd /




Diagonalization

The previous proposition suggests that we carefully analyze the case A = 0.
We can get optimal results since ®[f] can be diagonalized.

Oy[f] = 27 2,/”7(””:12 / K)[? K dk

k2 k/2
k2 + k2 + 2 ekt

m+1

Partial wave
analysis

FK)F(K)

¢o,,[f]:27r/0 dkdk/i dy Pi(y)
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Diagonalization

The previous proposition suggests that we carefully analyze the case A = 0.
We can get optimal results since ®[f] can be diagonalized.

Oy[f] = 27 2,/’"(":;2 / K)[? K dk

/
®,,[f] = 27r/0 dk dk' /7 dy Pi(y) e k/’f k }ilk o f(k)F(K)
Define
fi(z) = \/%/dk e " & f(eh)
then

ol - | T dz25(2) () = / " dz (84 + So(2)) IF(2)



Diagonalization

We have

®[f] = /_oo dz 5i(2) |f*(2) = /_°° dz (84 + So.(2)) |F(2)I?

Partial wave
analysis

m(m+ 2)
(m+1)?

1
i 1
_ ikz -
So,i(2) —w/ldy P/(y)/dke cosh(K) & Z

m+1

Sy = 212



Diagonalization

We have

®[f] = /_oo dz 5i(2) |f*(2) = /_°° dz (84 + So.(2)) |F(2)I?

Partial wave
analysis

_ o2 [m(m+2)
4= 20 1y
1 i 1
so,/(z):w/i1 dyP/(y)/dke cosh(K) + 2

We have to find the infimum of S;(z) over [ and z



Diagonalization

Partial wave 6
analysis

Plot of Si(z), S3(z), S5(z) for m=0.1.
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an absolute minimum for z = 0.




Diagonalization

From the picture it is clear that the infimum is achieved by Si(0).
It is sufficient to prove

Proposition

Partial wave
analysis

For fixed z, S)(z) is an increasing function function of /. Moreover S;(z) has
an absolute minimum for z = 0.

It is sufficient to search for which m

“ _ o2 [m(m+2) ! 1
F]_(m)—51(0)—27T m-‘rﬂ'/;ldyy/dkm
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Partial wave
analysis

Diagonalization

The plot of F"(m) is simple

0,2 0,4 0,6 0,8 1
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The condition F"(m) > 0 is equivalent to m > m* o
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Conclusions from partial wave analysis

Let us introduce

A = 151(0)[/5q
: The condition m > m™ implies
i e 0<A<1
o the n)‘egative part of ®2 is small in the sense of quadratic forms compared
to &

e & is coercive and ®* > (1 — A)d)

For m > m™ the quadratic form F, defines a s.a. and bounded from below
operator that we identify with H,
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Instability

Take 4, such that ¢ = 0 and &, has non trivial components only for / = 1
given by

1 k
Partial wave f"(k) = ;f <E)

analysis
With this scaling [|G & < ¢
Then
Falthn] = n* ®[f] + o(n”)

If m < m* then 51(0) < 0 and we can find f such that ®[f] < 0.

The quadratic form F,, is closed and bounded from below iff m > m* I
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Further extensions

Recently Minlos, analyzing the case / = 1, pointed that there is a richer
structure and there is not a unique Hamiltonian for m > m*.

Ti=Tg+ T, 2(T)=2(Ta)

m(m + 2)
(m+1)?

oo 1
To[f] :271'/0 dk'/ldy Pi(y)

Ta[f] = 27° kf (k)

Further
extensions

k/2
2
K2+ k2 + 2k k!

F(K')

There is a second threshold m** such that

e for m* < m < m*, Ty is not essentially s.a. and there is a one
parameter family of s.a. extensions

o for m > m** Ty is essentially s.a.
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General picture

A big part of this picture can be easily carried to any subspace with odd /.

Further
extensions

There are two sequences of thresholds m; , m;™ with mj < m;™,
mi > m3 >ms >...and mi* > m3* > mg* > ... such that

e for m < mj, the form ®} is unbounded from below
e for mj < m < m;*, T, is not essentially s.a.

e for m > mj, T, is essentially s.a. and positive




Define

Furth * = S5,(0) = 272 M.,_W 1dyP/(y) dk;
e Fr(m) = 5/(0) =27 (m+ 1) ) cosh(k) + 25



Define

“(m) = §/(0) = 202, | MM 2 [ / o
s F(m) = 5/(0) =2n (m+ 1y +m B dy Pi(y) | dk cosh(K) T 2

Then mj is defined by

F'(m)=0



Further

extensions

Plot of F{", F5', F&
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In order to prove that T; is not s.a. it is sufficient to prove that
2(T1) € 2(T7).
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In order to prove that T; is not s.a. it is sufficient to prove that
2(Ti) € 2(T;). Consider

1 1
fy(k) = X{(k>1} 12— 0<y< >

If v satisfies

> [m(m+2) /1 / e _
2 ICEs +m 71dyP/(}’) dXicosh(x)—i—mLH_o

fvﬁé@(T/) ﬁ,e@(T,*)

then



Further
extensions

In order to prove that T; is not s.a. it is sufficient to prove that
2(Ti) € 2(T;). Consider

1 1
£y (k) = X{(k>1} 12— 0<y< >

If v satisfies

2) 1 e
272, | MM+ 2) / P / R ——
7r (m 1) +7 . dy Pi(y) [ dx cosh(x) T 2 0

¢ 2(T)) fy € 2(T7)

Notice that v(m) is a monotone increasing function of m and (m;, m;™) is
mapped onto (0,1/2).

then



Further
extensions

In order to prove that T; is not s.a. it is sufficient to prove that
2(Ti) € 2(T;). Consider

1 1
£y (k) = X{(k>1} 12— 0<y< >

If v satisfies

2) 1 e
272, | MM+ 2) / P / R ——
7r (m 1) +7 . dy Pi(y) [ dx cosh(x) T 2 0

¢ 2(T)) fy € 2(T7)

Notice that v(m) is a monotone increasing function of m and (m;, m;™) is
mapped onto (0,1/2).

The picture is incomplete: at the moment we do not know the quadratic form
of the new family of Hamiltonians.

then
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If we prove that T, is Kato-small w.r.t. T4 then T} is positive and
essentially s.a.
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x/2

1 e

+2)
Further 272, / m{m
extensions (m+1)2




Further
extensions

If we prove that T, is Kato-small w.r.t. T4 then T} is positive and
essentially s.a.

[ To Il < TN Tuf]|

1 x/2

m(m+2)
2w [ Ty

The condtion I' < 1 translates into

/m(m + 2) / / e/?
dy P,
(m+1 t y Pi(y) cosh(x) m}jkl >0

which is equivalent to m > m;™



Smallness properties

We can summarize the situation in the following way:

Further
extensions



Smallness properties

We can summarize the situation in the following way:

Smallness Properties
o If the negative part of T, is small compared to T, in quadratic form
sense then the system is stable
@ If the negative part of T, is small compared to T, in Kato sense then the
system is essentially s.a.

Further
extensions

The same statement holds true in each subspace of fixed angular momentum




Numerical values of thresholds

Numerical values of the first thresholds

m* = 0.0735 = (13.607) ! m ™ =0.0812 = (12.31) !
Further
m3* = 0.01316 = (75.99) " m3*™* = 0.013415 = (74.54)
ms* = 0.00532 = (187.97) " ms** = 0.00536 = (186.57)
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Stability for N fermions

The previous results can be used also in the case of N fermions.

New ingredient: the charge &(ki, ..., ky—1) is antisymmetric under exchange
m(m —|— 2

®;[€] :27r2/ m(m +2) Z T ie Tz DKk kit A gk, k)| dk
N fermions I<J
and a test
particle R

o = (W - 1) [ iy eldllosle ) g gk
(m+1)? Z::‘:0 ki + m+1)2 Zl<jk ki A
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Stability for N fermions

The previous results can be used also in the case of N fermions.

New ingredient: the charge &(ki, ..., ky—1) is antisymmetric under exchange

g =2 || T Z ey DI RSN

I<J

E(ko, k2, ..., ky §k,k,..,,k
¢3[§]:(N71)/ m(m+2() o, ke, - )€ (k1, ko )
(m+1)2 Z::‘:0 ki + m+1)2 Z:<Jk ki + A

With some change of variables we can reduce to the previous case

dko . ..

S kyo1) P dk

dky_1



Stability for N fermions

Define
N—1
o—k0+7Zk T=k +—— o ;k
(0.K) = < ! Nzlk,-,K> K=k kn s
+2 &
N fermions m =
oo D(K) = CESCED) <(m+3 > K? +2§k k)



Stability for N fermions

Define
N—-1
o'_ko+7zk T=kit 5 m+2 ;k
(0. K) = < i Nzk,-,K> K=ka -k
+2i:2
e m N—-1
o PH) = s )m+2) <(m+3 TR k)

5[] =2 /\/m(m+2 02 + D(K) + X |€(o, K)[? dordK

—(N_ £(o, KE(T.K)
o[E] = (N 1)/0_2+T2+%HT.UJFD(KHAdeadK



Stability for N fermions

Define m*(N) as the solution of

m(m+2) _
(m+ 1) +(N71)7r/ dyy/dkh(ki 0
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Stability for N fermions

Define m*(N) as the solution of

m(m+2) _
(m+ 1) +(N71)7r/ dyy/dkh(ki 0

N fermions
and a test
particle

The quadratic form ®** is closed and bounded from below for m > m*(N)
and it is unbounded from below for m < m*(2)




Final remarks

Final remarks and perspectives

N fermions
and a test
particle



Final remarks

Final remarks and perspectives

@ The partial wave analysis can be applied also to other variants of the
three body problems: for instance three bosons are stable outside / =0

N fermions
and a test
particle



Final remarks

Final remarks and perspectives

@ The partial wave analysis can be applied also to other variants of the
three body problems: for instance three bosons are stable outside / =0

@ We want to understand the new family of Hamiltonians for
N fermions * 3k
and a test my <m< my

particle



Final remarks

Final remarks and perspectives

@ The partial wave analysis can be applied also to other variants of the
three body problems: for instance three bosons are stable outside / =0

@ We want to understand the new family of Hamiltonians for
N fermions * Kk
and a test mp <m<m

particle

@ Construction of the 242 fermion model



Final remarks

Final remarks and perspectives

@ The partial wave analysis can be applied also to other variants of the
three body problems: for instance three bosons are stable outside / =0

@ We want to understand the new family of Hamiltonians for
N fermions * Kk
and a test mp <m<m

particle

@ Construction of the 242 fermion model

@ Improvement of the analysis of N+1 model



Representation Theorems

Definition (Closed Form)

A quadratic form Q on an Hilbert space is said to be closed if for any
{un} C 2(Q) such that u, — u and Q[u, — um] — 0 then u € 2(Q) and
Qun—u]l =0

Theorem (First representation Theorem)

Let Q be closed and bdd from below then there is a unique s.a. and bdd from
below operator T such that 2(T) C 2(Q) and

Qlu,v] = (u, Tv) ueP(Q),veg(T)

The domain 2(T) are the vectors v such that Q[-, v] is continuous.

Theorem (Second representation Theorem)

Let Q be a positive and closed quadratic form and let T be the associated s.a.
operator, then 7(Q) = 2(v/T) and

Qlu,v] = (VTu,VTv) u,ve 2(VT)
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Proofs



Definite sign of CDQ\J
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1 d
Py) = 5 dy —— (" =1)
o [f] =
1 K2 K2 .,
o [ dk dk P K)f(k
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Proofs



Definite sign of CDQ\J
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Definite sign of CDOJ

Remember
d , ,

1
Pily) = ﬂw(y -1)

¢3’,[f] =

oo ) 5 n el k2+nf(k) K2t f(K')
271'2(—1) <m> /f/ly Pi(y)y /dkdk (K2 + k2 + A)ril
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This representation allows to derive all the monotonicity properties of F;* and
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Kato smallness

We can estimate % by the the norm of O : L*(R*, dk’) — L*(R™, dk")
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Kato smallness

We can estimate % by the the norm of O : L*(R*, dk’) — L*(R™, dk")

Iy 2 m(m+2) B 2 ! ’ ’ ! " 7
O(k,k)<27r”(m+l)2) 47 /_1dy P/(y)/_ldy Pi(y")

[} k2
dk
/0 (k2+k’2+2—ykk’)(k2+k”2+m2—ilkk”)

m+1

(1)

Generalized Schur's test with 1/+v/k as test function. Notice the pointwise
positivity of the kernel O.
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