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Point Interactions in one particle quantum mechanics

Physical motivations The atomic structure exhibits multiple
length scales. +

No natural minimal length is reasonably hypothesized
⇓

Practical and theoretical interest in investigating the limit

linear range −→ 0.

M configuration space of a classical system
H0 the s.a. operator in L2(M) generating the free dynamics.
Y a closed subset of M
H in L2(M) is said to describe an interaction supported in Y if H
and H0 act in the same way on smooth functions with support in
M\ Y .



Point Interactions in one particle quantum mechanics

The case M = Rd , Y = {y1, y2, . . . , yN} a finite set of points of
Rd

H0 = −∆ with domain D(H0) = H2(Rd) (2.1)

The operator
H̆Y = H0 � C∞0 (R3 \ Y) (2.2)

Any self-adjoint extension of H̆Y different from H0 is the
hamiltonian of a quantum particle interacting with “point
scatterers” placed in {y1, y2, . . . , yN}.



Point Interactions in one particle quantum mechanics

For λ > 0, let Gλ be the fundamental solution of the Helmholtz
equation

(−∆x + λ) Gλ(x− y) = δy y ∈ Rd

G̃λ(k) =
1

k2 + λ
˜ indicates Fourier transform

G (x) =
e−
√
λ|x|

4π|x|
∈ L2(R3) d = 3

G (x) =
ı

4
H0(
√
λx) ∈ L2(R2) d = 2

G (x) =
e−
√
λ|x|

2
√
λ

∈ H1(R) d = 1



Point Interactions in one particle quantum mechanics

An easy but fundamental consequence is that

I In d = 1 the domain of the adjoint operator H̆∗Y contains the
functions Gλ(· − yi) and their derivatives.

I in d = 2, 3 the domain of the adjoint operator H̆∗Y contains
the functions Gλ(· − yi) (that are singular at the positions of
the point scatterers).

I Gλ /∈ L2(Rd) for d > 3 =⇒ the only self-adjoint extension of
H̆Y is H0 no point interaction Hamiltonians can be defined for
d > 3.

All the self-adjoint restrictions of H̆∗Y are classified using one of the
many powerful machineries now available.



Point Interactions in one particle quantum mechanics

For d = 3:

β = (β1, . . . , βN) an N-ple of real numbers. The following
relations define domain and action of operators in the family of
self-adjoint extensions Hβ,Y of H̃Y on L2(R3)

D(Hβ,Y) =

{
u ∈ L2(R3) | u = φλ +

N∑
i=1

qiG
λ(· − yi),

φλ ∈ H2(R3), qi ∈ C, φλ(yi) =
N∑
j=1

(Γλβ,Y)ijqj


(Hβ,Y + λ)u = (−∆ + λ)φλ

where

(Γλβ,Y)ij =

(
βi +

√
λ

4π

)
δij − Gλ(yi − yj)

(
1− δij

)
for λ > 0 large enough to make Γλβ,Y invertible.



Point Interactions in one particle quantum mechanics

u ∈ D(Hβ,Y) consists of a “regular part”φλ plus the “potential”of
the point charges qi , where

qi = 4π lim
x→yi
|x− yi|u(x) (2.3)

Moreover

lim
x→yi

(
u(x)− qi

4π|x− yi|

)
= βi qi

a singular boundary condition satisfied by u at each point yi.
In the past

∂

∂ri
(riu)

∣∣∣
x=yi

= 4πβi (riu)
∣∣∣
x=yi

, ri = |x− yi| (2.4)

The parameters βi give a measure of the strength of the
interaction (for βi = ±∞ one has the free laplacian)



Point Interactions in one particle quantum mechanics

Minimal set of parameters: the strength parameters βi and the
positions yi.

Properties of Hβ,Y

I The resolvent operator (Hβ,Y − z)−1, z = −λ for λ > 0
sufficiently large in order that Γλβ,Y is invertible

(Hβ,Y + λ)−1(x, x′) = Gλ(x− x′) +

N∑
i ,j=1

(
Γλβ,Y

)−1

ij
Gλ(x− yi )Gλ(x′ − yj)



Point Interactions in one particle quantum mechanics

I Spectrum of Hβ,Y

σac(Hβ,Y) = [0,∞) , σp(Hβ,Y) ⊂ (−∞, 0)

I Hβ,Y has at most N negative eigenvalues counting multiplicity.

I E < 0 is an eigenvalue of Hβ,Y if and only if

det Γ
|E |
β,Y = 0

and its multiplicity is the same as the multiplicity of the

eigenvalue zero of the matrix Γ
|E |
β,Y.

I The corresponding eigenfunctions of Hβ,Y are explicitly

computable in terms of the eigenvectors of Γ
|E |
β,Y corresponding

to the eigenvalue zero.



Point Interactions in one particle quantum mechanics

Explicitly for N = 1

I

σp(Hβ,y) = ∅ for β ≥ 0 , σp(Hβ,y) = {−(4πβ)2} for β < 0

the normalized eigenfunction for β < 0 associated to the
eigenvalue is

ζβ,y(x) =
√

2|β| e−4π|β||x−y|

|x− y|

I generalized eigenfunction associated to the absolutely
continuous spectrum

φ±β,y(x, k) =
1

(2π)3/2

(
e ik·x +

e ik·y

4πβ ± i |k|
e∓i |k||x−y|

|x− y|

)



Spin-dependent point interactions

Phenomenology showed that neutron-nuclei scattering was strongly
dependent on neutron and/or nuclei spin.

s

S

To take this dependence into account in point interactions models,
it is enough to consider multi-channel point interaction
hamiltonians.
To each possible scattering channel (defined by a particular spin
state of neutron and nucleus) it was associated a dynamical
strength parameter β of the zero range interaction.



Spin-dependent point interactions

Consider an array of N 1/2-spins placed in {y1, . . . , yN} yi ∈ Rd .
The state space of the j-th spin is C2.
Notation:

I σ̂
(1)
j is the first Pauli matrix relative to the j-th spin

j = 1, . . . ,N

I χσj is the normalized eigenvector of σ̂
(1)
j with eigenvalue ±1

σ̂
(1)
j χσj = σjχσj σj = ±1 ; ‖χσj‖C2 = 1 ; j = 1, . . . ,N .

The Hilbert space

H = L2(Rd)⊗ SN ,

where

SN =

N︷ ︸︸ ︷
C2 ⊗ · · · ⊗ C2



Spin-dependent point interactions

Xσ = χσ1 ⊗ · · · ⊗ χσN , where σ = (σ1, . . . , σN).

Ψ =
∑
σ

ψσ ⊗Xσ Ψ ∈ H ψσ ∈ L2(Rd) ∀σ

The scalar product in H

〈Ψ,Φ〉 =
∑
σ

(ψσ, φσ)L2 Ψ,Φ ∈ H .

The free hamiltonian in H

D(H) = H2(Rd)⊗ SN

H = − ~2

2m
∆⊗ ISN +

N∑
j=1

IL2 ⊗ αjSj αj ∈ R

Sj =

N︷ ︸︸ ︷
IC2 ⊗ · · · ⊗ σ̂(1)

j ⊗ · · · ⊗ IC2 j = 1, . . . ,N

is self-adjoint and generates a free and independent dynamics of a
point particle in Rd and N spins.



Spin-dependent point interactions

HΨ =
∑
σ

(
−∆ + ασ

)
ψσ ⊗Xσ Ψ ∈ H

where α ≡ (α1, . . . , αN) and ασ =
∑N

j=1 αjσj .
Consider the (non self-adjoint) symmetric operator H0 on H

D(H0) = C∞0 (Rd\Y )⊗ SN

H0 = −∆⊗ ISN +
N∑
j=1

IL2 ⊗ αjSj αj ∈ R

All the self-adjoint extensions of H0 are characterizable and each
one of them can be taken as generator of the dynamics of the
quantum system: particle + spins.



Spin-dependent point interactions

A family of Hamiltonians giving rise to a dynamics with
particle-spins interaction in d = 3 is the following:
With

G z(x) =
e i
√
z|x |

4π|x |
; z ∈ C\R+ , =

√
z > 0 .

and

(Γγ(z))jσ,j ′σ′ = 0 j 6= j ′ ;σ 6= σ′

(Γγ(z))jσ,j ′σ = −G z−σ α(yj − yj ′) j 6= j ′

(Γγ(z))jσ,jσ′ = 0 σk 6= σ′k for k 6= j

(Γγ(z))jσ,jσ′ = σ′j iρ σ′j 6= σj and σk = σ′k for k 6= j

(Γγ(z))jσ,jσ =

√
z − σ α
4πi

+ β



Spin-dependent point interactions

The operators Hγ , in the one parameter family defined as follows

D(Hγ) :=
{

Ψ =
∑
σ

ψσ ⊗ χσ ∈ H :

Ψ = Ψz +
∑

jσ,j ′σ′

(Γγ(z))−1
jσ,j ′σ′ψ

z
σ′(yj ′)G z−σ α(· − yj)⊗Xσ;

Ψz =
∑
σ

ψz
σ ⊗Xσ ∈ D(H) ; z ∈ ρ(Hγ)

}
.

with action on its domain given by

(Hγ − z)Ψ = (H − z)Ψz ; z ∈ ρ(Hγ) .

They are self-adjoint Hamiltonians describing a particle exchanging
energy with the spin array.1

1C. Cacciapuoti, R. Carlone, R.F. Spin-dependent point potentials in one
and three dimensions J. Phys. A: Math. Theor. 40 249 (2007)



Spin-dependent point interactions

Boundary conditions satisfied by functions in the domain

Ajσ,j ′σ′qj ′σ′ = fjσ

where

qjσ = lim
|x−yj|→0

4π |x−yj|ψσ(x) fjσ = lim
|x−yj|→0

[
ψσ(x)−

qjσ

4π |x− yj|

]
,

Ajσ,j ′σ′ = 0 ∀j 6= j ′

Ajσ,jσ′ = 0 if for some k 6= j , σk 6= σ′k

Ajσ,jσ′ = ajσj ,jσ′
j

; otherwise

ajσj ,jσ′
j

= β δσj ,σ′
j

+ σj iρ(1− δσj ,σ′
j
) with β, ρ ∈ R

The resolvent of Hγ Rγ(z) = (Hγ − z)−1, is the finite rank
perturbation of R0(z) given by

Rσ
γ (z) =Rσ(z) +

∑
j ,j ′σ′

(
(Γγ(z))−1

)
jσ,j ′σ′

|G z̄−α·σ′
(· − yj)⊗Xσ′ 〉〈G z−α·σ′

(· − yj)⊗Xσ′ | z ∈ ρ(Hγ)



Spin-dependent point interactions

The explicit form of the generalized eigenfunctions for high particle
energy is

Φσ
γ(λ, ω) =

(λ− ασ)
1
4

4π
3
2

[
e i
√
λ−ασω · ⊗Xσ+

+
∑
j ′,σ′,j

(Γγ(λ))−1
j ′σ′,jσe i

√
λ−ασωyj e−i

√
λ−ασ′|·−yj′ |

4π| · −yj ′ |
⊗ Xσ′

]
;

λ ≥ σ α , λ ≥ σ′ α ,
The generalization to higher spin values is straightforward.
In particular the quantum system made of a particle interacting
with a point ”atom” having a finite number of energy states jα
for j = 1, 2, . . . ,M can show a complex spectral structure.



Spin-dependent point interactions

Some particular features in the definition of HA are noteworthy:
- The Hamiltonians one obtains for ρ = 0 do not show any term
indicating interaction between particle and spins. They correspond
to point potential Hamiltonians for the particle, together with free
evolution of the spins. Among the self-adjoint extensions of H
there are Hamiltonians where β is taken spin-dependent (β(σ)).
The latter were the Hamiltonians used to analyze neutron
scattering by (fixed) nuclei.
- ρ is the coupling constant of the particle-spin interaction. If ρ is
different from zero, the particle, in addition to the zero-range
interaction with the points, can exchange energy with the spins.
- The spectrum of HA can have a very rich structure. In particular,
several eigenstates embedded in the continuum when ρ = 0 turn
into resonances when ρ 6= 0 as a consequence of the interaction
particle-spin.



Models of interaction particle point-field

Modelling the interaction of a particle with a zero-dimensional
field: the particle interacts via point forces with a quantum system
with a finite number of eigenstates.
[scale=1]model.pdf
Let Hβ,0 the multi-channel point interaction hamiltonian with all
the strength parameters equal to β and ρ = 0. The spectrum of
Hβ,0 is obtained gluing together the spectra in each channel
[scale=1]spettro.pdf
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Models of interaction particle point-field

Modelling the interaction of a particle with a zero-dimensional
field: the particle interacts via point forces with a quantum system
with a finite number of eigenstates.
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Let Hβ,0 the multi-channel point interaction hamiltonian with all
the strength parameters equal to β and ρ = 0. The spectrum of
Hβ,0 is obtained gluing together the spectra in each channel
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Models of interaction particle point-field

Let Hβ,ρ the multi-channel point interaction hamiltonian with all
the strength parameters equal to β and ρ 6= 0.
Similarly to what happens in the case of an electron in an hydrogen
atom when the interaction with the quantum electromagnetic field
is taken into account, all the eigenstates embedded in the
continuous spectrum turn into resonances whereas the ground
state moves slightly but still remaining on the real axis.
[scale=1]risonanze.pdf
Not to say, the proof is incomparably less difficult that in the
electron - photon case.
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Models of interaction particle point-field

Let Hβ,ρ the multi-channel point interaction hamiltonian with all
the strength parameters equal to β and ρ 6= 0.
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atom when the interaction with the quantum electromagnetic field
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Not to say, the proof is incomparably less difficult that in the
electron - photon case.



Solvable models of quantum environments

To test the scheme of a measurement process is necessary to
analyze realistic models of quantum dynamics, describing the
evolution of a microscopic and a macroscopic system in interaction.
The goal is to prove that “the objectification of a microevent is
realized through different pointer states” K. Hepp (1972).
A paradigmatic example is the cloud chamber:

I an extremely energetic alpha-particle (the microscopic system)

I evolves in an environment of atoms (the macro-system).

Ionization induces local formation of drops in a super-saturated
vapor:

I each possible direction of the alpha-particle momentum (the
micro event)

I is realized as a straight line of drops (the pointer state)



Solvable models of quantum environments



Solvable models of quantum environments

Modelling the cloud chamber with spin dependent point
interactions.
Consider spins localized on a sphere of radius L centered in the
origin. Two arrays, of N/2 spins each, are distributed around the
opposite ends of a sphere diameter. Each group fills a region
whose linear dimensions are much smaller than the sphere radius.
[scale=1]sferica2.pdf



Solvable models of quantum environments

Modelling the cloud chamber with spin dependent point
interactions.
Consider spins localized on a sphere of radius L centered in the
origin. Two arrays, of N/2 spins each, are distributed around the
opposite ends of a sphere diameter. Each group fills a region
whose linear dimensions are much smaller than the sphere radius.
[scale=1]sferica2.pdf



Solvable models of quantum environments

Modelling the cloud chamber with spin dependent point
interactions.
Consider spins localized on a sphere of radius L centered in the
origin. Two arrays, of N/2 spins each, are distributed around the
opposite ends of a sphere diameter. Each group fills a region
whose linear dimensions are much smaller than the sphere radius.



Solvable models of quantum environments

Consider an initial state Ψ0 of the entire system corresponding to a
configuration of spins σ0 with all spins down and a spherical wave
(of high average energy) for the particle

ψ0(x) = ψ0(|x |) =
1

π3/4√γ
(

1− e−P
2
0γ

2
)1/2

e
− |x|2

2γ2

|x |
sin (P0|x |)

and prove that the long time behavior of the environment state is
the incoherent sum of states where spins in a small cone around a
particular direction flipped to the up state



Solvable models of quantum environments

The probability amplitude of an asymptotic transition to a state
with a final configuration of spins σf is obtained analyzing first the
initial state in terms of the generalized eigenfunctions

〈
ϕ
σf
β,ρ(λ,ω),Ψ0

〉
=

(λ− ασf )
1
4

4π
3
2

∑
j ′,j

(Γγ(λ))−1
jσf ,j

′σ0
e i
√
λ−ασf ωyj

(
e−i
√
λ−ασ0|·−yj′ |

4π| · −yj ′ |
, ψ0

)

where the scalar product is explicitly computable



Solvable models of quantum environments

The second step is to investigate the asymptotic free evolution of
the modified initial state obtained from Möller’s operator

(
Ψ0

+

)
σf

(x) :=
(
Ω−1

+ Ψ0
)
σf

(x) = (2.5)

=

∫ ∞
α·σf

dλ

∫
S2

dω φσf
(x, λ,ω)

〈
ϕ
σf
β,ρ(λ,ω),Ψ0

〉
All the integrations are (almost) explicitly computable to give the
final result expressed like a sum of waves of wavelength close to
the one of the initial wave packet of the alpha particle.



Solvable models of quantum environments

The result

(
Ψ0

+

)
σf

(x) =
∑
j , j ′

Θj j ′(P0,∆E )
4π√

P2
0 −∆E

sin
√

P2
0 −∆E |x− yj |
|x− yj |

=
1

21/2√γ π7/4

∑
j

∑
j ′

(
Γβ,ρ(P2

0 − Nα)
)−1

j σf , j
′ σ0


e−iP0L

L

sin
√

P2
0 −∆E |x− yj |
|x− yj |

appears as the sum of spherical waves originating from each point

scatterer with an initial phase e i
√
λ−ασf ωyj depending on the point

position



Solvable models of quantum environments

The final result reads:
The probability that the final state corresponds to
any configuration of spins with a large number M of
spins up is maximal if the M spins belong to the
same group. Moreover, if the M spins all belong to
one group, the probability that the momentum
direction of the particle lies outside the cone
connecting the origin to the group is negligible. 2

2R.Figari,A. Teta Quantum Dynamics of a Particle in a Tracking Chamber
Spinger 2014



Solvable models of quantum environments

The result is a consequence of two concurrent properties
concerning the sum of spherical wave.
1) the Huyghens’ principle: due to the assumptions on the linear
size of the regions where points are placed and of the wavelength,
the spherical waves interfere constructively only in the spatial
regions reached by the ”light rays” from the origin through the
spins (in a regime of absence of diffraction).
[scale=0.5]sommasferiche.pdf
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Solvable models of quantum environments

The result is a consequence of two concurrent properties
concerning the sum of spherical wave.
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SCALAR DIFFRACTION - HUYGENS, FRESNEL,

FRAUNHOFER

ne can work years in fiber optic com munications and not really

have to care about diffrac tion (it did come up in a lecture or two),

but when working with free-space light propagation and/or illu-
minated surfaces it’s better to know the differ ence between your Fresnel

and your Fraun hofer dif frac tion, and what the heck the Huygens-Fresnel

prin ciple is all about. Luckily, dif frac tion is really very straightfor ward

once one grasps said Huygens-Fresnel principle; the rest is just mathe mat i-
cal sleights of hand as we’ll see.

A word of warn ing: While most of the following is extracted from books

and other public sources, I make no claim on everything being totally cor-
rect. This is basically a summary of my own under standing of dif frac tion,

which may pos sibly be faulty (though I sure hope it isn’t).

HUYGENS-FRESNEL PRINCIPLE

In Chris tiaan Huygens’ orig inal principle, a wavefront was propagated by

gen er at ing so-called wavelets at each point of the old wavefront to con -
struct the new wavefront. The prin ciple is shown in Fig. 1. The wavelets

had a radius of the wavelength, and the process was iterative, wavelength-

by-wavelength.1 Augustin-Jean Fresnel later improved on the principle by

replac ing the spherical wavelets with spherical waves and pos tulating that

the waves interfere with each other. This way he was able to propagate the

known field at some location to some other location in a sin gle step (pro-
vided there were no obstacles between the two).

Fig ure 1: Illus tra tion of Huygens’ construction of a propagat ing wave. A spheri-
cal wave impinges on an aperture (blue). The evolution of the resulting wave -
front (red) can then be constructed iteratively using wavelets (gray) with the

radius of a wave length.

Accord ing to Wikipedia the principle dryly states “that each point of a

medium (dis turbed by a passing wave) becomes a source of dis turbance

which prop agates from this point in all directions indis criminately.” [1] For

#114
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Solvable models of quantum environments

The amplitudes relative to transitions to a final spin configuration
with a large number of flips in both regions occupied by the spins
is smaller than those where the same number of flips appertains to
only one group.



Solvable models of quantum environments

Open Problems

I Non linear spin dependent point interactions: transition
parameters ρ depending on the value of the wave function on
the scatterers

I more general initial conditions of the microscopic system and
presence of external fields acting on the microscopic system

I environments modeled with self-interacting fields (e.g., spins
ferromagnetically interacting among them), initially in a
genuine meta-stable state. The non-linear self-interaction
would enhance the response of the environment, which might
show macroscopic modifications in finite time.
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