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PART I

δ and δ′-interactions on one smooth compact
hypersurface

J. Behrndt, P. Exner, V. Lotoreichik Schrödinger operators with singular interactions



δ-hypersurface interactions in Rn

Give meaning to −∆− αδC with C hypersurface, α ∈ L∞(C) real

Definition
Decompose Rn = Ωi ∪̇ C ∪̇Ωe in interior and exterior domain

Hδ,α = −∆

dom Hδ,α =

{
ψ ∈ H3/2

∆ (Rn\C) :
ψi |C = ψe|C

αψ|C = ∂niψi |C + ∂neψe|C

}
Theorem [B. Langer Lotoreichik ’13]

Hδ,α unbounded selfadjoint operator in L2(Rn)

Hδ,0 unperturbed Laplacian; σ(Hδ,0) = σess (Hδ,0) = [0,∞)

(Hδ,α − λ)−1 − (Hδ,0 − λ)−1 ∈ Sp for all p > n−1
3 , and

σess (Hδ,α) = [0,∞), σp(Hδ,α) ∩ (−∞,0) finite
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Wave operators for {Hδ,α,Hδ,0} exist and are complete
ac-parts of Hδ,α and Hδ,0 unitarily equivalent
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Other points of view on the Hamiltonian Hδ,α

Hδ,α = −∆

dom Hδ,α =

{
ψ ∈ H3/2

∆ (Rn\C) :
ψi |C = ψe|C

αψ|C = ∂niψi |C + ∂neψe|C

}
Observation

Hδ,α corresponds to closed symmetric form on H1(Rn):

aδ[ψ, φ] := (∇ψ,∇φ)L2(Rn)n − (αψ, φ)L2(C).

Theorem [Popov,Shimada][Exner,Ichinose,Kondej][Holzmann]
Hδ,α norm resolvent limit of Hε = −∆− Vε, where supp Vε → C,

α(x) =

∫ γ

−γ
V (x + sνi(x)) ds.

Remark
Assumption α ∈ L∞(C) allows to study non-closed surfaces
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∆ (Rn\C) :
∂niψi |C = −∂neψe|C

β∂neψe|C = ψe|C − ψi |C

}
Theorem [B. Langer Lotoreichik ’13]

Hδ′,β unbounded selfadjoint operator in L2(Rn)

Hδ′,0 unperturbed Laplacian; σ(Hδ′,0)=σess (Hδ′,0)=[0,∞)

(Hδ′,β − λ)−1 − (Hδ′,0 − λ)−1 ∈ Sp for all p > n−1
2 , and

σess (Hδ′,β) = [0,∞), σp(Hδ′,β) ∩ (−∞,0) finite
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PART II

δ and δ′-interactions on Lipschitz partitions

J. Behrndt, P. Exner, V. Lotoreichik Schrödinger operators with singular interactions



Hδ,α, Hδ′,β on Lipschitz partitions P = {Ωk}n
k=1 of Rd

Support of δ: Boundary Σ := ∪n
k=1∂Ωk of Lipschitz partition P

Ωk Lipschitz domains, Rd =
n⋃

k=1

Ωk , Ωk ∩ Ωl = ∅.

Ω1 Ω3

Ω2

Ω4

Ω5

Ω7

Ω6

R2

P = {Ωk}7k=1, χ = 4J. Behrndt, P. Exner, V. Lotoreichik Schrödinger operators with singular interactions



Chromatic number of a Lipschitz partition P = {Ωk}n
k=1

χ = minimal number of colours needed to colour all Ωk such
that any two neighbouring domains have different colours

Four Colour Theorem

The chromatic number of any Lipschitz partition P of R2 is ≤ 4.
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More examples: A german colouring
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An operator inequality for Hδ,α and Hδ′,β

P = {Ωk}nk=1 Lipschitz partition of Rd with boundary Σ
χ chromatic number of the partition P
α, β−1 ∈ L∞(Σ) real and assume that

0 < β ≤ 4
α

sin2 (π/χ)
Theorem

There exists unitary operator U : L2(Rd )→ L2(Rd ) such that

U−1(Hδ′,β)U ≤ Hδ,α.

Comparison with 1D-case (hence χ = 2)

For α, β > 0 recall σp(Hδ,α) = {−α2

4 } and σp(Hδ′,β) = {− 4
β2 }

0 < β ≤ 4
α

=⇒ − 4
β2 ≤ −

α2

4
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An operator inequality for Hδ,α and Hδ′,β

P = {Ωk}nk=1 Lipschitz partition of Rd with boundary Σ
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There exists unitary operator U : L2(Rd )→ L2(Rd ) such that

U−1(Hδ′,β)U ≤ Hδ,α.

Corollary

min σess(Hδ′,β) ≤ min σess(Hδ,α)

λk (Hδ′,β) ≤ λk (Hδ,α) for all k ∈ N
If min σess(Hδ,α) = min σess(Hδ′,β) then N(Hδ,α) ≤ N(Hδ′,β)
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Example 1: Partition of R2 into two halfplanes

Result is sharp for χ = 2 (that is 0 < β ≤ 4
α )

P = {R2
+,R2

−} with boundary Σ = R and α, β > 0 constant.
Then

σ(Hδ,α) = σess(Hδ,α) =
[
−α2

4 ,∞
)

σ(Hδ′,β) = σess(Hδ′,β) =
[
− 4
β2 ,∞

)
Hence if β > 4

α then

min σess(Hδ′,β) = − 4
β2 > −

α2

4
= min σess(Hδ,α)

and there is no unitary operator such that U−1(Hδ′,β)U ≤ Hδ,α.
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Example 2: Symmetric star graph with 3 leads in R2

��
�
��

�

HH
H
HH

H
Ω1

Ω3Ω2

Σ13
Σ

12

Σ23

min σ(Hδ,α) = −α2

4 follows from BrownEasthamWood’09
min σ(Hδ′,β) > −C 4

β2 with C = 1.0586 > 1

Corollary ’Chromatic number needed’

If χ = 3 the assumption 0 < β ≤ 3
α can NOT be replaced by the

weaker assumption 0 < β ≤ 4
α (which corresponds to χ = 2)
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Example 3: Compact Lipschitz partitions

Ω1

Ω2

Ω3

P = {Ωk}3k=1, χ = 3

R2

P = {Ωk}4k=1, χ = 4

Ω1

Ω2

Ω3

Ω4

R2

Theorem

σess(Hδ,α) = σess(Hδ′,β) = [0,∞), α, β−1 ∈ L∞(Σ,R)
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Example 3: Compact Lipschitz partitions - σp(Hδ′,β)

Ω1

Ω2

Ω3

P = {Ωk}3k=1, χ = 3

R2

P = {Ωk}4k=1, χ = 4

Ω1

Ω2

Ω3

Ω4

R2

Theorem ’A special δ′-type spectral effect’

β > 0 on some ∂Ωk =⇒ N(Hδ′,β) ≥ 1
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Example 4: Locally deformed Lipschitz partitions

Ω1 Ω3

Ω2

Ω4

Ω5

Ω7

Ω6

R2

P = {Ωk}7k=1, χ = 4

Ω′2

Ω′1

Ω′3

Ω′4

Ω′6

Ω′5

R2

P ′ = {Ω′k}6k=1, χ = 3

Theorem. Assume α = α′ and β = β′ outside compact set.

σess(Hδ,α) = σess(H ′δ,α′) σess(Hδ′,β) = σess(H ′δ′,β′)
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Example 5: Local deformations of a wedge Ω in R2

-
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α, β > 0 constant
P = {Ωk}nk=1 local deformation of P ′ = {Ω,R2\Ω}

Corollary

σess(Hδ,α) =
[
−α2

4 ,∞
)

σess(Hδ′,β) =
[
− 4
β2 ,∞

)
Corollary Assume χ(P) = 2 and β = 4

α

λk (Hδ′,β) ≤ λk (Hδ,α) for all k ∈ N
N(Hδ,α) ≤ N(Hδ′,β)
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Example 6: Bound states appear

Ω1 Ω2

Ω3

R2

P ′ = {R2
+,R2

−} and P = {Ω1,Ω2,Ω3}

α, β > 0 constant, and hence

σess(Hδ,α) =
[
−α2

4 ,∞
)

σess(Hδ′,β) =
[
− 4
β2 ,∞

)
Theorem ’Hδ,α and Hδ′,β have at least one eigenvalue’

N(Hδ,α) > 1 and N(Hδ′,β) > 1
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Example 7: Recent results for cones in R3

...discuss if time allows and audience is still awake

Draw cone Cϑ on the board and explain

σess(Hδ,α) = [−α2/4,∞) for any angle ϑ ∈ (0, π/2]

Infinite discrete spectrum for any angle ϑ ∈ (0, π/2)

Say a few words on δ′

...Stop now finally, it was too much material anyway !
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Thank you for your attention
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