Lineare Algebra und analytische Geometrie I 13. Zentralübungsblatt

Man kreuze richtig an: (Wenn nichts anderes angegeben ist, bezeichnet V einen \mathbb{R} -Vektorraum.)

- 1) Es sei $A\in\mathbb{R}^{3 imes 5}$ gegeben. Es sei $L_0\subset\mathbb{R}^5$ der Lösungsraum von $A\cdot x=0$. Angenommen, es gilt $\dim L_0 = 2$. Dann ist $\operatorname{Rang}(A) = \dots$
 - a) 1
- b) 2
- c) 3
- d) 4
- 2) Es sei $A \in \mathbb{R}^{m \times n}$ und $b \in \mathbb{R}^m$. Angenommen, es gilt $\operatorname{Rang}(A) \neq \operatorname{Rang}(A \mid b)$. Dann ist ...
 - a) Rang $(A \mid b) = \text{Rang}(A) + 1$
- b) das LGS $A \cdot x = b$ unlösbar.
- c) das LGS $A \cdot x = b$ lösbar.
- d) das LGS $A \cdot x = 0$ nicht eindeutig lösbar.
- 3) Durch welche Abbildungsvorschrift wird eine lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$ definiert?
 - a) $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + 5 \\ x_2 \end{pmatrix}$ b) $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + 3x_2 \\ 0 \end{pmatrix}$

- c) $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1^2 \\ x_1 \end{pmatrix}$ d) $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \cdot x_2 \\ x_2 \end{pmatrix}$
- 4) Die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^3$, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_2 x_1 \\ x_1 \\ 0 \end{pmatrix}$ läßt sich schreiben als $f = \ell_A$ mit $A = \dots$
- a) $\begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ b) $\begin{pmatrix} 0 & -1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$ c) $\begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ d) $\begin{pmatrix} -1 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$