Grundlagen der Mathematik I – 14. Tutoriumsblatt

Aufgabe 1 (Euklidischer Algorithmus). Gegeben seien a=6706 und $b=623 \in \mathbb{Z}$.

- a) Man führe den Euklidischen Algorithmus für a und b durch.
- b) Man bestimme einen größten gemeinsamen Teiler d von a und b und berechne $x,y\in\mathbb{Z}$ mit $d=x\cdot a+y\cdot b$.
- c) Man bestimme ein kleinstes gemeinsames Vielfaches v von a und b.

Aufgabe 2 (Größte gemeinsame Teiler). Es seien $a, b \in \mathbb{Z}$, und $0 \neq c \in \mathbb{Z}$ sei ein Teiler von $a \cdot b$. Sei ferner d_1 ein größter gemeinsamer Teiler von a und c sowie d_2 ein größter gemeinsamer Teiler von b und c. Man zeige, daß dann c ein Teiler von $d_1 \cdot d_2$ ist.

Aufgabe 3 (Teilbarkeit). Es sei $k \in \mathbb{Z}$ fest gewählt.

a) Man zeige für alle $a \in \mathbb{Z}$ mit $a \neq -k$:

$$(a+k) \mid (a^2+k) \iff (a+k) \in T(k \cdot (k+1)).$$

(Hinweis: Man vergleiche die Zahlen $a^2 + k$ und $a^2 - k^2$.)

- b) Man bestimme alle $a \in \mathbb{Z}$ mit $a \neq -6$ und $(a+6) \mid (a^2+6)$.
- c) Man bestimme alle $a \in \mathbb{Z}$ mit $a \neq 6$ und $a 6 \mid a^2 6$.

Aufgabe 4 (Gruppen). Für den angeordneten Körper $\mathbb R$ betrachte man die Menge $G=]-1,1[\subset \mathbb R.$

a) Man zeige, daß durch

$$x * y := \frac{x + y}{1 + xy} \quad \text{für alle } x, y \in G$$

eine Verknüpfung auf G definiert wird.

(Zu zeigen ist also, daß durch * eine Abbildung $G \times G \to G$ gegeben ist. Dazu ist es nützlich, zu zeigen, daß 1+xy>0 für $x,y\in G$ ist.)

b) Man zeige, daß (G, *) eine abelsche Gruppe ist.