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Abstract

We interpret finite types as domains over nonflat inductive base types in order
to bring out the finitary core that seems to be inherent in the concept of totality. We
prove a strong version of the Kreisel density theorem by providing a total compact
element as a witness, a result that we cannot hope to have if we work with flat base
types. To this end we develop tools that deal adequately with possibly inconsistent
finite sets of information. The classical density theorem is reestablished via a “finite
density theorem”, and corollaries are obtained, among them Berger’s separation

property.

1 Introduction

In the area of denotational semantics of functional programming it is standard to view
data types as countably based Scott domains in the tradition that started with Dana
Scott’s and Yuri Ershov’s independent work in the late sixties and early seventies.
More particularly, we may view these domains through their representations as Scott
information systems, where programs are representatives of typed terms x : p with
denotations being ideals in appropriate information systems, that is, consistent and
deductively closed sets of tokens a € x; ideals are approximated by finite sets U C x,
their so called formal neighborhoods.

A crucial choice in our setting is to work with nonflat rather than flat domains for the
base types. These arise when we model base type partiality not as an extra pseudotoken,
but as an extra nullary pseudoconstructor, which participates in the formation of further
tokens and therefore leads to varying degrees of partiality. For example, while the flat
natural numbers {1,0,50,8S0, ...} feature just the bottom element for partiality, the
nonflat natural numbers (also called lazy natural numbers) {1,0,S1,50,SS1,SS0,...}
feature several partial elements, like 1, S, SS_1, and so on; elements that do not involve
1, like 0, SO, or SSO0, are called fotal. A basic advantage of this feature compared to flat
base types is that we obtain injectivity and disjoint ranges for the constructors.

More generally, base-type nonflatness yields domains which are in a certain sense
both richer, in that they contain more tokens, and tidier, in that they are finitely branching.
Such domains seem to accommodate arguments that a flat setting cannot afford, and this
paper intends to give one nontrivial example of this kind: an explicitly finitary approach
to the Kreisel density theorem, a key result in the theory of higher-type computability.

Density was first stated and proved by Georg Kreisel in [25], and in different terms
by Stephen Kleene in [24]. Building on work of Yuri Ershov [12, [13} [14], Ulrich
Berger [12, 3] generalized and established density within domain theory, drawing as a
corollary that it holds for the hierarchy of the partial continuous functionals over all finite
types, and thus recovering the Kleene—Kreisel continuous functionals as equivalence
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classes of the abstractly total elements in the hierarchy. Helmut Schwichtenberg and
collaborators have already carried Berger’s argument from the top (abstract domains
with totality) down to the bottom (concrete Scott information systems induced by
algebra constructors) numerous times in the past, starting with [42] and following up
with [43} 119, 20| i44]. The present work is related to these top-down approaches, but
attacks the problem in the opposite, bottom-up manner: we don’t merely adapt previous
domain-theoretic proofs to the setting of approximations, but rather work our way up,
from approximations to ideals.

Let us recall the content of the Kreisel density theorem. We work with finite types,
that is, with base types like IN and IB for naturals and booleans respectively, and then
with arrow types above them. We capture the concept of termination by a totality
predicate Gﬂ at base types 1, an ideal x is total if it contains a total token; at type p — ©,
an ideal f is total when it preserves totality, that is, when

V (Gp(x) = Go(fx)) ,

x:p

where b € fx for a token b € Tok if and only if (U, b) € f, for some formal neighborhood
U € Conp with U < x. The density property for a type, the latter being understood as a
space governed by the Scott topology, alleviates the omnipresent partiality by ensuring
that every open set in the space nurtures total points, in other words, that total points are
dense in the space. We formulate this here by saying that p is dense when

: D
Uegmp xﬂp (Gp(x) AU S x) (D)

The Kreisel density theorem says that every type is dense.

Let us look a bit closer at the statement (D). We are given a neighborhood U, morally
a compact element, comprising finite information, and we are supposed to come up
with an ideal x as a witness, which may in principle be an infinite set of tokens. It is
reasonable to suspect that the element of infinity in x must be inessential as far as an
actual process of “totalization” of U is concerned—whatever this process might be—and
that there is nothing inherently infinitary about it, since totalizing U should depend on
its finite information, and not on the fact that the resulting ideal may be infinite. Can we
then devise a totalization process which will feature an explicitly finitary core, that is,

can we provide a witness for density which will be obviously finitary?

We can easily see that in general we cannot do this if we interpret our base types by
flat domains: At type IN — IN, consider the very simple compact given intuitively by
{0+— L1}; extending it, say, to {0 — 0} is not making it total, since it cannot respond
(with a total value) to any total input different than O; if we want to extend it to a total
element, we must account for every possible total input except 0, which inevitably
leads to an infinite set, say to the set {0 — 0} U {S"0 — S0 | m > 0}. This totalization
process consists of two steps, namely totalizing the output on input zero from L to 0,
and setting all other outputs to be SO; nevertheless, the witness can only be presented
as an infinite set. On the other hand, if we had interpreted the natural numbers by their
nonflat domain, then we could have extended the compact {0 — L} to the compact

I'The letter “g”—which probably derives from the English word general (for generally defined), and
perhaps is influenced by the German word gesamt (complete, total, whole)—was used in this context already
by Ershov [12][14]. We adopt this notation here to designate totality in order to avoid confusion with other
terms beginning with “t” in our text.
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{0+ 0,81 — S0}, which would have sufficed, since the information S_L is enough to
accommodate (later we will say “accept”) all total numbers different than zero.

Our strategy can be summarized as follows. Step 1: define an appropriate notion
of “total neighborhood”. Step 2: establish a “finite density theorem”, that is, that
every neighborhood extends to such a total neighborhood. Step 3: show that a total
neighborhood extends to a total ideal in a straightforward way.

We begin in section 2] with a necessary preamble on domains over nonflat base types
represented by information systems. In section [3| we prepare for Step 1. As we can
already see in the example that we gave above, one thing we have to do in order to
“totalize” a neighborhood is to appropriately extend the set of its inputs; this finite set
is seldom consistent, and in order to argue rigorously about it we must first develop
a general understanding of such sets and their intricacies. This section delays the
exposition of our argument a bit, but, beside gathering necessary definitions and facts, it
will hopefully help familiarize the reader with these intricacies. Alternatively, the reader
could skip to the next section and come back when the need arises. In section ] we
perform Steps 1 and 2: we define finite totality and prove finite density with Theorem.7
moreover, we characterize finite totality in a noninductive way in Theoremd.9] Section[3]
is about Step 3: with Theorem [5.10] we show how to obtain the classical Kreisel density
theorem from the finite density theorem; in addition, we list some direct consequences,
among them Berger’s “separation property” in Proposition We end in section [0]
with comments on the literature and future work.

2 Nonflat domains via coherent information systems

We concentrate on a type system supporting arrow types over inductive base types We
use & as a dummy type variable. Write p — o to mean p; — --- — p, — o for some
r = 0 associated to the right; in case r = 0 the vector is empty.

— —
e For every vector £ of length r, the expression & — & is a constructor type (of

arity r).

e If ky,...,K; are constructor types for k > 0 and one of them nullary, then
He (K-, Ky ) is a type. We think of such types as inductively defined base types
or algebras, generated by constructors C; corresponding to xj, for/ = 1,... k.

e If p, o are types then p — o is a type; these are the usual higher types.

Note that constructor types only serve to build base types, and are not themselves
admitted as types. Examples of base types are

o the unit type U := ug (&) with a single nullary constructor,

e the rype of boolean values B := |ig (€,£), with constructors for the truth tt : B
and the falsity £f : B,

e the type of natural numbers N := pg (§,& — &), with constructors for the zero
0 : IN and the successor S: IN — IN,

2In this section we omit proofs and details, for which the reader may consult [44! Part 3] and [46| Part I].
In relation to the former, in particular, note that we will be working within the nonparametric and finitary
fragment of the system.
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o the type of (extended) derivations D := g (§,8,8 — &,& — & — &), with con-
structors for an axiom 0 : D, another axiom 1 : D, a one-premise rule S: D — D,
and a two-premise rule B: D — ID — D (this algebra is simple yet nontrivial
enough to provide us with examples as we go along).

We will write 1 to denote an arbitrary base type and p, ¢ to denote arbitrary types in
general.

A (Scott) information system [43| 47] is a triple (Tok,Con,}-), where Tok is an
inhabited countable set of tokens, Con is a collection of finite sets of tokens which we
call consistent sets or (formal) neighborhoods, and - is a subset of Con x Tok, the
entailment. These are subject to the axioms

{a} € Con,

UcV AVeCon— U e Con,
UeConrnaelU —- Ut a,
UFVAVEc—>UFc,
UeConAUtb— Uu{b}eCon,

where U |-V stands for U - b for all b € V. From the latter follows vacuously that
U + ¢ for all U, while ¢§ € Con follows from the first two axioms. We may refer to
the fifth axiom as propagation (of consistency through entailment); note that this axiom
may be equivalently expressed as

UV —->UuVeCon. (1)

For finite sets of tokens I" which are not necessarily consistent we write Fin, so
Con < Fin. An information system is called coherent when in addition to the above it
satisfies

VY {a,a’} € Con— U e Con )
a,a’'el
for all U € Fin. By the coherence and the second axiom above, it follows that the
consistency of a token set is equivalent to the consistency of its pairs. Drawing on
this property, we often write a = b for {a,b} € Con, and even U =V for U uV € Con
(which is also often written U 1 V). In the following we work exclusively with coherent
systems, even if we don’t mention it explicitly.

Given two coherent information systems p and ¢, we form their function space
p — o: define its tokens by (U,b) € Tok if U € Con,, and b € Tokg, its consistency
by (U,b) = (U’',b") if U =, U’ implies b =5 b’, and its entailment by W - (U, b) if
WU s b, where

beWU:= 4 (U, byeWaUR,U").
U’eConp

The last operation is called neighborhood application. We will revisit it in some depth in
section where we will also show that it is monotone in both arguments, that is, that
U + U’ implies WU — WU’ and that W — W’ implies WU — WU’ for all appropriate
U,U’',W,W’' (Lemma[3.8). For the proof of the following see [44] Chapter 6].

Fact 2.1. The function space of two coherent systems is itself a coherent information
system.
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An ideal (or element) of an information system p is a possibly infinite token set
x < Tok, such that U € Con for every U = x (consistency), and U -~ b for some U ¢ x
implies b € x (deductive closure). If x is an ideal of p, we write x : p or x € Ide,. Note
that in a generic setting built over flat base types, as for example the one described
in [46], the empty set at every type p is an ideal, and plays the role of the bottom element
L.

’ By a (Scott—Ershov) domain we mean here a countably based directed complete
partial order with a least element, which is additionally algebraic and bounded complete.
A domain is coherent [37], if every set of compacts has a least upper bound exactly
when each of its pairs has a least upper bound. Write b € U if and only if U I b (in the
generic flat-based setting we have ¢ = ¢ = L). The following fact is directly based on
the fundamental work of Scott [45]; for the proofs supporting our particular formulation
see [46, Section 6.1] and [22, Theorem 8].

Fact 2.2 (Representation theorem). Let p = (Tok,,Conp,t—p) be a coherent infor-
mation system. Then (Ide,,=, 1) is a coherent domain with compacts given by
{U | U € Conp}. Conversely, every coherent domain can be represented by a coherent
information system.

An approximable mapping between two information systems p and o is a relation
r < Conp x Cong that generalizes entailment in the following sense: (B, Dyer;if
U, V1),{U,Vayerthen Vi =5 Vo and (U, Vi uVayer;andif U -, U', (U, V') e,
and V' -5V, then (U,V) € r. One can show [43] that there is a bijective correspondence
between the approximable mappings from p to o and the ideals of the function space
p — o, and moreover establish the categorical equivalence between domains with
Scott continuous functions and information systems with approximable mappings. The
equivalence is preserved if we restrict ourselves to the coherent case on both sides [22]].

The Scott topology on Ide,, is given by the collection {VU | U € Con, }, where VU
is the set {x: p | U < x} of all ideals above U. A set % < Ide, of ideals is Scott open
when it is closed under supersets (Alexandrov condition) and for every x € % there
is a U < x such that U € % (Scott condition). One can furthermore show that an
ideal-mapping f sending ideals from Ide, to ideals in Ideg is Scott continuous when
it is monotone and satisfies the principle of finite support (also called approximation
principle) for all x : p, that is,

V (bef(x) > 4 (Ucxnabef(0))). (FS)

beTokgs UeConp

Finally, it can be shown (see for example [44, §6.1.3]) that the ideals Ide,_.s and the
Scott continuous ideal-mappings Ide, — Ides are in a bijective correspondence, a fact
that justifies the nondiscriminating notation ' : p — ©.

Now we proceed to assign an information system to each type. Every higher type is
naturally assigned a function space, so it suffices to discuss the information systems for
base types, that is, for algebras. Let 1 be an algebra, with at least one nullary constructor
if it is to be nontrivial. We add to it an extra nullary pseudoconstructor s, (or just =)
to denote partiality (which we nevertheless agree to not let it appear in the algebra
signature). This is a departure from [44], where partiality is treated as a special untyped
symbol which is used by all possible algebras; for us, every algebra has its own partiality
symbol. We define Tok,;, Con,, and }—; inductively.

e If C is an r-ary constructor and a; € Tok, fori=1,...,rthenCa;---a, € ToklE]

3Throughout the text we adopt the polish notation for tokens for typographical convenience.
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For its head constructor write hd(Ca, ---a,) = C; for its i-th component token
write a(i), that is, (Ca; ---a,)(i) = a; fori=1,...,r.

e We have a =; % and = =; a for all a € Tok;. Furthermore, if C is an r-ary
constructor and a; =; b; fori=1,...,r then Ca, - --a, =, Cb; - - - b,. Finally, we
have U € Con, ifa =, a’ forall a,a’ e U.

e We have U -, * for all U € Con,. Furthermore, if C is an r-ary constructor,
every U; € Con, is inhabited and U; -, b; fori = 1,...,r, then U |-, Cb; ---b,
for all U € Con, that are sufficient for C on Uy, ..., U,, in the sense that for
eachi=1,...,r and each g; € U; there exists an a € U such that hd(a) = C and
a(i) = a;. Finally, if U t~, b, then also U U {} -, b.

Here we need to be cautious. The definition of Con, incorporates the coherence prop-
erty (@), so it follows that (& -, {x}. This seems to undermine Fact[2.2] since the empty
set cannot be an ideal anymore. It is nevertheless straightforward to show that the
representation theorem still stands if we reinterpret the bottom ideals as follows:

Lyi= {4,
Lpso:={U,b)|UeConpnbe Ls}.

It is maybe worth pointing out that while our situation diverges from the generic flat-
based setting and even from settings like the one of [44]], in the same time it resonates
the original Scott axioms [43]): there exists at least one trivial token in every information
system, in particular one at every base type and several at every higher type.

Concerning sufficiency, we note the following: (a) in case C is a proper constructor,
U is sufficient for C on Uy, ..., U, if and only if U U {#} is, if and only if U\ {*} is, and
(b) we trivially have U -, CUj - - - U,, whenever U is sufficient for C on Uy, ..., U,; the
constructor application here is defined by

CUy---U, = {Calmar\aleUl,...,areUr},

which is consistent if and only if every Uj is consistent. Moreover, every neighborhood U
that is nontrivial (meaning, {+} t£, U) is indeed equivalent to one of the form CU; - --U,:
if
U\{*} ={Cai---ay1,...,Caim-amm},
we gather all i-th component tokens into a neighborhood, the i-th component neigh-
borhood U (i) := {a1,...,apm} of U, and let U; := U (i) for every i = 1,...,r; then we
indeed have U ~, CU; ---U, (Where U ~ V abbreviates U -V AV  U).
The proof of the following is straightforward but tedious.

Fact 2.3. Let 1 be an algebra given by constructors. The triple (Tok,,Cony, ;) is a
coherent information system.

3 Finite sets

Recall that the first step in our strategy is to decide on a reasonable definition of “finite
totality”, one that will already embody the totalization mechanism for density on the one
hand, and that will be susceptible to a canonical extension to a total ideal on the other.
The nature of our study leads us naturally to define the concept by induction over types,
which is what we do in section[4.1] Nevertheless, we will see in Theorem[4.9]that we can
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arrive at the same concept in an explicit way in terms of “transitive elements”: elements
that witness local transitivity within a not necessarily transitive relation—in our case,
the consistency relation. To work with such sets of tokens we need an operation akin to
application, defined using consistency rather than entailment. This is how we come to
spend some space discussing not necessarily consistent finite sets in some generality,
while we postpone the actual definition of total neighborhoods until section 4]

3.1 Entailment and consistency for finite sets

There is the trivial syntactical reason to look at finite sets in general and not just at
the consistent ones: the latter presuppose the former by definition—in particular, the
thematization of finite sets is unavoidable in implementation endeavors like [20]. But
finite sets may play a natural and important role within purely semantical arguments
as well—to mention a naive example, think of the subtokens ay,...,a, of a base-type
token a = Ca; - - - a,. In this subsection we will hardly cover anything more than what
we will need later, with the exception of Lemma which we included for the sake of
some points in

As we already mentioned, we write Fin, instead of &7;(Tok,), so I" € Fin,
means that I' is a finite set of tokens, not necessarily consistent. If @ =
{Uj,bjy | j=1,...,1} € Finp_,, write L(®) for | J;U; € Fin, (notice that this is a
flattening), and R(©) for | J;{b;} € Fing. Furthermore, if U € Cony and A € Fing, write
(U, A) for {{U,b) | be A} € Finp_, (note that (U, Fs) = Tp—o)-

Lemma 3.1. Let ©,0’ € Finy_,5. We have L(® uO') = L(O©) u L(®') and R(O L
®') = R(®) UR(O’). Furthermore, if ® < @' then we have L(®) < L(O’) as well as
R(®) Cc R(O").

A neighborhood in I € Fin, is a subset U < I'', which happens to be consistent;
write U € Conr. The empty set and the singletons of I" are always in Cony. Say that I
entails I'' (as a finite ser), and write I l—g I'’, when

\ 1 U, U
U’eConpy UeConp
This is a generalization of the notion U |-, U’ for neighborhoods. A simpler, but
less helpful generalization is “I" -, I"’ if and only if for every a’ € I'’ there is some
U € Conr such that U \-p @’ if I" -5 I'' then also I -, I'’. Contrary to the case
of consistent sets, although I" l—g I'" implies I’ l—g a for all a e I'’, the converse is
not true in general. For example {B00,B11} -f BOx and {B00,B11} £ B=1, but
{B00,B11} A5 {BOx,Bx1}.
Similarly, say that I" and I"’ are consistent (as finite sets), and write I" :g I'’, when
Y V U=,U.
UeConr y’eCon-
Again, this is a generalization of consistency between neighborhoods which proves
more useful for not necessarily consistent finite sets than the simpler notion “I" =, I"’
if and only if {a,a’} € Con, for all a € I" and ¢’ € I'"” (which we may nevertheless
occasionally use); if I zg I'" then I" =, I'". Note that in the case of zg we generally
don’t have reflexivity; in fact, we trivially have I” xg I' if and only if I" € Conp. An
example of consistency between inconsistent finite sets is {BO#,B1x} =k {Bx0,Bx1}.

.. . . . . VF F
. Reflexivity qf consmtency is the iny property that the triple (Fin,, =p,F p) lacks
in order to constitute a Scott information system.
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Lemma 3.2. The entailment between finite sets is reflexive and transitive and the
consistency between finite sets is symmetric and propagates through entailment, that is,

1. Vrepnl +FT,

2. Vraoecrn(T FArAHF © T HF 0),
3. Vraern( =F A —>A=FT),

4. Vraoern( = AnA+-F © - T =F 0).

Proof. We just show the propagation property. Let I", A, ® € Fin be such that I" =< A
and A - ©. Consider U € Cony and W € Cong; by the assumptions, there exists a
V € Cony with V = W and U = V; by propagation on Con (1)) we get U = W. O

3.2 Maximal and transitive neighborhoods

Think of some finite set I" of type p and suppose that we wish to assign o-values b; to
neighborhoods U; of Cony (for some i € I) in a way that the finite set {(U;,b;) | i € I}
at type p — o will be consistent. Some reflection shows that it suffices to pair the
“maximal” neighborhoods of I" with the given values of &, but we can actually do better
than that: we can relax the requirement of maximality by requiring instead that we
assign the given arbitrary values already to those neighborhoods which are, so to speak,
maximal enough or “almost maximal”, in the sense that they are below exactly one
maximal in I"; these are exactly the “transitive neighborhoods” in I".

Call U € Conr a maximal neighborhood in I', and write U € Conf*™, when it is
maximal with respect to the entailment relation, that is, when

v (Ul}_pU—>U|_pU/)

U’eConp

Call U € Conr (consistency) transitive in I", and write U € Concrtr, when it satisfies the

property
YV (Ui=pU=p,U—> U =pUs).
Uy,UyeConp P P P
We can reformulate this by introducing the notation U for the consistency closure of
U, that is, for the set {a € Tok, | U =, a} (it is clear that, while it encompasses the
deductive closure, the consistency closure of a neighborhood is not in general an ideal,
because consistency may fail); then U is transitive in I when U nI" € Con,.

More generally, call U € Con, transitive for I' or just I'-transitive (in p), and
write U € Conf)tlrr, if, again, Uy =, U =, U, implies U; =, U, for all U;,U, € Conr;
obviously, Con§" = Conf)tlrr.

It is clear that every maximal in a finite set is also transitive in it. It is also immediate
that consistency between neighborhoods, restricted to Conf" (but not to Conf)tlrrl),

becomes an equivalence relation. Still trivially, but importantly, we have the following.

Lemma 3.3 (Upward closedness of transitivity). Let p be a type and I" € Fin,. For any
U,U’ € Cony, ifU € Cong“rr and U’ U, then U’ € Conf;lrr.

Proof. Let U;,U, € Conr be such that U; =, U’ =, U,. By propagation (I)) we have
U1 =p U =p U2, SO U1 =p Uz. O

It is often handy to check for extremality (that is, maximality or transitivity) on the
level of tokens.
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Lemma 3.4 (Extremality through tokens). Let p be an arbitrary type, I' € Finy, and
U € Conr.

1. We have U € Conf™ if and only if U =, a implies U \~p a foraeT.
2. We have U € Con;‘lrr ifand only if ay =p U =, ay implies ay =p az foray,az € I'.

Proof. Form From left to right, assume that U is maximal, and let a € I" be such that
U =p a. Then U U {a} -p U, and by the maximality of U we get U ~, U U {a}, which
gives us U +p a. For the other way around, let U "€ Conr be such that U’ Fp U; then
U =, U’, and by the assumption we get that U |-, U’, so U is indeed maximal.

For@ From left to right, assume that U is transitive for I", and let a;,a; € I" be such
that U =, a; for both i. Then U =, {a;}, and by the transitivity of U we get a; =, a;.
For the other way around, let Uy, U, € Conr be such that U =, U;, for both 7, and a; € U;;
then a; =, ay by the assumption, so U; =, U,, and U is indeed I -transitive. O

The lemma makes the significance of extremality in a finite set quite apparent. In
particular, it is good to know that two maximals in a finite set are either equivalent or
inconsistent (a fact that we can put even more bluntly like this: if U is maximal and
deductively closed in I', then for each a € I" we have either a € U or a 5, U).

Lemma 3.5. Let p be any type. For all I" € Finp and U € Conf™, if U’ € Con, is such

that U' \-p U then U’ € Con["™, .

Proof. Letae I’ U’ be such that a =, U’; since U’ |-, U, we have a =, U. In case
a¢ I wehaveaeU’;incase ae I, we have U -, a by Lemma3.4]1¢ in both cases it
follows that U’ - a, so U’ is maximal in I" U U’ by Lemma 3.4] O

—

Lemma 3.6 (Maximal extensions). Let p be a type and I" € Fin,.

1. For any U € Conr, we have U € Con§" if and only if there is exactly one Ue

Con™™, up to equientailment, such that U Fp U.

2. For any U € Conyp, we have U € Con;t‘rr if and only if, whenever there exist

max

Uyp € Conr with U =, Uy, there exists a Ue Conp™ such that U =, Uy implies
U+ Uy for all Uy € Conr-.

Proof. For|l} from left to right, assume that U € Con§*" and let U;,U, € Con[*™* be
such that U; - U for both i = 1,2. By the propagation of consistency (I, we have
Uy =p U =p Up; by the assumption we have Uy =, Up; by the maximality of U; and
U, it follows from Lemma@mthat Ui ~p Us.

For the other direction, assume that U is such that any two maximal neighborhoods
in I' that entail it are equivalent, and let Uy,U; € Conr be such that U =, U =, U,.
Then for any two U{",U3" € Conp™, with U" |-, U u U, by the assumption, we must
have Uj" ~, U3'; it follows that U; =, U,, by the propagation of consistency.

For , let U € Conp. Assume that U € Conf)[lrr and U =, U; for some U; € Conr,
where i > 0. Gather all these U; in the neighborhood Up := | J ;Ui; we have of course
Up € Conr. Then there is at least one maximal U € Con?®* such that U -, Uy +p U;
for all i.

Conversely, assume that U satisfies

3 U=spo— 3 YV (U=pUy—Utply),

UpeConr Uecon?_mx UpeConr

and let U;,U; € Conr be such that Uy =, U =, U,. From the assumption we get a
maximal U € Con'®* with U p Ui for each i, so Uy =, Us. O
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We will say the maximal extension of U in I, if U € Con$¥, for the unique (up
to equivalence) maximal neighborhood entailing U; this we denote by U, as in the
statement of the above Lemma. But note that in the case of transitive neighborhoods
outside I uniqueness is not guaranteed: an example with two maximals at type D is
provided by the finite set I" = {S*,S0,S1} and the neighborhood U = {SSx*}.

3.3 Upper and middle application

The notion of application fx of some higher-type term f to some input term x, both
appropriately typed, is interpreted as “the information that we hold on x suffices to
draw the information fx on the output, given the information that we have on f”. In
section 2] in the definition of neighborhood application, we saw that when we bring this
notion down to the finite level it is entailment that we read into “suffices”, but for our
purposes it will come in handy to consider a different version of application between
neighborhoods, where we replace entailment by consistency. As will become clear in
the results below, starting already with Lemma [3.10} this kind of application is justified
by the existence and use of transitive neighborhoods.

Let © € Finy_,5 and U € Cony. The (upper) application © *U gathers all values
b € Toks whose arguments U, fall under U:

be® U:= 3 (WU,bye® AU, Uy).

UpeConp

Note that this trivially generalizes the neighborhood application of section [} from now
on we will always write W " U instead of WU. The middle application ® - U is defined
by
be®-U:= 3 (WU,bye®AU=,Up).
UpeConp

It follows immediately from the definition that the middle application yields at least as
much information as the upper one does, namely @ "U < © - U.

In the case of a consistent left argument, we can make the following easy observa-
tions.

Lemma 3.7. Let p, ¢ be arbitrary types, W € Conp_,s, U € Con, and b € Tok.
1. We have W \=p_.s (U,b) if and only if W " U -4 b.
2. We have W =,_,5 (U,b) ifand only if W -U =¢ b.

Note that in[3.7]2] the finite set W - U may not be consistent, but we still did not write
W -U =F b; here we are just saying that every pair {b" b} will be consistent, for
Wew-U.

Lemma 3.8 (Application). Let p, ¢ be arbitrary types.

1. Application is consistently defined, that is, if W € Conp_,s and U € Conp, then
WU € Cong.

2. Application is monotone in the right argument, in particular, if © € Fin,_, s and
U,U" e Conp, withU -, U’, then ® ' U' < © " U.

3. Application is monotone in the left argument, that is, if ©®,0’ € Fin,_,; with
O ;0" and U € Conp, then ® U -5 0" U.

10
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Proof. For |1} let W € Con,_,s and U € Con,p, and consider by,b, € W " U. By the
definition, there must exist (Uy,by),{Us,by) € W, such that U |-, U; U Ua; it follows
that U =, U, so the consistency of W ensures that b; =g b;.

For let © € Finy_,s and U,U’ € Conp, and assume that U |-, U’. Consider a
b € V; by the definition there exists a Uy, € L(®) with (Uy,b) € @ and U’ |-, Uy; the
assumption immediately gives U p Up, so b€ © U as well.

For let ©,0’ € Con,_,s and U € Conp, and assume that @ }—ga(, ®’. Consider
a V' e Cong,.,; for each b’ € V' there is a Uy € Con, such that (Uy,b’) € @ and
U tp Uy; the set W := {{Uy,b')€ O | b’ € V' AU -p Uy} is consistent in @'. By
the assumption there exists some W € Cong such that W ,_.¢ W’. Since for each
(Uy,b'ye W' wehave W Uy -6 b, bylwe get WU - WUy, hence W U ¢ b/,
thatis, W "U -5 V' and since W "U € Cong,.,,, we are done. O

The following gives us conservative extensions of a neighborhood by way of extend-
ing its set of arguments.

Lemma 3.9. Let W € Conp_, and I" € Finy such that LIWW) < I'. Then

W~po | W WU

UeConr

Proof. From left to right, let U € Conp and b€ W " U. There exists a U, € Congg) with
(Up,bye W and U +p U,. Then (Uy,,b) \-p—.5 (U, b). The other way around is obvious,
since W S Uyecon (U W U] O

Turning our attention to middle application, the first thing we want to know is how
it fares compared to Lemma (3.8

Lemma 3.10 (Middle application). Let p, G be arbitrary types.

1. Middle application is consistently defined for transitive right arguments, that is, if

W e Conp_,c and U € Conly; ), then W -U € Cong.

2. Middle application is antimonotone in the right argument, in particular, if © €
Finp_,c and U,U’" € Conp withU t-, U’, then ® -U < @ - U’.

3. Middle application between neighborhoods is monotone in the left argument for
transitive right arguments, that is, if W,W' € Con,_,s are such that W +-p_,c W’

and U e Con:)LrL(W)uL(W’)’ then W -U ¢ W' -U.

Proof. To show , let U € Conlc;lrL(W) and by,by € W -U. Then there exist Uy, U, with
(Ui, biy € W and U; =p U. The transitivity of U implies U; =, U,, and the consistency
of W ensures that b| =4 b».

For assume U and U’ such that U Fp U’,andlet be ® -U. There is some U, such
that (U, b) € © and Uj, =, U. By propagation (I)) we get U, =, U’,sobe © -U’.

For By the assumption that U Conf)tlrL(W)U L(wr) ensures that the result of both

middle applications is a neighborhood (in general, if I’ < I'’ then Conlc;‘rr, c Conlc;‘rr).
Let b’ € W’ -U. By the definition of middle application, there exists a (U’,b"y € W', such
that U' =, U. Since W I-p_,c W', there is a subneighborhood {(U;, b;) | i =1,...,m} <
W, such that for all i = 1,...,m we have U’ =, U; and {b; | i=1,...,m} 5 b'; by
propagation it follows that U =, U; for all i. This means that b; € W - U for all i, so
W .U ¢ b', and we are done. O

“The proof in fact shows that the equientailment here is linear (U entails b linearly when {a} b for some
ae U, see [23]).

11
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Lemma 3.11. Let © € Finy_,¢.
1. ForallU,U’ eConzt(r@), ifU=pU' then® -U=0-U"
2. ForallU e Conzt(r@), we have ® -U =0 U.

3. ForallU eCong‘(aé) and U’ € Conp, if U =p U’ then® -U <@ -U’".

Proof. For the first statement, assume that U =, U’ and let b€ R(®). We have be © -U
if and only if there is some Uj, with (Up,,b) € @ and U =, U,,. Since U is transitive in
L(®), we get U’ =, U, by the assumption, so b€ @ - U’. The converse is similar.

For the second statement, let U € Conzt(r@). By the definition of middle application,
if be © - U, then there is some U, with (U, b) € O, such that U, =, U; since U is
transitive, by the maximality of its maxirpal extension it follows that U -, Ub,Aso the
definition of application gives us b € ® "U. For the other way around, if b€ ® " U, then
there is a U, with (U, b) € @, such that U p Up; then U =, Uy, by propagation (), so
be 0O -U, by the definition of middle application.

For the third statement, let U be maximal in L(®) and U’ some neighborhood with
U =, U'. For every b € © -U, by the definition of middle application, there is some
Uy, with {Uy,b) € O, such that U =, Uy,, which by maximality means that U -, Uy; by
propagation we get U’ =, U, so be @ -U’, and we are done. O

We close the section with a hint on how extremality evolves over types.

Lemma 3.12. Let O € Finp_,c and W € Cong. We have W € Con@" if one of the
following holds.

1. For all U € Conjjg) we have W - U € Cong'y,.

2. ForallU € Cong‘(aé) we have W - U € Cond .

Proof. For the first criterion, let (U;, b;) € © be such that (U, b;) =p_,c W fori = 1,2,
and assume that Uy =, U,. Considera U € Conzt(r(a) with U =, Uy uU,; thenb; e @-U
for each i. From (U;, bi) =p ¢ W, by Lemma[3.10[1} we get b; =5 W - U for both i, so
by the assumption we get by =¢ bs.

To get the second criterion, it suffices to show that

YV W-UeCondy,— VYV W-UeCong.

max
UECOHL(@) UGCOH?{@)

Assume that W is such that W - U € Cong',,, forall U € Coan“(ag), and let U € Conzt(‘@).
Consider the maximal extension U of U. On the one hand we have U € Coan“(a‘g;), SO
w-Ue Congfﬁ by the assumption. On the other hand we have U € Conz‘(r@) with

pr U,00-U=0-Uand W-U=W-U, by Lemma It follows that
W -U € Cong',,, so we can apply the previous criterion and we are done. O

4 Totality of neighborhoods

In this section we take the first two steps of the strategy that we outlined in the introduc-
tion. A total object of type p — © is represented by a possibly infinite token set that
(a) is an ideal, that is, consistent and deductively closed, (b) admits all totals of type

12
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p as arguments—a property we think of as “omniception”, for lack of a less pompous
synonym for admission (or acceptance) of all, that would be as grammatically smooth—,
and (c) responds to every total argument with a total value at type ¢. To bring the notion
down to the finite level we dispose of half of the demand (a), namely, that the set of
tokens be deductively closed, and we reinterpret “admittance” and “response” in (b)
and (c) in terms of consistency rather than entailment. The first move, which is clearly
dictated by the demand of finiteness, in some sense causes the reaction of the second
move: what we lose by denying deductive closure we have to regain with the wider and
more tolerant scope of consistency.

4.1 Finite density

At type p, a side extension of a neighborhood U will be any neighborhood U’ which
is consistent with U. We give a name to this rather mundane notion just to point to its
intended use: trivially, if U’ is a side extension of U, then U’ U U is an extension of U,
and this is exactly how we will work towards finding total extensions of neighborhoods.

Lemma 4.1. Let p and o be types. For every W € Conp_,¢ and for every map-
ping V. — V' of neighborhoods V € Cong to side extensions thereof, the finite set
UUeConi‘(fw) U, (W-U)") is a side extension of W.

Proof. To show the consistency of the finite set, let (U;, b;) be such that U; € Conztrw
and by e (W-U;), fori=1,2. If Uy =p Us, then W -U; = W -U, by Lemma
hence (W . Ul)/ = (W . Uz)/, and bl =0 bz.

To show the side extension, let (U,by € W and (U’,b") be such that U’ € Coni‘(rw)
and b’ € (W-U)'. If U =, U’ then by the definition of middle application we have
beW -U.ButW. U =5 (W-U)' by assumption, so b =4 b’ O

As we mentioned in section[T] a rotal token at a base type 1 is a token p € Tok, which
consists exclusively of proper constructors; write p € Tok{. We have Cp - - - p, € Tok§
if and only if C is a proper constructor of arity r and p; € Tok; foralli=1,...,r. So
SB=0 ¢ Tok§, but SB10 € Toky,. Define total neighborhoods inductively over types:

UeConf:= 4 Utyp,
peToks

WeConj_,s:= Y W-PeConf.
PeCon

Examples of total neighborhoods are {BO+,B+1} and {B0SO} at type DD, and the neigh-
borhood {{{0}),0,{{S*},80>} at type IN — IN, which we saw in the introduction. A
type 2 example would be the neighborhood

X = {({{ee}, 00}, 00, ({({ee}, 84)}, 80)}

at type (B — IN) — IN: Let T be a total neighborhood at type B — IN; for the total
singleton {tt} of type B we get T - {tt} - S0 for some m > 0, so we either have
T-{tt} =N Oor T-{tt} = S*, which by Lemma[3.7]2] means either T =p_,iy {{tt},0)
or T =p_, {{tt},S=); in the first case we get X - T = {0} and in the second case
X - T = {S0}, both of which are total neighborhoods at type IN, as we wanted.

The arguments of a higher-type total neighborhood form a finite set that can accept
(in the sense of middle application) every total neighborhood of the source type, in a

13
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way that ensures their safe (that is, consistency-respecting) allotment to an appropriate
value. Define weakly omniceptive finite sets explicitly by

. ) _ P
FGFII’I;)VD.I \vé 3 P=,U".

PeConf, UPeCon!
At atype p — o call O a (strongly) omniceptive finite set, and write ® € Finz_,c, if

OcFiny’ ;A Y (UeConj A®-UeFini AU,0-U)<0),
UeConfiis)

which intuitively says that, beyond weak omniception, ® must meet certain requirements
of finite totality, preservation of omniception, and closure under middle application for
each of its left maximals. By convention, we set Fin{ := Fin}"’ for arbitrary base types.
In the following we always use the term “omniceptive” (without a qualifier) to mean
“strongly omniceptive” (which for base types is the same as “weakly omniceptive”). A
further convention that we will often employ in subsequent arguments is to use lower
case “g”, “wo”, and “0” as superscripts of terms: for example, we may write “U$” for a
neighborhood that is to belong to Con® and possibly relates to a previously discussed
U, or “I'°” for a finite set that is to belong to Fin? and possibly relates to a previously
introduced I".

Call a type p finitely dense if every neighborhood U at p has a total side extension
U8, and finitely omniceptive if every finite set I has an omniceptive extension I .
Moreover, call it finitely total-transitive if every total neighborhood U is transitive (in
p). The latter just means that Uy =, U =, U, implies Uy =, U, for all U;,U; € Conyp,
and we write U € Conf;r. Here’s a lemma to set the intuition straight.

Lemma 4.2 (Compactness of transitivity). Let p be a type. A neighborhood is transitive
in p if and only if it is transitive for every finite set of p.

Proof. For the less trivial direction, let U € Con, be such that U € ConCtrF for every
I' € Finp, and let Uy, U, € Con,, be such that Uy =, U =, Us. SetI" := Uy U U Uy;
then we have U =, U, by I'-transitivity. O

To start off the main argument we need some elementary definitions and observations
concerning base types. The size ||a| of a base-type token a € Tok, counts the proper
constructors of the token: ||| =0and [Ca;---a;| =1 +|ai| +--- +|a|. Itis an easy
induction to show that {a} |-, b implies ||a| = || for all tokens a, b. The supremum or
eigentoken sup(U) of a base-type neighborhood U € Con, is defined by sup(JJ;) = =,
sup({a}) = a, and sup({ay,...,an}) = sup’(---sup’(ai,az) - ,an) for m > 1, where
sup’(a,*) = a and sup’(Cay ---a,,Cby - -+ b,) = Csup'(ay,by) - - -sup' (a,, b,;) (we do not
need to define the auxiliary mapping sup’ on inconsistent pairs). Again, an easy
induction shows that U ~, {sup(U)} for all U € Con,; in particular, we can represent
every total neighborhood P € Con? by its total eigentoken sup(P) € Toks.

Proposition 4.3. Every base type is finitely total-transitive, finitely dense, and finitely
omniceptive.

Proof. Let 1 be any base type with a distinguished nullary constructor 0. For the
transitivity of total neighborhoods, let P € Con{ and Uy, U, € Con, be such that U; =, P
for each i. Then P |-, U;, for both i = 1,2, since, as is easy to see, total tokens are
maximal at base types, so U; =; Us.

14
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We turn to finite density by firstly considering tokens: the trivial token = is consistent
with 0, and if py,...,p, are total tokens consistent with ay,...,a, respectively, then
Cp1 -+ pris a total token consistent with Ca; - - a,, for an r-ary constructor C. Finally,
if U € Cony, and p is a total token consistent to sup(U), then the neighborhood {p} is
obviously a total neighborhood consistent with (above, even) U.

Before we turn to the finite omniception we need some auxiliary facts. Firstly, we
claim that

V YV (lal>]pl—ax p). 3)
aeTok, pETokf

Indeed, let p be a total token and a an arbitrary token. In case p consists of a single
nullary constructor, then ||p|| = 1 and there have to exist a constructor C with arity r > 0
and further tokens ay,...,a, such that a = Cay - - -a, (with |a;|| > O for at least some i);
we have a =%, p by the definition of consistency. In case p = Cp; - - - p, for some total
tokens p1, ..., pr, then a will either start with a different (non-nullary) head constructor
than C, in which case we are done, or there must exist ay,...,a, such thata = Ca; - - - a,;
from |a| > ||p| it follows that >, [la;| > 3., | pi|, so there must exist at least some i with
laill > ||p;|; by the induction hypothesis we know that this means that a; %, p;, therefore
ax,p.

Now, for a fixed total token p € Tok{ and a fixed natural number n, let UP" stand
for the finite set {a € Tok, | a =, p A |a| < n}; this is a neighborhood thanks to the
transitivity of the total p. Note that for every p we have U PO — {#,}, and also, due
to (@), for all n > | p| we have UP"* = UP:IPl, Now, either p consists of a single nullary
constructor or not; in case it does, then U”! = {x,, p}, while if p = Cp;--- p, for
a constructor C with arity r > 0 and total tokens py,...,p,, then we claim that the
component neighborhoods satisfy

_9 urn (i) =uret, @)

Indeed, fix an i. From left to right, assume that o' e U P(§); this means that there exists
an a € UP" such that a(i) = a'; by the definition of U”", we know that a =, p which

1mp11es that @' =, p;; we also know that |a| < n, so Ha’H lal| =1 < n—1, therefore
a' e UP"=1, For the other way around, assume that a e UPi"=1 that is, that ¢’ =, Di
and |a’| < n— 1; consider the token a := C¥a' ¥ (which has a' as its i-th component

token and stars everywhere else); it obviously satlsﬁes a =, p, and since Hai | <n—1,it
also satisfies ||a| < n, therefore a € UP"; it follows that a(i) = a' € UP"(i).
Finally, we claim that the following holds for a fixed n:

V V (lal=n<lplra=0"" Ut a). 5)
aeTok; peTok§

Indeed, let p be some total token and a an arbitrary one, such that |a| = n < ||p|| and
a =, UP". Incase n = 0, we necessarily have a = %, € UP" 9 In case n > 0, then for

some constructor C of the algebra 1 with arity r there exist total tokens py,..., p, such
that p = Cp; -+ p,, and since C* € UP" and a =, UP", there exist tokens ay,...,a,
such that a = Cay - --a,; forevery i = 1,...,r, since a =, UP" we have q; =, U””('),

which by @) means that a; =, UP"~1(i ) whlle from the assumption that |a| = n we
get |a;| < n— 1; the induction hypothesis yields U?:"~! |-, a; for every i; so we get

", CUP™(1)---UP™(r) 8 cypin-t..  yprn—l -, Cay---a, = a,

and we are done.
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Now for the finite omniception. If I" is trivial (that is, if it carries no proper
information), then set I'? := {x}. If not, let m := max{||sup(U)| | U € Conr}, and set
I'? :={a e Tok, | |a| < m}. Consider a total neighborhood P and let p := sup(P). In
case ||p| < m we have p e I'?, so it suffices to set U” := {p}. In case | p|| > m, we set
U?.=uyrm, by the construction of I'’ we have UP"™ € Conr», and we also have that
UP™ is transitive in I"?: for any two tokens by,b; € I'° with by =, UP"™ =, b, since
|bi]| < m < ||p| for both i, we get € UP™ —, b; from (3)), so b; =, b;. O

Proposition 4.4 (Finite total-transitivity). Let p and G be finitely total-transitive types.
If p is finitely dense then p — © is finitely total-transitive.

Proof. LetT e Conﬁ_,c and Wi, W, € Conp_,s, with W) =, T =p_,; W>. Consider
pairs (U;,b;) € W;, i = 1,2, and assume that U; =, U,. By the finite density at p, there
exists a P € Con$, such that P =, U; U U,. By the assumptions at p and Lemma
we get by =5 T - P =g by. But T - P is total, so the assumption at ¢ gives by =5 by. [

Proposition 4.5 (Finite density). Let p and ¢ be types. If p is finitely omniceptive and
O finitely dense and finitely total-transitive, then p — G is finitely dense.

Proof. Let W € Con,_,s be any neighborhood. By finite omniception at p we get a
I' € Finj with L(W) < I". Consider the neighborhood W := Jyccon. (U W "U); by
Lemma@]we have W ~,_,c W°. Now set

wee= | w.we o,

U eConz‘(rW(,)

with the help of density at o; note that L(W8) = L(W?°) =TI". This is a side extension of
W (therefore of W as well) by Lemma 4.1}

To show that it is total, let P € Conf,. Since L(W¢#) is omniceptive (in fact, that it is
weakly omniceptive is enough), there is some U” € Con{" such that P =, U P We have
UP,(We.UT)8y = Wé by construction, and W& - P = (W -UF)$, since, by transitivity
of total neighborhoods at &, the value W° - P is independent from the choice of U”. [

Proposition 4.6 (Finite omniception). Let p and © be finitely total-transitive types. If
p is finitely dense and © finitely omniceptive, then p — © is finitely omniceptive.

Proof. Let © € Fin_, 5 be any finite set. Extend it as follows:

e:=0u | ws(e-v)),

UeConis,

with the use of finite density at p and finite omniception at .
If we show that this is weakly omniceptive, then it will be omniceptive immediately
by construction (based on Lemma . LetT e Conf,_,g. For every U € Conﬁl@x) we

have T - U# € Con$, and since (@ -U)° is omniceptive, there will be some V7'V ¢
Conf ¢y such that T - US =¢ VT'U (). Fix these side extensions and set

wh= () @wsvh).

U eCon‘If‘(“én>

We have WT < ©° by construction. Moreover, we have T =,_,; WT: let (U,b) € T and
U0y e WT be such that U =, U’; we have be T-U’ and b’ € VIV 0 b =4 b by
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(). Since T is total, W7 is a neighborhood by transitivity of total neighborhoods, which
we get for p — o by Proposition[4.4] Finally, it is transitive in @ by Lemma[3.12|2]
since for every U € Conjig;) we have by construction WT .U =vTU which is transitive

in @ - U by omniception. O

Theorem 4.7. Every type is finitely omniceptive, finitely total-transitive, and, in partic-
ular, finitely dense.

Proof. We get this by mutual induction over types from Propositions [4.3] (4.4} 4.3 and
4.0 O

4.2 Totality of transitive neighborhoods

There is plenty of evidence to suggest that total neighborhoods at p are to Con, what
transitive neighborhoods in I" are to Cony. For one, Theorem shows that total
neighborhoods are transitive. Furthermore, an immediate corollary of total transitivity is
that consistency, restricted to the total neighborhoods, becomes an equivalence relation,
that is,
Y (Pi=pPy=pPs—> P =pP3) .
Py,Py,P3eCon}

Here are further examples of using total transitivity, which include some more evidence
to this effect.

Lemma 4.8. Let p and © be types. Let © € Finy_,, P,P' € Con§, and U,U’ € Con,,.

1. For every UF € Cony g with P =p UP, we have ® -P < @ -U". Moreover, we
have ® - P = O -U® whenever U' € Congl(aé).

2. IfP=, P then®-P=0- P
3. IfUeConj and U’ \-p U, then U’ € Con},.
4. If TeConf_,gand U € Conzt(rT) then T -U € Con§,.

Proof. For([l] let b€ ® - P. Then, by the definition of middle application, there is
some U with (U, b) € ©, such that U =, P. From U =, P =, U we get U =, U” by
Theorem so the definition of middle application yields that b € @ - U?. Moreover, if
U? is actually maximal in L(®), then by Lemma [3.11]3|we immediately get © - U
O-P.

For assume that P =, P’ and let b € © - P. By the definition of middle application,
there is some U with (U, b) € ©, such that U =, P. By Theorem and the assumption
we have U =, P/, sobe®-P'.

For 3] At a base type t if U € Conj, then there exists a total token p such that
U I, p. The transitivity of entailment yields what we need. At a higher type p — o, let
W e Con§_,s and W' I-p_.c W. Let further P € Con§. By Theorem , P is transitive
for L(W), so by the left monotonicity of middle application on transitive arguments
(Lemma , we have W - P 5 W - P, and by the totality of W we get W - P € Con,,
so the induction hypothesis at ¢ finishes the job.

For {4, By Theorem {4.7| there exists some PV € Con§ with PV =, U. By |[l| we
have T-PY C T -U, where T - U is consistent by Lemma It follows by [3|that
T-U e Con. O
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Note in particular that Lemma[4.8|3]is analogous to Lemma [3.3] (both of them actually
anticipate Lemma5.2).

We now show that the correspondence between transitivity and finite totality is
complete.

Theorem 4.9 (Explicit finite totality). At every type, a neighborhood is total if and only
if it is transitive.

Proof by induction over types. The rightward direction we have of course from Theo-
rem For the other direction, we have to show that, at each type, every transitive
neighborhood must be total.

At a base type 1, assume that U € ConS". Obviously, we have U #, {*}, so there
will be a constructor C and tokens aj,...,a, € Tok; such that U ~; {Ca;---a,} (its
supremum). By Lemma([3.4]2] since U is transitive, for any two tokens by,b, € Tok, we
will have by =, U =, b imply by =, by. Then fori = 1,...,r we have

bii=va;=ybyi=Cay---bi;---ar =, U=, Cay---byi---ar

ctr

3cal"'b1i“'ar:l Ca]...bZi...ar

= by =, by;

for any by;, by, € Tok,, which by induction hypothesis yields a; € Toks. It follows that
Caj ---a, itself is a total token, so U is a total neighborhood.
At type p — o, assume that W € Conf)"_,a, and let P e Conf,. For any by,b; € Toks

we have

by=cW -P=5b = <P7b1> =p>oc W =p_05 <Rb2>

ctr

= <Pa bl> =p—0o <P,b2>
= b| =¢ by,

which means that W - P is transitive in o, so by the induction hypothesis at ¢ we get
W - P € Con§;, and by the definition of finite totality we have W € Con}_, 5, as we
wanted. O

The theorem indicates that our notion of finite totality is a robust one. In the next
section we will see how we can connect it to the traditional notion of totality for ideals.
Interestingly, we will see that its equivalence to transitivity is peculiar to the finitary
level: in Proposition [5.12]the respective correspondence for ideals is shown to be tilted.

S Elevating totality to ideals

The last step in our strategy is to find a canonical extension of a total neighborhood to a
total ideal. The natural candidate would be the deductive closure of a neighborhood, but
again, closure under entailment is too strict for our purposes, since it presents recurring
technical difficulties stemming from the fact that the application of ideals is an “upper”
one, while we have defined finite totality in terms of middle application. Instead, based
on the transitivity of total neighborhoods, using closure under consistency proves to be
a more natural choice.
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5.1 Density

The notion of continuity that we employ in our setting implies that if we are given an
estimate V on a value f(x) then we can find an adequate estimate Uy on the argument x
of f; let us highlight this elementary fact since we will need it later on.

Lemma 5.1 (Finite support). Let f: p — 6 and x: p. ForeveryV € Cong withV < f(x)
there exists a Uy € Cony such that Uy < x and (Uy,V) < f.

Proof. From it follows directly that if b € f(x) then there exists a U, < x such
that (Up,b) € f due to the deductive closure of f. Assuming then that V is such that
V < f(x), for Uy := |Jpey Up we indeed have Uy < x, and also (Uy,V) < f by the
deductive closure of f. O

Anideal x : p is a total ideal, for which we write G, (x)orxe Gy, if it conforms to
the following inductive clauses.

G/(x):= 4 Pcx,

PeConf

Gpaa(f) = \V/(Gp(x) — Go(fx)) .

x:p

Note that the base type definition is equivalent to demanding the existence of a p € Tok?
such that p € x. Totality of ideals is upwards closed.

Lemma 5.2 (Extension lemma). At type p, if x,y : p are such that Gy (x) and x <y then
Gy )

Proof. At a base type 1, let G,(x) and y : 1 be two ideals with x £ y. Then there is
a total token p € Tok§, such that p € x, so also p € y. At a higher type p — o, let
Gp—o(f), g: p — 0, and assume that f = g. We want to show that g is also total, so
consider an arbitrary x with G, (x). By the totality of f we have that G4 ( fx), and since
it is straightforward to see that fx € gx, we get G4 (gx) by the induction hypothesis at
c. O

The main argument starts with the following obvious observation.

Lemma 5.3. At every type, if a neighborhood is transitive then its consistency closure
is an ideal (and the converse holds as well).

Proof. Letp beatypeand U € Con,c,tr. By transitivity, every two tokens in the consis-
tency closure of U will be consistent, and the consistency closure is already deductively
closed: U’ < U means U =, U’ by definition, so if U’ -, a, then propagation yields
U=pa,henceae U as well. The converse is also direct to show. O

By Theorem[4.9] an immediate consequence of this lemma is that the consistency closure
of a total neighborhood is an ideal, so it suffices to show that, for a given P € Con’;;, we
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must have G, (P). Consider the following statements for an arbitrary type p.

V V 4 U= (0)

FEFinz xeGp UXGCOH%"

\y YV U *kpU=px— d UrpUsSxnl *k,Up)), (W)

U,U’eCon,p x€Gp UpeConp

VY PeG,, ©)
PeConf

V dUcx (D)
UeConp xeGp

The first one is an expression of infinitary omniception, as it states that an omniceptive
finite set accepts each total ideal by being consistent with it with one of its transitive
neighborhoods. The second expresses inconsistency preserving witnessing of the consis-
tency between a total ideal and a neighborhood; the claimed witness is stronger than the
neighborhood itself, since it lies below both the total ideal and the neighborhood, and in
a sense to be made clearer after Lemma 5.8 below, it provides the missing feature from
omniception that we need to achieve totality on the level of ideals. The third one is the
crux of our strategy, as it says that the consistency closure of a total neighborhood is a
total ideal, and the fourth one, of course, is density.

Proposition 5.4 (Conditional density). Let p be a type. If (C) holds in p then also (D)
holds in p.

Proof. Let U be any neighborhood at type p. By Theorem there exists a total
neighborhood PY such that U =, PU. Then U < PV by definition, whereas PV € G,
by (C). We set x := PU and we are done. O

Lemma 5.5. Every base type satisfies (O), (W), (C), and (D).

Proof. Let 1 be some base type. To show (O}, consider an omniceptive finite set I" and
a total ideal x. By the totality of x there is some P € Con{ such that P C x, and by the
omniception of I" there is some U” € Con$" such that UP =, P. Set U* := U”. Then
for every U < x we have U* =, P =, U, which implies U* =, U by the total transitivity
of 1 (Proposition , so U* =, xE]

To show (W), let U and U’ be neighborhoods and x be a total ideal, such that
U’ %, U =, x. By the totality of x there exists a total neighborhood P such that P C x.
We have of course P =; U, which, since total tokens are maximal at base types, implies
that P =, U. This in turn implies that U < x by the deductive closure of x, so we may
set Up := U, which trivially meets the stated requirements.

To show (C), let P be some total neighborhood. Then there is some total token
p € Tok; with P |~ p; a fortiori we have P =, p,so pe P by the definition of consistency
closure. Since by Lemma the set P is an ideal, we conclude that it is in fact total.

Finally, that every base type is dense we get from Proposition [5.4] since (C) already
holds. O

Proposition 5.6 (Omniception). Let p and o be types. If (C) holds in p and (O) holds
in o then (O) holds in p — ©.

SNotice that here we only needed weak omniception from I". Furthermore, observe that in the flat setting
this argument would fail due to the requirement of finiteness of I".

20



B. A. Karidais, “M and totality”, draft of 8 Feb 2018, 12:53 p.m.

Proof. Let® e Fin;;ﬁ(F and f € Gp_,s. By the finite omniception of & we know that
each U € Con?("g) is a total neighborhood, so by at p we have U € Gy. By the

totality of f we have that f(U) € G, so there will be some V/ @) e Cong',, such that

VIO = f(U), because @ - U is omniceptive by the finite omniception of @ and (O)
at o. Based on these, we may set

wi= | W

UeCon‘L“(ag))

We have W/ € Conl' by Lemma Furthermore, let (Up,boy € W and (U, by € f
be such that U =, Up; then U < Uy (remember that Uy is a total neighborhood) and
consequently U € UNO by the propagation of consistency; by the monotonicity of f we
get £(U) < f(Uy), so since b e f(U) it must also be b € f(Up); but f(Uy) =¢ v/ (@)
and by € V) 50 b =4 by, as we wanted. O

Proposition 5.7 (Witnessing). Let p and o be types. If (D)) holds in p and holds
in © then (W) holds in p — o©.

Proof. Let f € Gp_,c and W,W' € Con,_, be such that W’ %, _,c W =,_, f. For
i=1,....mletU e Cony ) and U; € Cony ) run through all witnessing pairs of
inconsistency between W’ and W, that is, cover all the cases where

Ui/ Xp Ui/\W/.Ui/ *GWUI

By (D) at p, for each i there exists an x; € Gy such that U! v U; € x;. By the consistency
of (upper) application, for every such x; we have W " U; =4 f(x;), and by (W) at o
there exists some Vjg € Cong such that W " U; -6 Vig < f(x;) and W' U/ %4 Vip. By
Lemma 5.1} there exists some Uy, < x; for every i such that (Uy,,Vip) < f. Letting
Uio := Uy,, u U} U U;, by the deductive closure of f it follows that (Ujg, Vio) < f. Since
by the hypotheses at ¢ for every i we have

<Ui7W ) Ul> l_pHG <Ui07‘/i0> = f N <Ui/?W/ ’ Ui/> *PHG <Ui07‘/l'0>7

it follows that
W po | JUi0,Vioy € f AW *pso | Wi, Vo),
i=1 i=1

so we may set Wy := [ J/_,{Ui, Vio) and we are done. O

We may generalize the property (W) to account for inconsistency preserving wit-
nesses of the consistencies between a total ideal and neighborhoods in a finite set.

Lemma 5.8. At a type p, the statement is equivalent to the following: Let I" € Fin,
and x € Gp; for all U € Conr with U =, x there exists a neighborhood Ny r . € Con,
such that

UtpNyrxSxn Y (U *pU—U %, Nyrx). (W)

U’eConp

Proof. Let I' be a finite set, U some neighborhood of I" and x a total ideal. Assume that
(W) holds, and furthermore that Uy, ...,U,, € Conr are all neighborhoods in I" such
that U; 5xp U fori = 1,...,m. Then for each such i there is a neighborhood Up; € Con,
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such that U; %, Up; and U +, Up; < x. Setting Ny, := | J;~; Uo; we are done. In the
other way around, let U and U’ be two neighborhoods and x a total ideal, such that
U’ *, U =p x, and assume that holds for all finite sets I", neighborhoods U < I
and total ideals x. Setting Uy := Ny y_y » We are done. [

So if I'" accepts a total ideal x at all, even if with a nontransitive neighborhood U, then it
could be safely side extended to include a common part Ny - of U and x; enriched in
this way I" would now accept x in the strong sense of inclusion. This is exactly what we
need to exploit by taking the consistency closure of a higher-type total neighborhood,
provided its list of arguments is omniceptive. But let us get to the details without further
ado.

Proposition 5.9 (Closure). Let p and & be types. If (O) and hold in p and
holds in & then (C) holds in p — ©.

Proof. Let T € Conj_,; and x € Gp. We show that T(x) € Go. Based on Lemma
we may assume that L(T') € Fing without harming generality. By (O) at p there exists a

U*e Conz‘(rT) such that U* =, x. By Lemmawe have T -U* € Con%, and by
at ¢ we have T -U* € G,. So in order to show that f(x) € Gg, it suffices to show that
T -U* < T(x) and invoke Lemma

Let then b € Toks be such that b € T -U*. This means that b =5 T-U*. By

Lemma we have (U*,b) =p . T. By (W) at p and Lemma [5.8] there exists
a neighborhood Uy := Nyx 17« € Conp such that

U'tpUicxn Y (U %y U U 5, Up);
U’GCOI’ILU-)

we have (Ug,b) =p_.c T, because for every (U’,b") € T with U’ =, U] it has to be
U’ =, U* from the above, therefore b = b’ follows by (U*,b) =,_.c T. We have

found a U, := Uy € Con, such that (U,,b) =y, T and U, < x; but this means by
definition that b € T'(x), and we are done. O

Theorem 5.10 (Density). Every type satisfies (O), (W), and (C), and in particular,
every type is dense.

Proof. 1t follows by a mutual induction over types by Lemma [5.5]and Propositions @

B.65.7 and[5.9

As a closing remark, we should note that the witness which we provide is actually
the maximal total extension of a given neighborhood, in the sense that if, for a type p,
U € Con, is some neighborhood, U¢ € Conf) is the witness provided by Theorem

and x € G, is such that U < x, then x < Us.

5.2 Nontotality of transitive ideals

In the same way as we did with finite totality and transitivity in Theorem 4.9} we would
like to know if we can connect totality and transitivity on the level of ideals, and possibly
obtain an explicit characterization of totality in terms of consistency. We show that this
is not possible.

In [5, 6], an element x is defined to be almost maximal when y; 2 x € y, implies
y1 =y, for all y; and y,. At the same time, we call x transitive if y; = x =y, implies
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y1 =y, for all y;,y,. We also extend the bar notation for the deductive closure to ideals,
in particular we write XUy to mean the set {a | ey, U F a}. We immediately see
the following.

Lemma 5.11. At every type, an ideal is almost maximal if and only if it is transitive.

Proof. That transitivity implies almost maximality is clear. To see the converse let x be
almost maximal and y; = x = y;. Then x € y; Ux for each i and we get y; Ux =y, UX
by almost maximality, which yields y; = y,. O

It is well known that in hierarchies over flat base types there exist functionals which are
maximal—and therefore, by the above lemma, transitive—but not total, typical examples
being various second order minimization operators [46, Example 8.3.2, Exercise 8.5.14].
In the nonflat setting we have counterexamples already at inductive base types, as we
will see immediately. For the following we express the transitivity of x through tokens,
similarly to Lemma[3.4]

Proposition 5.12 (Total-transitivity). At any type, total ideals are transitive. Conversely,
there exist types with transitive ideals that are not total.

Proof. At a base type 1, let ay, ap be tokens and x a total ideal, such that a; =, x =, a>.
There exists a total neighborhood P with P € x, so the assumption yields a; =; P =; a,
which implies a; =, a» by the finite total transitivity of ¢ (Proposition 4.3).

At a higher type p — o, let (Uy,b;), {(U,,b) be tokens and f be a total ideal,
such that (Uy,b1) =p_s f =p—c (U2,b3). Assume furthermore that U; =, U,. By
Theorem@there exists a total ideal x : p such that U; u U, < x. Since f is itself total,
the ideal f(x) : o must also be total, and by the induction hypothesis at ¢ it must also be
transitive. Now, applying all terms of the assumption to x we obtain by =5 f(x) =4 b2,
which then yields by =4 b>.

For the converse, consider the ideal 00 = {S"x | m > 0} of type IN. O

5.3 Noncontinuity of totalization

The witness for density that we have provided in section[5.1]is a mapping of the sort
tot : Conp, — pﬁ It is easy to see that this is not a “continuous” mapping—that is, it
does not extend to an ideal of type p — p—since it can not be expected to preserve
consistency: consider the neighborhoods {Sx} and {SSx} at type IN; these are consistent
with each other, but

tot({S#}) 9 S0 %y SSO € tot({SSx*}) .

This counterexample is general enough to convince us that this shortcoming is not
particular to our witness.

Lemma 5.13. There is no consistency-preserving mapping t : Cony — IN such that
Uct(U)andt(U) € Gy for all U € Cony.

Proof. If such a mapping existed it should be ¢ (U, ) =< #(U) for any two neighborhoods
Uy,U, € oo. Fixing such a U with ¢(U;) = {S"0} for some n and setting Uy := {S" 1%}
we get t(Uy) % t(Uy), a contradiction. O

6Such mixed typings of terms appear often and naturally in considerations within information systems,
and should be accounted for in a theory of partial computable functionals together with their approximations
as in [20].
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5.4 Separation

One of Berger’s key insights in [2], which permeates all subsequent approaches that
our work is based upon (including our own), was that the notion of totality can be
clarified if density is viewed together with an accompanying notion of “separation”:
intuitively, a type p is considered to feature the separation property, if any two open sets
of conflicting information can be told apart by a total “predicate” of type p — B. His
argument proceeded by mutual induction for both properties of density and separation
over all finite types. What we did instead in our mutual inductive arguments above was
in effect to replace the notion of “separation of neighborhoods by infinite total ideals”
by notions of “acceptance of total ideals by finite sets”. In our exposition separation
follows as a simple corollary of density.

Following [44]], and assuming the presence of the booleans in the type system, call a
type p separating if

V UkU — I U,ttyefa{U,ft)),

U,U’eConp feGpB
and finitely separating if

YV UkU - 4 Utt)y=, T =p_5 U L))

/ 8
U,U’eConyp TECoanIB

Proposition 5.14 (Separation). Every type is finitely separating, and consequently
separating.

Proof. If U and U’ are inconsistent a p, then the finite set {(U,tt),(U’, )} is a

neighborhood at p — BB, and by Theorem ere will exist some T € Conf;H]B which

side extends it. Consequently, by Theorem [5.10|the total ideal T will extend it. O

6 Notes

We gave a new, bottom-up proof of the Kreisel density theorem for finite types inter-
preted over nonflat inductive base types given as algebras by constructors. We introduced
a notion of totality for neighborhoods and proved a finite density theorem, which states
that, given a neighborhood, one may first totalize it in an explicitly finitary way to obtain
a total neighborhood. Kreisel density is obtained by extending this total neighborhood to
a total ideal by means of consistency; the resulting ideal, though generated by a compact
element, is the maximal totalization of the given neighborhood. Here we gather notes
on the above, on related literature, and on future work.

The density theorem in the literature

As already pointed out in the introduction, the density problem was addressed for the
first time by Kreisel [25] and also Kleene [24]. In his phd thesis [2], Ulrich Berger
recast and solved the density problem within domain theory, generalizing results of Yuri
Ershov [13}14] and paralleling work of Dag Normann [30]—see [3}46] for an account
in English. A proof which does not thematize separation is given by Dag Normann
in [33]], while a modern approach from a viewpoint of an all-encompassing theory of
higher-type computability can be found in the recent volume by John Longley and
Dag Normann [26]. The density theorem is a fundamental result with several deep and
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far-reaching applications, like the choice theorem [25} 13} 42], Kreisel’s representation
theorem [25] 29| [32]], a generalized Kreisel-Lacombe—Shoenfield theorem [3]], Nor-
mann’s theorem [34, |35, [38]], and Escardd’s theory of exhaustive search [15}116], as well
as extensions and generalizations, for example to dependent and universe domains [4],
to Scott’s equilogical spaces [1], or even to an account of totality independently of
density [31]—see also [15}133] 16| 36]]. It would be natural to seek among these studies for
ones that would benefit from the possibility of explicitly finitary totalization. Existence
of such cases would further justify the extension of the results presented here to richer
type systems, starting with the one adopted in [44], and possibly moving on to the type
systems covered in [4].

Related work

The problem of finding a proof of density theorem “by compacts” occurred to the author
back in the early 2011, and since then tackling it has primarily provided an incentive to
develop the theory of nonflat information systems for semantics (see [23] for examples
of collateral results). A partial result in the direction of finite witnesses for density
was presented in [21]], where, in contrast to the present approach, it was shown that
one may first prove a version of finite separation at every type and then use this as
a lemma to prove density (a version of our Proposition also appears there); that
approach provided a satisfactory finitary explanation of separation but not of totalization.
Meanwhile, an alternative bottom-up approach to the density theorem, which grew
independently but turned out to be similar in spirit to ours, was carried out by Davide
Rinaldi in [39]. Rinaldi offers a nonflat semantics which is topological rather than
domain-theoretic: he uses certain formal topologies [41]], for which he proves that they
are equivalent to unary information systems; these are information systems where in
addition neighborhoods always have eigentokens, that is, for every U € Con there exists
some a € Tok such that U ~ {a}. In our setting this is true of base types, but not of higher
types. To adapt Rinaldi’s semantics in a way that clearly matches broader categories of
information systems than just the unary ones, and look at a formal-topological proof
of density by compacts anew, would not only be instructive, but it could also provide a
more succinct and elegant proof.

Towards a common study of totality and cototality

Recently, “cototal ideals”, that is, total ideals together with infinities like co at type
IN, have been used to model stream-like objects at base types arising from initial
algebras, offering an alternative to versions of semantics simultaneously based on initial
algebras and final coalgebras [40\ |18 [17]; for this line of work, rooted in [7, [8} [11]],
see [9, 44} 27, 28], [10]. In view of the mismatch between transitivity and totality in a
nonflat setting which we described in section[5.2] it looks like a refinement is possible,
where totality should feature an increased degree of finiteness and should be studied
hand in hand with an appropriate notion of cototality: beside more or less obvious
differences of the two at base types (based on the proof of Lemma(5.13] for example,
one could expect continuous “cototalizations” to exist), their interplay at higher types
remains terra incognita at the time of this writing.
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