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Abstract

We interpret finite types as domains over nonflat inductive base types in order
to bring out the finitary core that seems to be inherent in the concept of totality. We
prove a strong version of the Kreisel density theorem by providing a total compact
element as a witness, a result that we cannot hope to have if we work with flat base
types. To this end we develop tools that deal adequately with possibly inconsistent
finite sets of information. The classical density theorem is reestablished via a “finite
density theorem”, and corollaries are obtained, among them Berger’s separation
property.

1 Introduction
In the area of denotational semantics of functional programming it is standard to view
data types as countably based Scott domains in the tradition that started with Dana
Scott’s and Yuri Ershov’s independent work in the late sixties and early seventies.
More particularly, we may view these domains through their representations as Scott
information systems, where programs are representatives of typed terms x : ρ with
denotations being ideals in appropriate information systems, that is, consistent and
deductively closed sets of tokens a P x; ideals are approximated by finite sets U Ď x,
their so called formal neighborhoods.

A crucial choice in our setting is to work with nonflat rather than flat domains for the
base types. These arise when we model base type partiality not as an extra pseudotoken,
but as an extra nullary pseudoconstructor, which participates in the formation of further
tokens and therefore leads to varying degrees of partiality. For example, while the flat
natural numbers tK,0,S0,SS0, . . .u feature just the bottom element for partiality, the
nonflat natural numbers (also called lazy natural numbers) tK,0,SK,S0,SSK,SS0, . . .u
feature several partial elements, likeK, SK, SSK, and so on; elements that do not involve
K, like 0, S0, or SS0, are called total. A basic advantage of this feature compared to flat
base types is that we obtain injectivity and disjoint ranges for the constructors.

More generally, base-type nonflatness yields domains which are in a certain sense
both richer, in that they contain more tokens, and tidier, in that they are finitely branching.
Such domains seem to accommodate arguments that a flat setting cannot afford, and this
paper intends to give one nontrivial example of this kind: an explicitly finitary approach
to the Kreisel density theorem, a key result in the theory of higher-type computability.

Density was first stated and proved by Georg Kreisel in [25], and in different terms
by Stephen Kleene in [24]. Building on work of Yuri Ershov [12, 13, 14], Ulrich
Berger [2, 3] generalized and established density within domain theory, drawing as a
corollary that it holds for the hierarchy of the partial continuous functionals over all finite
types, and thus recovering the Kleene–Kreisel continuous functionals as equivalence
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classes of the abstractly total elements in the hierarchy. Helmut Schwichtenberg and
collaborators have already carried Berger’s argument from the top (abstract domains
with totality) down to the bottom (concrete Scott information systems induced by
algebra constructors) numerous times in the past, starting with [42] and following up
with [43, 19, 20, 44]. The present work is related to these top-down approaches, but
attacks the problem in the opposite, bottom-up manner: we don’t merely adapt previous
domain-theoretic proofs to the setting of approximations, but rather work our way up,
from approximations to ideals.

Let us recall the content of the Kreisel density theorem. We work with finite types,
that is, with base types like N and B for naturals and booleans respectively, and then
with arrow types above them. We capture the concept of termination by a totality
predicate G:1 at base types ι , an ideal x is total if it contains a total token; at type ρ Ñ σ ,
an ideal f is total when it preserves totality, that is, when

@
x:ρ
pGρpxq Ñ Gσ p f xqq ,

where b P f x for a token b PTokσ if and only if xU,by P f , for some formal neighborhood
U P Conρ with U Ď x. The density property for a type, the latter being understood as a
space governed by the Scott topology, alleviates the omnipresent partiality by ensuring
that every open set in the space nurtures total points, in other words, that total points are
dense in the space. We formulate this here by saying that ρ is dense when

@
UPConρ

D
x:ρ

`

Gρpxq^U Ď x
˘

. (D)

The Kreisel density theorem says that every type is dense.
Let us look a bit closer at the statement (D). We are given a neighborhood U , morally

a compact element, comprising finite information, and we are supposed to come up
with an ideal x as a witness, which may in principle be an infinite set of tokens. It is
reasonable to suspect that the element of infinity in x must be inessential as far as an
actual process of “totalization” of U is concerned—whatever this process might be—and
that there is nothing inherently infinitary about it, since totalizing U should depend on
its finite information, and not on the fact that the resulting ideal may be infinite. Can we
then devise a totalization process which will feature an explicitly finitary core, that is,

can we provide a witness for density which will be obviously finitary?

We can easily see that in general we cannot do this if we interpret our base types by
flat domains: At type NÑN, consider the very simple compact given intuitively by
t0 ÞÑ Ku; extending it, say, to t0 ÞÑ 0u is not making it total, since it cannot respond
(with a total value) to any total input different than 0; if we want to extend it to a total
element, we must account for every possible total input except 0, which inevitably
leads to an infinite set, say to the set t0 ÞÑ 0uYtSm0 ÞÑ S0 | mą 0u. This totalization
process consists of two steps, namely totalizing the output on input zero from K to 0,
and setting all other outputs to be S0; nevertheless, the witness can only be presented
as an infinite set. On the other hand, if we had interpreted the natural numbers by their
nonflat domain, then we could have extended the compact t0 ÞÑ Ku to the compact

1The letter “g”—which probably derives from the English word general (for generally defined), and
perhaps is influenced by the German word gesamt (complete, total, whole)—was used in this context already
by Ershov [12, 14]. We adopt this notation here to designate totality in order to avoid confusion with other
terms beginning with “t” in our text.
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t0 ÞÑ 0,SK ÞÑ S0u, which would have sufficed, since the information SK is enough to
accommodate (later we will say “accept”) all total numbers different than zero.

Our strategy can be summarized as follows. Step 1: define an appropriate notion
of “total neighborhood”. Step 2: establish a “finite density theorem”, that is, that
every neighborhood extends to such a total neighborhood. Step 3: show that a total
neighborhood extends to a total ideal in a straightforward way.

We begin in section 2 with a necessary preamble on domains over nonflat base types
represented by information systems. In section 3 we prepare for Step 1. As we can
already see in the example that we gave above, one thing we have to do in order to
“totalize” a neighborhood is to appropriately extend the set of its inputs; this finite set
is seldom consistent, and in order to argue rigorously about it we must first develop
a general understanding of such sets and their intricacies. This section delays the
exposition of our argument a bit, but, beside gathering necessary definitions and facts, it
will hopefully help familiarize the reader with these intricacies. Alternatively, the reader
could skip to the next section and come back when the need arises. In section 4 we
perform Steps 1 and 2: we define finite totality and prove finite density with Theorem 4.7;
moreover, we characterize finite totality in a noninductive way in Theorem 4.9. Section 5
is about Step 3: with Theorem 5.10 we show how to obtain the classical Kreisel density
theorem from the finite density theorem; in addition, we list some direct consequences,
among them Berger’s “separation property” in Proposition 5.14. We end in section 6
with comments on the literature and future work.

2 Nonflat domains via coherent information systems
We concentrate on a type system supporting arrow types over inductive base types.2 We
use ξ as a dummy type variable. Write ÝÑρ Ñ σ to mean ρ1 Ñ ¨¨ ¨ Ñ ρr Ñ σ for some
r ě 0 associated to the right; in case r “ 0 the vector is empty.

• For every vector
ÝÑ
ξ of length r, the expression

ÝÑ
ξ Ñ ξ is a constructor type (of

arity r).

• If κ1, . . . ,κk are constructor types for k ą 0 and one of them nullary, then
µξ pκ1, . . . ,κkq is a type. We think of such types as inductively defined base types
or algebras, generated by constructors Cl corresponding to κl , for l “ 1, . . . ,k.

• If ρ,σ are types then ρ Ñ σ is a type; these are the usual higher types.

Note that constructor types only serve to build base types, and are not themselves
admitted as types. Examples of base types are

• the unit type U :“ µξ pξ q with a single nullary constructor,

• the type of boolean values B :“ µξ pξ ,ξ q, with constructors for the truth tt :B
and the falsity ff :B,

• the type of natural numbers N :“ µξ pξ ,ξ Ñ ξ q, with constructors for the zero
0 :N and the successor S :NÑN,

2In this section we omit proofs and details, for which the reader may consult [44, Part 3] and [46, Part I].
In relation to the former, in particular, note that we will be working within the nonparametric and finitary
fragment of the system.
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• the type of (extended) derivations D :“ µξ pξ ,ξ ,ξ Ñ ξ ,ξ Ñ ξ Ñ ξ q, with con-
structors for an axiom 0 :D, another axiom 1 :D, a one-premise rule S :DÑD,
and a two-premise rule B : DÑ DÑ D (this algebra is simple yet nontrivial
enough to provide us with examples as we go along).

We will write ι to denote an arbitrary base type and ρ , σ to denote arbitrary types in
general.

A (Scott) information system [45, 47] is a triple pTok,Con,$q, where Tok is an
inhabited countable set of tokens, Con is a collection of finite sets of tokens which we
call consistent sets or (formal) neighborhoods, and $ is a subset of ConˆTok, the
entailment. These are subject to the axioms

tau P Con,
U ĎV ^V P ConÑU P Con,
U P Con^a PU ÑU $ a,

U $V ^V $ cÑU $ c,

U P Con^U $ bÑUYtbu P Con,

where U $ V stands for U $ b for all b P V . From the latter follows vacuously that
U $H for all U , while H P Con follows from the first two axioms. We may refer to
the fifth axiom as propagation (of consistency through entailment); note that this axiom
may be equivalently expressed as

U $V ÑUYV P Con. (1)

For finite sets of tokens Γ which are not necessarily consistent we write Fin, so
ConĎ Fin. An information system is called coherent when in addition to the above it
satisfies

@
a,a1PU

ta,a1u P ConÑU P Con (2)

for all U P Fin. By the coherence and the second axiom above, it follows that the
consistency of a token set is equivalent to the consistency of its pairs. Drawing on
this property, we often write a— b for ta,bu P Con, and even U —V for UYV P Con
(which is also often written U ÒV ). In the following we work exclusively with coherent
systems, even if we don’t mention it explicitly.

Given two coherent information systems ρ and σ , we form their function space
ρ Ñ σ : define its tokens by xU,by P Tok if U P Conρ and b P Tokσ , its consistency
by xU,by — xU 1,b1y if U —ρ U 1 implies b —σ b1, and its entailment by W $ xU,by if
WU $σ b, where

b PWU :“ D
U 1PConρ

`

xU 1,by PW ^U $ρ U 1
˘

.

The last operation is called neighborhood application. We will revisit it in some depth in
section 3.3 where we will also show that it is monotone in both arguments, that is, that
U $U 1 implies WU $WU 1 and that W $W 1 implies WU $WU 1 for all appropriate
U,U 1,W,W 1 (Lemma 3.8). For the proof of the following see [44, Chapter 6].

Fact 2.1. The function space of two coherent systems is itself a coherent information
system.

4
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An ideal (or element) of an information system ρ is a possibly infinite token set
xĎ Tok, such that U P Con for every U Ď f x (consistency), and U $ b for some U Ď f x
implies b P x (deductive closure). If x is an ideal of ρ , we write x : ρ or x P Ideρ . Note
that in a generic setting built over flat base types, as for example the one described
in [46], the empty set at every type ρ is an ideal, and plays the role of the bottom element
Kρ .

By a (Scott–Ershov) domain we mean here a countably based directed complete
partial order with a least element, which is additionally algebraic and bounded complete.
A domain is coherent [37], if every set of compacts has a least upper bound exactly
when each of its pairs has a least upper bound. Write b PU if and only if U $ b (in the
generic flat-based setting we haveH“H“K). The following fact is directly based on
the fundamental work of Scott [45]; for the proofs supporting our particular formulation
see [46, Section 6.1] and [22, Theorem 8].

Fact 2.2 (Representation theorem). Let ρ “ pTokρ ,Conρ ,$ρq be a coherent infor-
mation system. Then pIdeρ ,Ď,Kρq is a coherent domain with compacts given by
tU |U P Conρu. Conversely, every coherent domain can be represented by a coherent
information system.

An approximable mapping between two information systems ρ and σ is a relation
r Ď Conρ ˆConσ that generalizes entailment in the following sense: xH,Hy P r; if
xU,V1y,xU,V2y P r then V1 —σ V2 and xU,V1YV2y P r; and if U $ρ U 1, xU 1,V 1y P r,
and V 1 $σ V , then xU,V y P r. One can show [45] that there is a bijective correspondence
between the approximable mappings from ρ to σ and the ideals of the function space
ρ Ñ σ , and moreover establish the categorical equivalence between domains with
Scott continuous functions and information systems with approximable mappings. The
equivalence is preserved if we restrict ourselves to the coherent case on both sides [22].

The Scott topology on Ideρ is given by the collection t∇U |U P Conρu, where ∇U
is the set tx : ρ |U Ď xu of all ideals above U . A set U Ď Ideρ of ideals is Scott open
when it is closed under supersets (Alexandrov condition) and for every x P U there
is a U Ď x such that U P U (Scott condition). One can furthermore show that an
ideal-mapping f sending ideals from Ideρ to ideals in Ideσ is Scott continuous when
it is monotone and satisfies the principle of finite support (also called approximation
principle) for all x : ρ , that is,

@
bPTokσ

pb P f pxq Ñ D
UPConρ

pU Ď x^b P f pUqqq. (FS)

Finally, it can be shown (see for example [44, §6.1.3]) that the ideals IdeρÑσ and the
Scott continuous ideal-mappings Ideρ Ñ Ideσ are in a bijective correspondence, a fact
that justifies the nondiscriminating notation f : ρ Ñ σ .

Now we proceed to assign an information system to each type. Every higher type is
naturally assigned a function space, so it suffices to discuss the information systems for
base types, that is, for algebras. Let ι be an algebra, with at least one nullary constructor
if it is to be nontrivial. We add to it an extra nullary pseudoconstructor ˚ι (or just ˚)
to denote partiality (which we nevertheless agree to not let it appear in the algebra
signature). This is a departure from [44], where partiality is treated as a special untyped
symbol which is used by all possible algebras; for us, every algebra has its own partiality
symbol. We define Tokι , Conι , and $ι inductively.

• If C is an r-ary constructor and ai P Tokι for i“ 1, . . . ,r then Ca1 ¨ ¨ ¨ar P Tokι .3

3Throughout the text we adopt the polish notation for tokens for typographical convenience.
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For its head constructor write hdpCa1 ¨ ¨ ¨arq “C; for its i-th component token
write apiq, that is, pCa1 ¨ ¨ ¨arqpiq “ ai for i“ 1, . . . ,r.

• We have a —ι ˚ and ˚ —ι a for all a P Tokι . Furthermore, if C is an r-ary
constructor and ai —ι bi for i“ 1, . . . ,r then Ca1 ¨ ¨ ¨ar —ι Cb1 ¨ ¨ ¨br. Finally, we
have U P Conι if a—ι a1 for all a,a1 PU .

• We have U $ι ˚ for all U P Conι . Furthermore, if C is an r-ary constructor,
every Ui P Conι is inhabited and Ui $ι bi for i “ 1, . . . ,r, then U $ι Cb1 ¨ ¨ ¨br
for all U P Conι that are sufficient for C on U1, . . . , Ur, in the sense that for
each i“ 1, . . . ,r and each ai PUi there exists an a PU such that hdpaq “C and
apiq “ ai. Finally, if U $ι b, then also UYt˚u $ι b.

Here we need to be cautious. The definition of Conι incorporates the coherence prop-
erty (2), so it follows thatH$ι t˚u. This seems to undermine Fact 2.2, since the empty
set cannot be an ideal anymore. It is nevertheless straightforward to show that the
representation theorem still stands if we reinterpret the bottom ideals as follows:

Kι :“ t˚ιu,

KρÑσ :“ txU,by |U P Conρ ^b P Kσu.

It is maybe worth pointing out that while our situation diverges from the generic flat-
based setting and even from settings like the one of [44], in the same time it resonates
the original Scott axioms [45]: there exists at least one trivial token in every information
system, in particular one at every base type and several at every higher type.

Concerning sufficiency, we note the following: (a) in case C is a proper constructor,
U is sufficient for C on U1, . . . , Ur if and only if UYt˚u is, if and only if Uzt˚u is, and
(b) we trivially have U $ι CU1 ¨ ¨ ¨Ur, whenever U is sufficient for C on U1, . . . , Ur; the
constructor application here is defined by

CU1 ¨ ¨ ¨Ur :“ tCa1 ¨ ¨ ¨ar | a1 PU1, . . . ,ar PUru,

which is consistent if and only if every Ui is consistent. Moreover, every neighborhood U
that is nontrivial (meaning, t˚u &ι U) is indeed equivalent to one of the form CU1 ¨ ¨ ¨Ur:
if

Uzt˚u “ tCa11 ¨ ¨ ¨ar1, . . . ,Ca1m ¨ ¨ ¨armu,

we gather all i-th component tokens into a neighborhood, the i-th component neigh-
borhood Upiq :“ tai1, . . . ,aimu of U , and let Ui :“Upiq for every i“ 1, . . . ,r; then we
indeed have U „ι CU1 ¨ ¨ ¨Ur (where U „V abbreviates U $V ^V $U).

The proof of the following is straightforward but tedious.

Fact 2.3. Let ι be an algebra given by constructors. The triple pTokι ,Conι ,$ιq is a
coherent information system.

3 Finite sets
Recall that the first step in our strategy is to decide on a reasonable definition of “finite
totality”, one that will already embody the totalization mechanism for density on the one
hand, and that will be susceptible to a canonical extension to a total ideal on the other.
The nature of our study leads us naturally to define the concept by induction over types,
which is what we do in section 4.1. Nevertheless, we will see in Theorem 4.9 that we can
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arrive at the same concept in an explicit way in terms of “transitive elements”: elements
that witness local transitivity within a not necessarily transitive relation—in our case,
the consistency relation. To work with such sets of tokens we need an operation akin to
application, defined using consistency rather than entailment. This is how we come to
spend some space discussing not necessarily consistent finite sets in some generality,
while we postpone the actual definition of total neighborhoods until section 4.

3.1 Entailment and consistency for finite sets
There is the trivial syntactical reason to look at finite sets in general and not just at
the consistent ones: the latter presuppose the former by definition—in particular, the
thematization of finite sets is unavoidable in implementation endeavors like [20]. But
finite sets may play a natural and important role within purely semantical arguments
as well—to mention a naive example, think of the subtokens a1, . . . ,ar of a base-type
token a“Ca1 ¨ ¨ ¨ar. In this subsection we will hardly cover anything more than what
we will need later, with the exception of Lemma 3.2, which we included for the sake of
some points in §3.3.

As we already mentioned, we write Finρ instead of P f pTokρq, so Γ P Finρ

means that Γ is a finite set of tokens, not necessarily consistent. If Θ “

txU j,b jy | j “ 1, . . . , lu P FinρÑσ , write LpΘq for
Ť

j U j P Finρ (notice that this is a
flattening), and RpΘq for

Ť

jtb ju P Finσ . Furthermore, if U P Conρ and ∆ P Finσ , write
xU,∆y for txU,by | b P ∆u P FinρÑσ (note that xU,Hσ y “HρÑσ ).

Lemma 3.1. Let Θ ,Θ 1 P FinρÑσ . We have LpΘ YΘ 1q “ LpΘqYLpΘ 1q and RpΘ Y
Θ 1q “ RpΘqYRpΘ 1q. Furthermore, if Θ ĎΘ 1 then we have LpΘq Ď LpΘ 1q as well as
RpΘq Ď RpΘ 1q.

A neighborhood in Γ P Finρ is a subset U Ď Γ , which happens to be consistent;
write U P ConΓ . The empty set and the singletons of Γ are always in ConΓ . Say that Γ

entails Γ 1 (as a finite set), and write Γ $F
ρ Γ 1, when

@
U 1PCon

Γ 1

D
UPConΓ

U $ρ U 1.

This is a generalization of the notion U $ρ U 1 for neighborhoods. A simpler, but
less helpful generalization is “Γ $ρ Γ 1 if and only if for every a1 P Γ 1 there is some
U P ConΓ such that U $ρ a1”; if Γ $F

ρ Γ 1 then also Γ $ρ Γ 1. Contrary to the case
of consistent sets, although Γ $F

ρ Γ 1 implies Γ $F
ρ a for all a P Γ 1, the converse is

not true in general. For example tB00,B11u $F
D B0˚ and tB00,B11u $F

D B˚1, but
tB00,B11u &F

D tB0˚,B˚1u.
Similarly, say that Γ and Γ 1 are consistent (as finite sets), and write Γ —F

ρ Γ 1, when

@
UPConΓ

@
U 1PCon1

Γ

U —ρ U 1.

Again, this is a generalization of consistency between neighborhoods which proves
more useful for not necessarily consistent finite sets than the simpler notion “Γ —ρ Γ 1

if and only if ta,a1u P Conρ for all a P Γ and a1 P Γ 1” (which we may nevertheless
occasionally use); if Γ —F

ρ Γ 1 then Γ —ρ Γ 1. Note that in the case of —F
ρ we generally

don’t have reflexivity; in fact, we trivially have Γ —F
ρ Γ if and only if Γ P Conρ . An

example of consistency between inconsistent finite sets is tB0˚,B1˚u —F
D tB˚0,B˚1u.

Reflexivity of consistency is the only property that the triple pFinρ ,—
F
ρ ,$

F
ρ q lacks

in order to constitute a Scott information system.
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Lemma 3.2. The entailment between finite sets is reflexive and transitive and the
consistency between finite sets is symmetric and propagates through entailment, that is,

1. @ΓPFinΓ $F Γ ,

2. @Γ ,∆ ,ΘPFinpΓ $
F ∆ ^∆ $F Θ Ñ Γ $F Θq,

3. @Γ ,∆PFinpΓ —
F ∆ Ñ ∆ —F Γ q,

4. @Γ ,∆ ,ΘPFinpΓ —
F ∆ ^∆ $F Θ Ñ Γ —F Θq.

Proof. We just show the propagation property. Let Γ ,∆ ,Θ P Fin be such that Γ —F ∆

and ∆ $F Θ . Consider U P ConΓ and W P ConΘ ; by the assumptions, there exists a
V P Con∆ with V $W and U —V ; by propagation on Con (1) we get U —W .

3.2 Maximal and transitive neighborhoods
Think of some finite set Γ of type ρ and suppose that we wish to assign σ -values bi to
neighborhoods Ui of ConΓ (for some i P I) in a way that the finite set txUi,biy | i P Iu
at type ρ Ñ σ will be consistent. Some reflection shows that it suffices to pair the
“maximal” neighborhoods of Γ with the given values of σ , but we can actually do better
than that: we can relax the requirement of maximality by requiring instead that we
assign the given arbitrary values already to those neighborhoods which are, so to speak,
maximal enough or “almost maximal”, in the sense that they are below exactly one
maximal in Γ ; these are exactly the “transitive neighborhoods” in Γ .

Call U P ConΓ a maximal neighborhood in Γ , and write U P Conmax
Γ

, when it is
maximal with respect to the entailment relation, that is, when

@
U 1PConΓ

pU 1 $ρ U ÑU $ρ U 1q.

Call U P ConΓ (consistency) transitive in Γ , and write U P Conctr
Γ

, when it satisfies the
property

@
U1,U2PConΓ

pU1 —ρ U —ρ U2 ÑU1 —ρ U2q.

We can reformulate this by introducing the notation rU for the consistency closure of
U , that is, for the set ta P Tokρ |U —ρ au (it is clear that, while it encompasses the
deductive closure, the consistency closure of a neighborhood is not in general an ideal,
because consistency may fail); then U is transitive in Γ when rUXΓ P Conρ .

More generally, call U P Conρ transitive for Γ or just Γ -transitive (in ρ), and
write U P Conctr

ρ|Γ
, if, again, U1 —ρ U —ρ U2 implies U1 —ρ U2 for all U1,U2 P ConΓ ;

obviously, Conctr
Γ
Ď Conctr

ρ|Γ
.

It is clear that every maximal in a finite set is also transitive in it. It is also immediate
that consistency between neighborhoods, restricted to Conctr

Γ
(but not to Conctr

ρ|Γ
!),

becomes an equivalence relation. Still trivially, but importantly, we have the following.

Lemma 3.3 (Upward closedness of transitivity). Let ρ be a type and Γ P Finρ . For any
U,U 1 P Conρ , if U P Conctr

ρ|Γ
and U 1 $ρ U, then U 1 P Conctr

ρ|Γ
.

Proof. Let U1,U2 P ConΓ be such that U1 —ρ U 1 —ρ U2. By propagation (1) we have
U1 —ρ U —ρ U2, so U1 —ρ U2.

It is often handy to check for extremality (that is, maximality or transitivity) on the
level of tokens.
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Lemma 3.4 (Extremality through tokens). Let ρ be an arbitrary type, Γ P Finρ , and
U P ConΓ .

1. We have U P Conmax
Γ

if and only if U —ρ a implies U $ρ a for a P Γ .

2. We have U P Conctr
ρ|Γ

if and only if a1 —ρ U —ρ a2 implies a1 —ρ a2 for a1,a2 P Γ .

Proof. For 1. From left to right, assume that U is maximal, and let a P Γ be such that
U —ρ a. Then UYtau $ρ U , and by the maximality of U we get U „ρ UYtau, which
gives us U $ρ a. For the other way around, let U 1 P ConΓ be such that U 1 $ρ U ; then
U —ρ U 1, and by the assumption we get that U $ρ U 1, so U is indeed maximal.

For 2. From left to right, assume that U is transitive for Γ , and let a1,a2 P Γ be such
that U —ρ ai for both i. Then U —ρ taiu, and by the transitivity of U we get a1 —ρ a2.
For the other way around, let U1,U2 PConΓ be such that U —ρ Ui, for both i, and ai PUi;
then a1 —ρ a2 by the assumption, so U1 —ρ U2, and U is indeed Γ -transitive.

The lemma makes the significance of extremality in a finite set quite apparent. In
particular, it is good to know that two maximals in a finite set are either equivalent or
inconsistent (a fact that we can put even more bluntly like this: if U is maximal and
deductively closed in Γ , then for each a P Γ we have either a PU or a ­—ρ U).

Lemma 3.5. Let ρ be any type. For all Γ P Finρ and U P Conmax
Γ

, if U 1 P Conρ is such
that U 1 $ρ U then U 1 P Conmax

ΓYU 1 .

Proof. Let a P Γ YU 1 be such that a—ρ U 1; since U 1 $ρ U , we have a—ρ U . In case
a R Γ we have a PU 1; in case a P Γ , we have U $ρ a by Lemma 3.4.1; in both cases it
follows that U 1 $ρ a, so U 1 is maximal in Γ YU 1 by Lemma 3.4.1.

Lemma 3.6 (Maximal extensions). Let ρ be a type and Γ P Finρ .

1. For any U P ConΓ , we have U P Conctr
Γ

if and only if there is exactly one Û P

Conmax
Γ

, up to equientailment, such that Û $ρ U.

2. For any U P Conρ , we have U P Conctr
ρ|Γ

if and only if, whenever there exist
U0 P ConΓ with U —ρ U0, there exists a Û P Conmax

Γ
such that U —ρ U0 implies

Û $ρ U0 for all U0 P ConΓ .

Proof. For 1, from left to right, assume that U P Conctr
Γ

and let U1,U2 P Conmax
Γ

be
such that Ui $ρ U for both i “ 1,2. By the propagation of consistency (1), we have
U1 —ρ U —ρ U2; by the assumption we have U1 —ρ U2; by the maximality of U1 and
U2, it follows from Lemma 3.4.1 that U1 „ρ U2.

For the other direction, assume that U is such that any two maximal neighborhoods
in Γ that entail it are equivalent, and let U1,U2 P ConΓ be such that U1 —ρ U —ρ U2.
Then for any two Um

1 ,Um
2 P Conmax

Γ
, with Um

i $ρ UYUi, by the assumption, we must
have Um

1 „ρ Um
2 ; it follows that U1 —ρ U2, by the propagation of consistency.

For 2, let U P Conρ . Assume that U P Conctr
ρ|Γ

and U —ρ Ui for some Ui P ConΓ ,
where i ą 0. Gather all these Ui in the neighborhood U0 :“

Ť

i Ui; we have of course
U0 P ConΓ . Then there is at least one maximal Û P Conmax

Γ
such that Û $ρ U0 $ρ Ui

for all i.
Conversely, assume that U satisfies

D
U0PConΓ

U —ρ U0 Ñ D
ÛPConmax

Γ

@
U0PConΓ

pU —ρ U0 Ñ Û $ρ U0q,

and let U1,U2 P ConΓ be such that U1 —ρ U —ρ U2. From the assumption we get a
maximal Û P Conmax

Γ
with Û $ρ Ui for each i, so U1 —ρ U2.

9
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We will say the maximal extension of U in Γ , if U P Conctr
Γ

, for the unique (up
to equivalence) maximal neighborhood entailing U ; this we denote by Û , as in the
statement of the above Lemma. But note that in the case of transitive neighborhoods
outside Γ uniqueness is not guaranteed: an example with two maximals at type D is
provided by the finite set Γ “ tS˚,S0,S1u and the neighborhood U “ tSS˚u.

3.3 Upper and middle application
The notion of application f x of some higher-type term f to some input term x, both
appropriately typed, is interpreted as “the information that we hold on x suffices to
draw the information f x on the output, given the information that we have on f ”. In
section 2, in the definition of neighborhood application, we saw that when we bring this
notion down to the finite level it is entailment that we read into “suffices”, but for our
purposes it will come in handy to consider a different version of application between
neighborhoods, where we replace entailment by consistency. As will become clear in
the results below, starting already with Lemma 3.10, this kind of application is justified
by the existence and use of transitive neighborhoods.

Let Θ P FinρÑσ and U P Conρ . The (upper) application Θ ¨U gathers all values
b P Tokσ whose arguments Ub fall under U :

b PΘ ¨U :“ D
UbPConρ

`

xUb,by PΘ ^U $ρ Ub
˘

.

Note that this trivially generalizes the neighborhood application of section 2; from now
on we will always write W ¨U instead of WU . The middle application Θ ¨U is defined
by

b PΘ ¨U :“ D
UbPConρ

`

xUb,by PΘ ^U —ρ Ub
˘

.

It follows immediately from the definition that the middle application yields at least as
much information as the upper one does, namely Θ ¨U ĎΘ ¨U .

In the case of a consistent left argument, we can make the following easy observa-
tions.

Lemma 3.7. Let ρ , σ be arbitrary types, W P ConρÑσ , U P Conρ and b P Tokσ .

1. We have W $ρÑσ xU,by if and only if W ¨U $σ b.

2. We have W —ρÑσ xU,by if and only if W ¨U —σ b.

Note that in 3.7.2 the finite set W ¨U may not be consistent, but we still did not write
W ¨U —F

σ b; here we are just saying that every pair tbW ,bu will be consistent, for
bW PW ¨U .

Lemma 3.8 (Application). Let ρ , σ be arbitrary types.

1. Application is consistently defined, that is, if W P ConρÑσ and U P Conρ , then
W ¨U P Conσ .

2. Application is monotone in the right argument, in particular, if Θ P FinρÑσ and
U,U 1 P Conρ , with U $ρ U 1, then Θ ¨U 1 ĎΘ ¨U.

3. Application is monotone in the left argument, that is, if Θ ,Θ 1 P FinρÑσ with
Θ $F

ρÑσ Θ 1 and U P Conρ , then Θ ¨U $F
σ Θ 1 ¨U.

10
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Proof. For 1, let W P ConρÑσ and U P Conρ , and consider b1,b2 PW ¨U . By the
definition, there must exist xU1,b1y,xU2,b2y PW , such that U $ρ U1YU2; it follows
that U1 —ρ U2, so the consistency of W ensures that b1 —σ b2.

For 2, let Θ P FinρÑσ and U,U 1 P Conρ , and assume that U $ρ U 1. Consider a
b P V ; by the definition there exists a Ub P LpΘq with xUb,by PΘ and U 1 $ρ Ub; the
assumption immediately gives U $ρ Ub, so b PΘ ¨U as well.

For 3, let Θ ,Θ 1 P ConρÑσ and U P Conρ , and assume that Θ $F
ρÑσ Θ 1. Consider

a V 1 P Con
Θ 1¨U ; for each b1 P V 1 there is a Ub1 P Conρ such that xUb1 ,b1y P Θ 1 and

U $ρ Ub1 ; the set W 1 :“ txUb1 ,b1y PΘ | b1 PV 1^U $ρ Ub1u is consistent in Θ 1. By
the assumption there exists some W P ConΘ such that W $ρÑσ W 1. Since for each
xUb1 ,b1y PW 1 we have W ¨Ub1 $σ b1, by 2 we get W ¨U $σ W ¨Ub1 , hence W ¨U $σ b1,
that is, W ¨U $σ V 1 and since W ¨U P Con

Θ ¨U , we are done.

The following gives us conservative extensions of a neighborhood by way of extend-
ing its set of arguments.

Lemma 3.9. Let W P ConρÑσ and Γ P Finρ such that LpW q Ď Γ . Then

W „ρÑσ

ď

UPConΓ

xU,W ¨Uy.

Proof. From left to right, let U P ConΓ and b PW ¨U . There exists a Ub P ConLpΘq with
xUb,by PW and U $ρ Ub. Then xUb,by $ρÑσ xU,by. The other way around is obvious,
since W Ď

Ť

UPConΓ
xU,W ¨Uy.4

Turning our attention to middle application, the first thing we want to know is how
it fares compared to Lemma 3.8.

Lemma 3.10 (Middle application). Let ρ , σ be arbitrary types.

1. Middle application is consistently defined for transitive right arguments, that is, if
W P ConρÑσ and U P Conctr

ρ|LpWq, then W ¨U P Conσ .

2. Middle application is antimonotone in the right argument, in particular, if Θ P

FinρÑσ and U,U 1 P Conρ with U $ρ U 1, then Θ ¨U ĎΘ ¨U 1.

3. Middle application between neighborhoods is monotone in the left argument for
transitive right arguments, that is, if W,W 1 P ConρÑσ are such that W $ρÑσ W 1

and U P Conctr
ρ|LpWqYLpW 1q

, then W ¨U $σ W 1 ¨U.

Proof. To show 1, let U P Conctr
ρ|LpWq and b1,b2 PW ¨U . Then there exist U1,U2 with

xUi,biy PW and Ui —ρ U . The transitivity of U implies U1 —ρ U2, and the consistency
of W ensures that b1 —σ b2.

For 2, assume U and U 1 such that U $ρ U 1, and let b PΘ ¨U . There is some Ub such
that xUb,by PΘ and Ub —ρ U . By propagation (1) we get Ub —ρ U 1, so b PΘ ¨U 1.

For 3. By 1, the assumption that U P Conctr
ρ|LpWqYLpW 1q

ensures that the result of both
middle applications is a neighborhood (in general, if Γ Ď Γ 1 then Conctr

ρ|Γ 1 Ď Conctr
ρ|Γ

).
Let b1 PW 1 ¨U . By the definition of middle application, there exists a xU 1,b1y PW 1, such
that U 1 —ρ U . Since W $ρÑσ W 1, there is a subneighborhood txUi,biy | i“ 1, . . . ,mu Ď
W , such that for all i “ 1, . . . ,m we have U 1 $ρ Ui and tbi | i“ 1, . . . ,mu $σ b1; by
propagation it follows that U —ρ Ui for all i. This means that bi PW ¨U for all i, so
W ¨U $σ b1, and we are done.

4The proof in fact shows that the equientailment here is linear (U entails b linearly when tau $ b for some
a P U , see [23]).

11



B. A. Karádais, “Nonflatness and totality”, draft of 8 Feb 2018, 12:53 p.m.

Lemma 3.11. Let Θ P FinρÑσ .

1. For all U,U 1 P Conctr
LpΘq, if U —ρ U 1 then Θ ¨U “Θ ¨U 1.

2. For all U P Conctr
LpΘq, we have Θ ¨U “Θ ¨Û .

3. For all U P Conmax
LpΘq and U 1 P Conρ , if U —ρ U 1 then Θ ¨U ĎΘ ¨U 1.

Proof. For the first statement, assume that U —ρ U 1 and let b P RpΘq. We have b PΘ ¨U
if and only if there is some Ub with xUb,by PΘ and U —ρ Ub. Since U is transitive in
LpΘq, we get U 1 —ρ Ub by the assumption, so b PΘ ¨U 1. The converse is similar.

For the second statement, let U P Conctr
LpΘq. By the definition of middle application,

if b PΘ ¨U , then there is some Ub with xUb,by PΘ , such that Ub —ρ U ; since U is
transitive, by the maximality of its maximal extension it follows that Û $ρ Ub, so the
definition of application gives us b PΘ ¨Û . For the other way around, if b PΘ ¨Û , then
there is a Ub with xUb,by PΘ , such that Û $ρ Ub; then U —ρ Ub by propagation (1), so
b PΘ ¨U , by the definition of middle application.

For the third statement, let U be maximal in LpΘq and U 1 some neighborhood with
U —ρ U 1. For every b PΘ ¨U , by the definition of middle application, there is some
Ub with xUb,by PΘ , such that U —ρ Ub, which by maximality means that U $ρ Ub; by
propagation we get U 1 —ρ Ub, so b PΘ ¨U 1, and we are done.

We close the section with a hint on how extremality evolves over types.

Lemma 3.12. Let Θ P FinρÑσ and W P ConΘ . We have W P Conctr
Θ

if one of the
following holds.

1. For all U P Conctr
LpΘq we have W ¨U P Conctr

Θ ¨U .

2. For all U P Conmax
LpΘq we have W ¨U P Conctr

Θ ¨U .

Proof. For the first criterion, let xUi,biy PΘ be such that xUi,biy —ρÑσ W for i“ 1,2,
and assume that U1 —ρ U2. Consider a U P Conctr

LpΘq with U —ρ U1YU2; then bi PΘ ¨U
for each i. From xUi,biy —ρÑσ W , by Lemma 3.10.1, we get bi —σ W ¨U for both i, so
by the assumption we get b1 —σ b2.

To get the second criterion, it suffices to show that

@
UPConmax

LpΘq

W ¨U P Conctr
Θ ¨U Ñ @

UPConctr
LpΘq

W ¨U P Conctr
Θ ¨U .

Assume that W is such that W ¨U P Conctr
Θ ¨U , for all U P Conmax

LpΘq, and let U P Conctr
LpΘq.

Consider the maximal extension Û of U . On the one hand we have Û P Conmax
LpΘq, so

W ¨ Û P Conctr
Θ ¨Û by the assumption. On the other hand we have Û P Conctr

LpΘq with
Û —ρ U , so Θ ¨ Û “ Θ ¨U and W ¨ Û “W ¨U , by Lemma 3.11.1. It follows that
W ¨U P Conctr

Θ ¨U , so we can apply the previous criterion and we are done.

4 Totality of neighborhoods
In this section we take the first two steps of the strategy that we outlined in the introduc-
tion. A total object of type ρ Ñ σ is represented by a possibly infinite token set that
(a) is an ideal, that is, consistent and deductively closed, (b) admits all totals of type

12
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ρ as arguments—a property we think of as “omniception”, for lack of a less pompous
synonym for admission (or acceptance) of all, that would be as grammatically smooth—,
and (c) responds to every total argument with a total value at type σ . To bring the notion
down to the finite level we dispose of half of the demand (a), namely, that the set of
tokens be deductively closed, and we reinterpret “admittance” and “response” in (b)
and (c) in terms of consistency rather than entailment. The first move, which is clearly
dictated by the demand of finiteness, in some sense causes the reaction of the second
move: what we lose by denying deductive closure we have to regain with the wider and
more tolerant scope of consistency.

4.1 Finite density
At type ρ , a side extension of a neighborhood U will be any neighborhood U 1 which
is consistent with U . We give a name to this rather mundane notion just to point to its
intended use: trivially, if U 1 is a side extension of U , then U 1YU is an extension of U ,
and this is exactly how we will work towards finding total extensions of neighborhoods.

Lemma 4.1. Let ρ and σ be types. For every W P ConρÑσ and for every map-
ping V ÞÑ V 1 of neighborhoods V P Conσ to side extensions thereof, the finite set
Ť

UPConctr
LpWq

xU,pW ¨Uq1y is a side extension of W.

Proof. To show the consistency of the finite set, let xUi,biy be such that Ui P Conctr
LpWq

and bi P pW ¨Uiq
1, for i “ 1,2. If U1 —ρ U2, then W ¨U1 “W ¨U2 by Lemma 3.11.1,

hence pW ¨U1q
1 “ pW ¨U2q

1, and b1 —σ b2.
To show the side extension, let xU,by PW and xU 1,b1y be such that U 1 P Conctr

LpWq
and b1 P pW ¨Uq1. If U —ρ U 1 then by the definition of middle application we have
b PW ¨U . But W ¨U —σ pW ¨Uq1 by assumption, so b—σ b1.

As we mentioned in section 1, a total token at a base type ι is a token p P Tokι which
consists exclusively of proper constructors; write p P Tokg

ι . We have Cp1 ¨ ¨ ¨ pr P Tokg
ι

if and only if C is a proper constructor of arity r and pi P Tokg
ι for all i“ 1, . . . ,r. So

SB˚0 R Tokg
D but SB10 P Tokg

D. Define total neighborhoods inductively over types:

U P Cong
ι :“ D

pPTokg
ι

U $ι p,

W P Cong
ρÑσ :“ @

PPCong
ρ

W ¨P P Cong
σ .

Examples of total neighborhoods are tB0˚,B˚1u and tB0S0u at type D, and the neigh-
borhood txt0uy,0,xtS˚u,S0yu at type NÑN, which we saw in the introduction. A
type 2 example would be the neighborhood

X “ txtxtttu,0yu,0y,xtxtttu,S˚yu,S0yu

at type pBÑ Nq Ñ N: Let T be a total neighborhood at type BÑ N; for the total
singleton tttu of type B we get T ¨ tttu $N Sm0 for some m ě 0, so we either have
T ¨tttu—N 0 or T ¨tttu—N S˚, which by Lemma 3.7.2 means either T —BÑN xtttu,0y
or T —BÑN xtttu,S˚y; in the first case we get X ¨ T “ t0u and in the second case
X ¨T “ tS0u, both of which are total neighborhoods at type N, as we wanted.

The arguments of a higher-type total neighborhood form a finite set that can accept
(in the sense of middle application) every total neighborhood of the source type, in a
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way that ensures their safe (that is, consistency-respecting) allotment to an appropriate
value. Define weakly omniceptive finite sets explicitly by

Γ P Finwo
ρ :“ @

PPCong
ρ

D
UPPConctr

Γ

P—ρ UP.

At a type ρ Ñ σ call Θ a (strongly) omniceptive finite set, and write Θ P Fino
ρÑσ , if

Θ P Finwo
ρÑσ ^ @

UPConmax
LpΘq

pU P Cong
ρ ^Θ ¨U P Fino

σ ^xU,Θ ¨Uy ĎΘq,

which intuitively says that, beyond weak omniception, Θ must meet certain requirements
of finite totality, preservation of omniception, and closure under middle application for
each of its left maximals. By convention, we set Fino

ι :“ Finwo
ι for arbitrary base types.

In the following we always use the term “omniceptive” (without a qualifier) to mean
“strongly omniceptive” (which for base types is the same as “weakly omniceptive”). A
further convention that we will often employ in subsequent arguments is to use lower
case “g”, “wo”, and “o” as superscripts of terms: for example, we may write “Ug” for a
neighborhood that is to belong to Cong and possibly relates to a previously discussed
U , or “Γ o” for a finite set that is to belong to Fino and possibly relates to a previously
introduced Γ .

Call a type ρ finitely dense if every neighborhood U at ρ has a total side extension
Ug, and finitely omniceptive if every finite set Γ has an omniceptive extension Γ o.
Moreover, call it finitely total-transitive if every total neighborhood U is transitive (in
ρ). The latter just means that U1 —ρ U —ρ U2 implies U1 —ρ U2 for all U1,U2 P Conρ ,
and we write U P Conctr

ρ . Here’s a lemma to set the intuition straight.

Lemma 4.2 (Compactness of transitivity). Let ρ be a type. A neighborhood is transitive
in ρ if and only if it is transitive for every finite set of ρ .

Proof. For the less trivial direction, let U P Conρ be such that U P Conctr
ρ|Γ

for every
Γ P Finρ , and let U1,U2 P Conρ be such that U1 —ρ U —ρ U2. Set Γ :“U1YU YU2;
then we have U1 —ρ U2 by Γ -transitivity.

To start off the main argument we need some elementary definitions and observations
concerning base types. The size }a} of a base-type token a P Tokι counts the proper
constructors of the token: }˚} “ 0 and }Ca1 ¨ ¨ ¨ar} “ 1`}a1}` ¨ ¨ ¨`}ar}. It is an easy
induction to show that tau $ι b implies }a} ě }b} for all tokens a, b. The supremum or
eigentoken suppUq of a base-type neighborhood U P Conι is defined by suppHιq “ ˚ι ,
supptauq “ a, and suppta1, . . . ,amuq “ suptp¨ ¨ ¨suptpa1,a2q ¨ ¨ ¨ ,amq for m ą 1, where
suptpa,˚q “ a and suptpCa1 ¨ ¨ ¨ar,Cb1 ¨ ¨ ¨brq “Csuptpa1,b1q ¨ ¨ ¨sup

tpar,brq (we do not
need to define the auxiliary mapping supt on inconsistent pairs). Again, an easy
induction shows that U „ι tsuppUqu for all U P Conι ; in particular, we can represent
every total neighborhood P P Cong

ι by its total eigentoken suppPq P Tokg
ι .

Proposition 4.3. Every base type is finitely total-transitive, finitely dense, and finitely
omniceptive.

Proof. Let ι be any base type with a distinguished nullary constructor 0. For the
transitivity of total neighborhoods, let P P Cong

ι and U1,U2 P Conι be such that Ui —ι P
for each i. Then P $ι Ui, for both i “ 1,2, since, as is easy to see, total tokens are
maximal at base types, so U1 —ι U2.
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We turn to finite density by firstly considering tokens: the trivial token ˚ is consistent
with 0, and if p1, . . . , pr are total tokens consistent with a1, . . . ,ar respectively, then
Cp1 ¨ ¨ ¨ pr is a total token consistent with Ca1 ¨ ¨ ¨ar, for an r-ary constructor C. Finally,
if U P Conι , and p is a total token consistent to suppUq, then the neighborhood tpu is
obviously a total neighborhood consistent with (above, even) U .

Before we turn to the finite omniception we need some auxiliary facts. Firstly, we
claim that

@
aPTokι

@
pPTokg

ι

p}a} ą }p} Ñ a ­—ι pq. (3)

Indeed, let p be a total token and a an arbitrary token. In case p consists of a single
nullary constructor, then }p} “ 1 and there have to exist a constructor C with arity r ą 0
and further tokens a1, . . . ,ar such that a“Ca1 ¨ ¨ ¨ar (with }ai} ą 0 for at least some i);
we have a ­—ι p by the definition of consistency. In case p“Cp1 ¨ ¨ ¨ pr for some total
tokens p1, . . . , pr, then a will either start with a different (non-nullary) head constructor
than C, in which case we are done, or there must exist a1, . . . ,ar such that a“Ca1 ¨ ¨ ¨ar;
from }a} ą }p} it follows that

ř

i }ai} ą
ř

i }pi}, so there must exist at least some i with
}ai} ą }pi}; by the induction hypothesis we know that this means that ai ­—ι pi, therefore
a ­—ι p.

Now, for a fixed total token p P Tokg
ι and a fixed natural number n, let U p,n stand

for the finite set ta P Tokι | a—ι p^}a} ď nu; this is a neighborhood thanks to the
transitivity of the total p. Note that for every p we have U p,0 “ t˚ιu, and also, due
to (3), for all ně }p} we have U p,n “U p,}p}. Now, either p consists of a single nullary
constructor or not; in case it does, then U p,1 “ t˚ι , pu, while if p “ Cp1 ¨ ¨ ¨ pr for
a constructor C with arity r ą 0 and total tokens p1, . . . , pr, then we claim that the
component neighborhoods satisfy

r

@
i“1

U p,npiq “U pi,n´1. (4)

Indeed, fix an i. From left to right, assume that ai PU p,npiq; this means that there exists
an a PU p,n such that apiq “ ai; by the definition of U p,n, we know that a—ι p which
implies that ai —ι pi; we also know that }a} ď n, so }ai} ď }a}´1ď n´1, therefore
ai PU pi,n´1. For the other way around, assume that ai PU pi,n´1, that is, that ai —ι pi
and }ai} ď n´1; consider the token a :“CÝÑ̊aiÝÑ̊ (which has ai as its i-th component
token and stars everywhere else); it obviously satisfies a—ι p, and since }ai} ď n´1, it
also satisfies }a} ď n, therefore a PU p,n; it follows that apiq “ ai PU p,npiq.

Finally, we claim that the following holds for a fixed n:

@
aPTokι

@
pPTokg

ι

p}a} “ nď }p}^a—ι U p,n ÑU p,n $ι aq. (5)

Indeed, let p be some total token and a an arbitrary one, such that }a} “ nď }p} and
a —ι U p,n. In case n “ 0, we necessarily have a “ ˚ι PU p,0. In case n ą 0, then for
some constructor C of the algebra ι with arity r there exist total tokens p1, . . . , pr such
that p “Cp1 ¨ ¨ ¨ pr, and since CÝÑ̊ PU p,n and a —ι U p,n, there exist tokens a1, . . . ,ar
such that a “Ca1 ¨ ¨ ¨ar; for every i “ 1, . . . ,r, since a —ι U p,n we have ai —ι U p,npiq,
which by (4) means that ai —ι U pi,n´1piq, while from the assumption that }a} “ n we
get }ai} ď n´1; the induction hypothesis yields U pi,n´1 $ι ai for every i; so we get

U p,n „ι CU p,np1q ¨ ¨ ¨U p,nprq (4)
“CU p1,n´1 ¨ ¨ ¨U pr ,n´1 $ι Ca1 ¨ ¨ ¨ar “ a,

and we are done.
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Now for the finite omniception. If Γ is trivial (that is, if it carries no proper
information), then set Γ o :“ t˚u. If not, let m :“maxt}suppUq} |U P ConΓ u, and set
Γ o :“ ta P Tokι | }a} ď mu. Consider a total neighborhood P and let p :“ suppPq. In
case }p} ď m we have p P Γ o, so it suffices to set UP :“ tpu. In case }p} ą m, we set
UP :“U p,m; by the construction of Γ o we have U p,m P ConΓ o , and we also have that
U p,m is transitive in Γ o: for any two tokens b1,b2 P Γ o with b1 —ι U p,m —ι b2, since
}bi} ď mă }p} for both i, we get PU p,m $ι bi from (5), so b1 —ι b2.

Proposition 4.4 (Finite total-transitivity). Let ρ and σ be finitely total-transitive types.
If ρ is finitely dense then ρ Ñ σ is finitely total-transitive.

Proof. Let T P Cong
ρÑσ and W1,W2 P ConρÑσ , with W1 —ρÑσ T —ρÑσ W2. Consider

pairs xUi,biy PWi, i“ 1,2, and assume that U1 —ρ U2. By the finite density at ρ , there
exists a P P Cong

ρ , such that P—ρ U1YU2. By the assumptions at ρ and Lemma 3.10.1
we get b1 —σ T ¨P—σ b2. But T ¨P is total, so the assumption at σ gives b1 —σ b2.

Proposition 4.5 (Finite density). Let ρ and σ be types. If ρ is finitely omniceptive and
σ finitely dense and finitely total-transitive, then ρ Ñ σ is finitely dense.

Proof. Let W P ConρÑσ be any neighborhood. By finite omniception at ρ we get a
Γ P Fino

ρ with LpW q Ď Γ . Consider the neighborhood W o :“
Ť

UPConΓ
xU,W ¨Uy; by

Lemma 3.9 we have W „ρÑσ W o. Now set

W g :“
ď

UPConctr
LpWoq

xU,pW o ¨Uqgy,

with the help of density at σ ; note that LpW gq “ LpW oq “ Γ . This is a side extension of
W o (therefore of W as well) by Lemma 4.1.

To show that it is total, let P P Cong
ρ . Since LpW gq is omniceptive (in fact, that it is

weakly omniceptive is enough), there is some UP P Conctr
Γ

such that P—ρ UP. We have
xUP,pW o ¨UPqgy ĎW g by construction, and W g ¨P“ pW o ¨UPqg, since, by transitivity
of total neighborhoods at σ , the value W o ¨P is independent from the choice of UP.

Proposition 4.6 (Finite omniception). Let ρ and σ be finitely total-transitive types. If
ρ is finitely dense and σ finitely omniceptive, then ρ Ñ σ is finitely omniceptive.

Proof. Let Θ P FinρÑσ be any finite set. Extend it as follows:

Θ
o :“Θ Y

ď

UPConmax
LpΘq

xUg,pΘ ¨Uqoy,

with the use of finite density at ρ and finite omniception at σ .
If we show that this is weakly omniceptive, then it will be omniceptive immediately

by construction (based on Lemma 3.5). Let T P Cong
ρÑσ . For every U P Conmax

LpΘq we
have T ¨Ug P Cong

σ , and since pΘ ¨Uqo is omniceptive, there will be some V T ¨Ug
P

Conctr
pΘ ¨Uqo , such that T ¨Ug —σ V T ¨Ug

p‹q. Fix these side extensions and set

W T :“
ď

UPConmax
LpΘoq

xUg,V T ¨Ug
y.

We have W T ĎΘ o by construction. Moreover, we have T —ρÑσ W T : let xU,by P T and
xU 1,b1y PW T be such that U —ρ U 1; we have b P T ¨U 1 and b1 PV T ¨U 1

, so b—σ b1 by
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p‹q. Since T is total, W T is a neighborhood by transitivity of total neighborhoods, which
we get for ρ Ñ σ by Proposition 4.4. Finally, it is transitive in Θ o by Lemma 3.12.2,
since for every U P Conmax

LpΘq we have by construction W T ¨U “V T ¨U , which is transitive
in Θ ¨U by omniception.

Theorem 4.7. Every type is finitely omniceptive, finitely total-transitive, and, in partic-
ular, finitely dense.

Proof. We get this by mutual induction over types from Propositions 4.3, 4.4, 4.5, and
4.6.

4.2 Totality of transitive neighborhoods
There is plenty of evidence to suggest that total neighborhoods at ρ are to Conρ what
transitive neighborhoods in Γ are to ConΓ . For one, Theorem 4.7 shows that total
neighborhoods are transitive. Furthermore, an immediate corollary of total transitivity is
that consistency, restricted to the total neighborhoods, becomes an equivalence relation,
that is,

@
P1,P2,P3PCong

ρ

`

P1 —ρ P2 —ρ P3 Ñ P1 —ρ P3
˘

.

Here are further examples of using total transitivity, which include some more evidence
to this effect.

Lemma 4.8. Let ρ and σ be types. Let Θ P FinρÑσ , P,P1 P Cong
ρ , and U,U 1 P Conρ .

1. For every UP P ConLpΘq with P —ρ UP, we have Θ ¨P ĎΘ ¨UP. Moreover, we
have Θ ¨P“Θ ¨UP whenever UP P Conmax

LpΘq.

2. If P—ρ P1 then Θ ¨P“Θ ¨P1.

3. If U P Cong
ρ and U 1 $ρ U, then U 1 P Cong

ρ .

4. If T P Cong
ρÑσ and U P Conctr

LpT q then T ¨U P Cong
σ .

Proof. For 1, let b P Θ ¨P. Then, by the definition of middle application, there is
some U with xU,by PΘ , such that U —ρ P. From U —ρ P—ρ UP we get U —ρ UP by
Theorem 4.7, so the definition of middle application yields that b PΘ ¨UP. Moreover, if
UP is actually maximal in LpΘq, then by Lemma 3.11.3 we immediately get Θ ¨UP Ď

Θ ¨P.
For 2, assume that P—ρ P1 and let b PΘ ¨P. By the definition of middle application,

there is some U with xU,by PΘ , such that U —ρ P. By Theorem 4.7 and the assumption
we have U —ρ P1, so b PΘ ¨P1.

For 3. At a base type ι if U P Cong
ι , then there exists a total token p such that

U $ι p. The transitivity of entailment yields what we need. At a higher type ρ Ñ σ , let
W P Cong

ρÑσ and W 1 $ρÑσ W . Let further P P Cong
ρ . By Theorem 4.7, P is transitive

for LpW q, so by the left monotonicity of middle application on transitive arguments
(Lemma 3.10.3), we have W 1 ¨P$σ W ¨P, and by the totality of W we get W ¨P P Cong

σ ,
so the induction hypothesis at σ finishes the job.

For 4. By Theorem 4.7 there exists some PU P Cong
ρ with PU —ρ U . By 1 we

have T ¨PU Ď T ¨U , where T ¨U is consistent by Lemma 3.10.1. It follows by 3 that
T ¨U P Cong

σ .
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Note in particular that Lemma 4.8.3 is analogous to Lemma 3.3 (both of them actually
anticipate Lemma 5.2).

We now show that the correspondence between transitivity and finite totality is
complete.

Theorem 4.9 (Explicit finite totality). At every type, a neighborhood is total if and only
if it is transitive.

Proof by induction over types. The rightward direction we have of course from Theo-
rem 4.7. For the other direction, we have to show that, at each type, every transitive
neighborhood must be total.

At a base type ι , assume that U P Conctr
ι . Obviously, we have U ι t˚u, so there

will be a constructor C and tokens a1, . . . ,ar P Tokι such that U „ι tCa1 ¨ ¨ ¨aru (its
supremum). By Lemma 3.4.2, since U is transitive, for any two tokens b1,b2 P Tokι we
will have b1 —ι U —ι b2 imply b1 —ι b2. Then for i“ 1, . . . ,r we have

b1i —ι ai —ι b2i ñCa1 ¨ ¨ ¨b1i ¨ ¨ ¨ar —ι U —ι Ca1 ¨ ¨ ¨b2i ¨ ¨ ¨ar
ctr
ñCa1 ¨ ¨ ¨b1i ¨ ¨ ¨ar —ι Ca1 ¨ ¨ ¨b2i ¨ ¨ ¨ar

ñ b1i —ι b2i

for any b1i,b2i P Tokι , which by induction hypothesis yields ai P Tokg
ι . It follows that

Ca1 ¨ ¨ ¨ar itself is a total token, so U is a total neighborhood.
At type ρ Ñ σ , assume that W P Conctr

ρÑσ , and let P P Cong
ρ . For any b1,b2 P Tokσ

we have

b1 —σ W ¨P—σ b2 ô xP,b1y —ρÑσ W —ρÑσ xP,b2y

ctr
ñ xP,b1y —ρÑσ xP,b2y

ñ b1 —σ b2,

which means that W ¨P is transitive in σ , so by the induction hypothesis at σ we get
W ¨P P Cong

σ , and by the definition of finite totality we have W P Cong
ρÑσ , as we

wanted.

The theorem indicates that our notion of finite totality is a robust one. In the next
section we will see how we can connect it to the traditional notion of totality for ideals.
Interestingly, we will see that its equivalence to transitivity is peculiar to the finitary
level: in Proposition 5.12 the respective correspondence for ideals is shown to be tilted.

5 Elevating totality to ideals
The last step in our strategy is to find a canonical extension of a total neighborhood to a
total ideal. The natural candidate would be the deductive closure of a neighborhood, but
again, closure under entailment is too strict for our purposes, since it presents recurring
technical difficulties stemming from the fact that the application of ideals is an “upper”
one, while we have defined finite totality in terms of middle application. Instead, based
on the transitivity of total neighborhoods, using closure under consistency proves to be
a more natural choice.
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5.1 Density
The notion of continuity that we employ in our setting implies that if we are given an
estimate V on a value f pxq then we can find an adequate estimate UV on the argument x
of f ; let us highlight this elementary fact since we will need it later on.

Lemma 5.1 (Finite support). Let f : ρ Ñσ and x : ρ . For every V PConσ with V Ď f pxq
there exists a UV P Conρ such that UV Ď x and xUV ,V y Ď f .

Proof. From (FS) it follows directly that if b P f pxq then there exists a Ub Ď x such
that xUb,by P f due to the deductive closure of f . Assuming then that V is such that
V Ď f pxq, for UV :“

Ť

bPV Ub we indeed have UV Ď x, and also xUV ,V y Ď f by the
deductive closure of f .

An ideal x : ρ is a total ideal, for which we write Gρpxq or x P Gρ , if it conforms to
the following inductive clauses.

Gιpxq :“ D
PPCong

ι

PĎ x ,

GρÑσ p f q :“ @
x:ρ
pGρpxq Ñ Gσ p f xqq .

Note that the base type definition is equivalent to demanding the existence of a p P Tokg
ι

such that p P x. Totality of ideals is upwards closed.

Lemma 5.2 (Extension lemma). At type ρ , if x,y : ρ are such that Gρpxq and xĎ y then
Gρpyq.

Proof. At a base type ι , let Gιpxq and y : ι be two ideals with x Ď y. Then there is
a total token p P Tokg

ι , such that p P x, so also p P y. At a higher type ρ Ñ σ , let
GρÑσ p f q, g : ρ Ñ σ , and assume that f Ď g. We want to show that g is also total, so
consider an arbitrary x with Gρpxq. By the totality of f we have that Gσ p f xq, and since
it is straightforward to see that f xĎ gx, we get Gσ pgxq by the induction hypothesis at
σ .

The main argument starts with the following obvious observation.

Lemma 5.3. At every type, if a neighborhood is transitive then its consistency closure
is an ideal (and the converse holds as well).

Proof. Let ρ be a type and U P Conctr
ρ . By transitivity, every two tokens in the consis-

tency closure of U will be consistent, and the consistency closure is already deductively
closed: U 1 Ď rU means U —ρ U 1 by definition, so if U 1 $ρ a, then propagation yields
U —ρ a, hence a P rU as well. The converse is also direct to show.

By Theorem 4.9, an immediate consequence of this lemma is that the consistency closure
of a total neighborhood is an ideal, so it suffices to show that, for a given P P Cong

ρ , we
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must have GρprPq. Consider the following statements for an arbitrary type ρ .

@
ΓPFino

ρ

@
xPGρ

D
UxPConctr

Γ

Ux —ρ x, (O)

@
U,U 1PConρ

@
xPGρ

pU 1 ­—ρ U —ρ xÑ D
U0PConρ

pU $ρ U0 Ď x^U 1 ­—ρ U0qq, (W)

@
PPCong

ρ

rP P Gρ , (C)

@
UPConρ

D
xPGρ

U Ď x. (D)

The first one is an expression of infinitary omniception, as it states that an omniceptive
finite set accepts each total ideal by being consistent with it with one of its transitive
neighborhoods. The second expresses inconsistency preserving witnessing of the consis-
tency between a total ideal and a neighborhood; the claimed witness is stronger than the
neighborhood itself, since it lies below both the total ideal and the neighborhood, and in
a sense to be made clearer after Lemma 5.8 below, it provides the missing feature from
omniception that we need to achieve totality on the level of ideals. The third one is the
crux of our strategy, as it says that the consistency closure of a total neighborhood is a
total ideal, and the fourth one, of course, is density.

Proposition 5.4 (Conditional density). Let ρ be a type. If (C) holds in ρ then also (D)
holds in ρ .

Proof. Let U be any neighborhood at type ρ . By Theorem 4.7 there exists a total
neighborhood PU such that U —ρ PU . Then U Ď ĂPU by definition, whereas ĂPU P Gρ

by (C). We set x :“ ĂPU and we are done.

Lemma 5.5. Every base type satisfies (O), (W), (C), and (D).

Proof. Let ι be some base type. To show (O), consider an omniceptive finite set Γ and
a total ideal x. By the totality of x there is some P P Cong

ι such that PĎ x, and by the
omniception of Γ there is some UP P Conctr

Γ
such that UP —ι P. Set Ux :“UP. Then

for every U Ď x we have Ux —ι P—ι U , which implies Ux —ι U by the total transitivity
of ι (Proposition 4.3), so Ux —ι x.5

To show (W), let U and U 1 be neighborhoods and x be a total ideal, such that
U 1 ­—ι U —ι x. By the totality of x there exists a total neighborhood P such that PĎ x.
We have of course P—ι U , which, since total tokens are maximal at base types, implies
that P$ι U . This in turn implies that U Ď x by the deductive closure of x, so we may
set U0 :“U , which trivially meets the stated requirements.

To show (C), let P be some total neighborhood. Then there is some total token
p P Tokι with P$ p; a fortiori we have P—ι p, so p P rP by the definition of consistency
closure. Since by Lemma 5.3 the set rP is an ideal, we conclude that it is in fact total.

Finally, that every base type is dense we get from Proposition 5.4, since (C) already
holds.

Proposition 5.6 (Omniception). Let ρ and σ be types. If (C) holds in ρ and (O) holds
in σ then (O) holds in ρ Ñ σ .

5Notice that here we only needed weak omniception from Γ . Furthermore, observe that in the flat setting
this argument would fail due to the requirement of finiteness of Γ .
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Proof. Let Θ P Fino
ρÑσ and f P GρÑσ . By the finite omniception of Θ we know that

each U P Conmax
LpΘq is a total neighborhood, so by (C) at ρ we have rU P Gρ . By the

totality of f we have that f prUq P Gσ , so there will be some V f p rUq P Conctr
Θ ¨U such that

V f p rUq —σ f prUq, because Θ ¨U is omniceptive by the finite omniception of Θ and (O)
at σ . Based on these, we may set

W f :“
ď

UPConmax
LpΘq

xU,V f p rUqy.

We have W f P Conctr
Θ

by Lemma 3.12.2. Furthermore, let xU0,b0y PW and xU,by P f
be such that U —ρ U0; then U ĎĂU0 (remember that U0 is a total neighborhood) and
consequently U ĎĂU0 by the propagation of consistency; by the monotonicity of f we
get f pUq Ď f pĂU0q, so since b P f pUq it must also be b P f pĂU0q; but f pĂU0q —σ V f pĂU0q

and b0 PV f pĂU0q, so b—σ b0, as we wanted.

Proposition 5.7 (Witnessing). Let ρ and σ be types. If (D) holds in ρ and (W) holds
in σ then (W) holds in ρ Ñ σ .

Proof. Let f P GρÑσ and W,W 1 P ConρÑσ be such that W 1 ­—ρÑσ W —ρÑσ f . For
i “ 1, . . . ,m, let U 1i P ConLpW 1q and Ui P ConLpWq run through all witnessing pairs of
inconsistency between W 1 and W , that is, cover all the cases where

U 1i —ρ Ui^W 1 ¨U 1i ­—σ W ¨Ui.

By (D) at ρ , for each i there exists an xi PGρ such that U 1i YUi Ď xi. By the consistency
of (upper) application, for every such xi we have W ¨Ui —σ f pxiq, and by (W) at σ

there exists some Vi0 P Conσ such that W ¨Ui $σ Vi0 Ď f pxiq and W 1 ¨U 1i ­—σ Vi0. By
Lemma 5.1, there exists some UVi0 Ď xi for every i such that xUVi0 ,Vi0y Ď f . Letting
Ui0 :“UVi0 YU 1i YUi, by the deductive closure of f it follows that xUi0,Vi0y Ď f . Since
by the hypotheses at σ for every i we have

xUi,W ¨Uiy $ρÑσ xUi0,Vi0y Ď f ^xU 1i ,W
1 ¨U 1i y ­—ρÑσ xUi0,Vi0y,

it follows that

W $ρÑσ

m
ď

i“1

xUi0,Vi0y Ď f ^W 1 ­—ρÑσ

m
ď

i“1

xUi0,Vi0y,

so we may set W0 :“
Ťm

i“1xUi0,Vi0y and we are done.

We may generalize the property (W) to account for inconsistency preserving wit-
nesses of the consistencies between a total ideal and neighborhoods in a finite set.

Lemma 5.8. At a type ρ , the statement (W) is equivalent to the following: Let Γ P Finρ

and x P Gρ ; for all U P ConΓ with U —ρ x there exists a neighborhood NU,Γ ,x P Conρ

such that
U $ρ NU,Γ ,x Ď x^ @

U 1PConΓ

pU 1 ­—ρ U ÑU 1 ­—ρ NU,Γ ,xq. (W’)

Proof. Let Γ be a finite set, U some neighborhood of Γ and x a total ideal. Assume that
(W) holds, and furthermore that U1, . . . ,Um P ConΓ are all neighborhoods in Γ such
that Ui ­—ρ U for i“ 1, . . . ,m. Then for each such i there is a neighborhood U0i P Conρ
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such that Ui ­—ρ U0i and U $ρ U0i Ď x. Setting NU,Γ ,x :“
Ťm

i“1 U0i we are done. In the
other way around, let U and U 1 be two neighborhoods and x a total ideal, such that
U 1 ­—ρ U —ρ x, and assume that (W’) holds for all finite sets Γ , neighborhoods U Ď Γ

and total ideals x. Setting U0 :“ NU,UYU 1,x we are done.

So if Γ accepts a total ideal x at all, even if with a nontransitive neighborhood U , then it
could be safely side extended to include a common part NU,Γ ,x of U and x; enriched in
this way Γ would now accept x in the strong sense of inclusion. This is exactly what we
need to exploit by taking the consistency closure of a higher-type total neighborhood,
provided its list of arguments is omniceptive. But let us get to the details without further
ado.

Proposition 5.9 (Closure). Let ρ and σ be types. If (O) and (W) hold in ρ and (C)
holds in σ then (C) holds in ρ Ñ σ .

Proof. Let T P Cong
ρÑσ and x P Gρ . We show that rT pxq P Gσ . Based on Lemma 3.9,

we may assume that LpT q P Fino
ρ without harming generality. By (O) at ρ there exists a

Ux P Conctr
LpT q such that Ux —ρ x. By Lemma 4.8.4 we have T ¨Ux P Cong

σ , and by (C)

at σ we have ČT ¨Ux P Gσ . So in order to show that rT pxq P Gσ , it suffices to show that
ČT ¨Ux Ď rT pxq and invoke Lemma 5.2.

Let then b P Tokσ be such that b P ČT ¨Ux. This means that b —σ T ¨Ux. By
Lemma 3.7.2 we have xUx,by —ρÑσ T . By (W) at ρ and Lemma 5.8, there exists
a neighborhood Ux

0 :“ NUx,LpT q,x P Conρ such that

Ux $ρ Ux
0 Ď x^ @

U 1PConLpT q

pU 1 ­—ρ Ux ÑU 1 ­—ρ Ux
0 q;

we have xUx
0 ,by —ρÑσ T , because for every xU 1,b1y P T with U 1 —ρ Ux

0 it has to be
U 1 —ρ Ux from the above, therefore b —σ b1 follows by xUx,by —ρÑσ T . We have
found a Ub :“ Ux

0 P Conρ such that xUb,by —ρÑσ T and Ub Ď x; but this means by
definition that b P rT pxq, and we are done.

Theorem 5.10 (Density). Every type satisfies (O), (W), and (C), and in particular,
every type is dense.

Proof. It follows by a mutual induction over types by Lemma 5.5 and Propositions 5.4,
5.6, 5.7, and 5.9.

As a closing remark, we should note that the witness which we provide is actually
the maximal total extension of a given neighborhood, in the sense that if, for a type ρ ,
U P Conρ is some neighborhood, Ug P Cong

ρ is the witness provided by Theorem 4.7,
and x P Gρ is such that U Ď x, then xĎ ĂUg.

5.2 Nontotality of transitive ideals
In the same way as we did with finite totality and transitivity in Theorem 4.9, we would
like to know if we can connect totality and transitivity on the level of ideals, and possibly
obtain an explicit characterization of totality in terms of consistency. We show that this
is not possible.

In [5, 6], an element x is defined to be almost maximal when y1 Ě x Ď y2 implies
y1 — y2 for all y1 and y2. At the same time, we call x transitive if y1 — x— y2 implies
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y1 — y2 for all y1,y2. We also extend the bar notation for the deductive closure to ideals,
in particular we write xY y to mean the set ta | DUĎxYy U $ au. We immediately see
the following.

Lemma 5.11. At every type, an ideal is almost maximal if and only if it is transitive.

Proof. That transitivity implies almost maximality is clear. To see the converse let x be
almost maximal and y1 — x— y2. Then xĎ yiY x for each i and we get y1Y x— y2Y x
by almost maximality, which yields y1 — y2.

It is well known that in hierarchies over flat base types there exist functionals which are
maximal—and therefore, by the above lemma, transitive—but not total, typical examples
being various second order minimization operators [46, Example 8.3.2, Exercise 8.5.14].
In the nonflat setting we have counterexamples already at inductive base types, as we
will see immediately. For the following we express the transitivity of x through tokens,
similarly to Lemma 3.4.

Proposition 5.12 (Total-transitivity). At any type, total ideals are transitive. Conversely,
there exist types with transitive ideals that are not total.

Proof. At a base type ι , let a1, a2 be tokens and x a total ideal, such that a1 —ι x—ι a2.
There exists a total neighborhood P with PĎ x, so the assumption yields a1 —ι P—ι a2,
which implies a1 —ι a2 by the finite total transitivity of ι (Proposition 4.3).

At a higher type ρ Ñ σ , let xU1,b1y, xU2,b2y be tokens and f be a total ideal,
such that xU1,b1y —ρÑσ f —ρÑσ xU2,b2y. Assume furthermore that U1 —ρ U2. By
Theorem 5.10 there exists a total ideal x : ρ such that U1YU2 Ď x. Since f is itself total,
the ideal f pxq : σ must also be total, and by the induction hypothesis at σ it must also be
transitive. Now, applying all terms of the assumption to x we obtain b1 —σ f pxq —σ b2,
which then yields b1 —σ b2.

For the converse, consider the ideal8“ tSm˚ | mě 0u of type N.

5.3 Noncontinuity of totalization
The witness for density that we have provided in section 5.1 is a mapping of the sort
tot : Conρ Ñ ρ .6 It is easy to see that this is not a “continuous” mapping—that is, it
does not extend to an ideal of type ρ Ñ ρ—since it can not be expected to preserve
consistency: consider the neighborhoods tS˚u and tSS˚u at typeN; these are consistent
with each other, but

totptS˚uq Q S0 ­—N SS0 P totptSS˚uq .

This counterexample is general enough to convince us that this shortcoming is not
particular to our witness.

Lemma 5.13. There is no consistency-preserving mapping t : ConN Ñ N such that
U Ď tpUq and tpUq P GN for all U P ConN.

Proof. If such a mapping existed it should be tpU1q —N tpU2q for any two neighborhoods
U1,U2 Ď8. Fixing such a U1 with tpU1q “ tSn0u for some n and setting U2 :“ tSn`1˚u

we get tpU1q ­—N tpU1q, a contradiction.
6Such mixed typings of terms appear often and naturally in considerations within information systems,

and should be accounted for in a theory of partial computable functionals together with their approximations
as in [20].
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5.4 Separation
One of Berger’s key insights in [2], which permeates all subsequent approaches that
our work is based upon (including our own), was that the notion of totality can be
clarified if density is viewed together with an accompanying notion of “separation”:
intuitively, a type ρ is considered to feature the separation property, if any two open sets
of conflicting information can be told apart by a total “predicate” of type ρ ÑB. His
argument proceeded by mutual induction for both properties of density and separation
over all finite types. What we did instead in our mutual inductive arguments above was
in effect to replace the notion of “separation of neighborhoods by infinite total ideals”
by notions of “acceptance of total ideals by finite sets”. In our exposition separation
follows as a simple corollary of density.

Following [44], and assuming the presence of the booleans in the type system, call a
type ρ separating if

@
U,U 1PConρ

pU ­—ρ U 1Ñ D
fPGρÑB

xU,tty P f Q xU 1,ffyq,

and finitely separating if

@
U,U 1PConρ

pU ­—ρ U 1Ñ D
TPCong

ρÑB

xU,tty —ρÑB T —ρÑB xU 1,ffyq.

Proposition 5.14 (Separation). Every type is finitely separating, and consequently
separating.

Proof. If U and U 1 are inconsistent a ρ , then the finite set txU,tty,xU 1,ffyu is a
neighborhood at ρ ÑB, and by Theorem 4.7 there will exist some T P Cong

ρÑB which

side extends it. Consequently, by Theorem 5.10 the total ideal rT will extend it.

6 Notes
We gave a new, bottom-up proof of the Kreisel density theorem for finite types inter-
preted over nonflat inductive base types given as algebras by constructors. We introduced
a notion of totality for neighborhoods and proved a finite density theorem, which states
that, given a neighborhood, one may first totalize it in an explicitly finitary way to obtain
a total neighborhood. Kreisel density is obtained by extending this total neighborhood to
a total ideal by means of consistency; the resulting ideal, though generated by a compact
element, is the maximal totalization of the given neighborhood. Here we gather notes
on the above, on related literature, and on future work.

The density theorem in the literature

As already pointed out in the introduction, the density problem was addressed for the
first time by Kreisel [25] and also Kleene [24]. In his phd thesis [2], Ulrich Berger
recast and solved the density problem within domain theory, generalizing results of Yuri
Ershov [13, 14] and paralleling work of Dag Normann [30]—see [3, 46] for an account
in English. A proof which does not thematize separation is given by Dag Normann
in [33], while a modern approach from a viewpoint of an all-encompassing theory of
higher-type computability can be found in the recent volume by John Longley and
Dag Normann [26]. The density theorem is a fundamental result with several deep and
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far-reaching applications, like the choice theorem [25, 3, 42], Kreisel’s representation
theorem [25, 29, 32], a generalized Kreisel–Lacombe–Shoenfield theorem [3], Nor-
mann’s theorem [34, 35, 38], and Escardó’s theory of exhaustive search [15, 16], as well
as extensions and generalizations, for example to dependent and universe domains [4],
to Scott’s equilogical spaces [1], or even to an account of totality independently of
density [31]—see also [5, 33, 6, 36]. It would be natural to seek among these studies for
ones that would benefit from the possibility of explicitly finitary totalization. Existence
of such cases would further justify the extension of the results presented here to richer
type systems, starting with the one adopted in [44], and possibly moving on to the type
systems covered in [4].

Related work

The problem of finding a proof of density theorem “by compacts” occurred to the author
back in the early 2011, and since then tackling it has primarily provided an incentive to
develop the theory of nonflat information systems for semantics (see [23] for examples
of collateral results). A partial result in the direction of finite witnesses for density
was presented in [21], where, in contrast to the present approach, it was shown that
one may first prove a version of finite separation at every type and then use this as
a lemma to prove density (a version of our Proposition 5.7 also appears there); that
approach provided a satisfactory finitary explanation of separation but not of totalization.
Meanwhile, an alternative bottom-up approach to the density theorem, which grew
independently but turned out to be similar in spirit to ours, was carried out by Davide
Rinaldi in [39]. Rinaldi offers a nonflat semantics which is topological rather than
domain-theoretic: he uses certain formal topologies [41], for which he proves that they
are equivalent to unary information systems; these are information systems where in
addition neighborhoods always have eigentokens, that is, for every U P Con there exists
some a P Tok such that U „ tau. In our setting this is true of base types, but not of higher
types. To adapt Rinaldi’s semantics in a way that clearly matches broader categories of
information systems than just the unary ones, and look at a formal-topological proof
of density by compacts anew, would not only be instructive, but it could also provide a
more succinct and elegant proof.

Towards a common study of totality and cototality

Recently, “cototal ideals”, that is, total ideals together with infinities like 8 at type
N, have been used to model stream-like objects at base types arising from initial
algebras, offering an alternative to versions of semantics simultaneously based on initial
algebras and final coalgebras [40, 18, 17]; for this line of work, rooted in [7, 8, 11],
see [9, 44, 27, 28, 10]. In view of the mismatch between transitivity and totality in a
nonflat setting which we described in section 5.2, it looks like a refinement is possible,
where totality should feature an increased degree of finiteness and should be studied
hand in hand with an appropriate notion of cototality: beside more or less obvious
differences of the two at base types (based on the proof of Lemma 5.13, for example,
one could expect continuous “cototalizations” to exist), their interplay at higher types
remains terra incognita at the time of this writing.
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[16] Martı́n H. Escardó. Exhaustible sets in higher-type computation. Log. Methods Comput. Sci., 4(3):paper
3, 37, 2008.

[17] Neil Ghani, Peter G. Hancock, and Dirk Pattinson. Continuous functions on final coalgebras. In
Proceedings of the 25th conference on the mathematical foundations of programming semantics (MFPS
2009), Oxford, UK, April 3–7, 2009, pages 3–18. Amsterdam: Elsevier, 2009.

26
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