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Abstract

In 1990 Hajime Ishihara proved indirectly that the weak König’s lemma
implies the fan theorem. Here we reproduce a direct proof Ishihara provided for
the same implication, which he presented in 2004 in Munich.

This is a work done within a coordinated attempt of the Mathematical Logic

Group in Munich to formalize Ishihara’s arguments in theorem proving environ-

ments, an aim which was met in late spring by Stefan Schimanski on Coq and

Nikolaus Thiel on Minlog.

1 Preliminaries

The well-known binary coding of natural numbers by

m 7→ 〈a1, . . . , an〉 iff m =

n∑
i=1

ai · 2i−1

where for every i = 1, . . . , n it is ai ∈ {0, 1}, allows us to actually identify
N with the set {0, 1}? of all finite binary sequences:

{0, 1}? = {〈a1, . . . , an〉 ∈ {0, 1}n | n ∈ N}

where for the empty sequence we write 〈〉. We use m, n, i, k for elements
of N and α, β, γ, δ when we want to stress their {0, 1}?-sequential nature.
We denote by {0, 1}N the set of all infinite binary sequences; we use ψ, ω
for elements of {0, 1}N. The catenation of two sequences 〈a1, . . . , am〉 and
〈b1, . . . , bn〉 is defined in the standard way by

〈a1, . . . , an〉 ∗ 〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉

The length of a sequence α is defined by

|〈〉| = 0 & |α ∗ 〈a〉| = |α|+ 1

The k-th initial segment (also prefix or restriction) of α = 〈a1, . . . , an〉 is
defined by

ᾱ(k) =

{
〈a1, . . . , ak〉 if k ≤ n

α otherwise

We will write just ᾱ for some initial segment of α and we will say that α
is an extension of any ᾱ.1 The set {0, 1}? now becomes a poset by the
usual prefix ordering :

α � β iff ∃k. α = β̄(k)

1It is trivially |ᾱ(k)| = k, for k ≤ |α| and ᾱ(|α|) = α.
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Let A be a subset of {0, 1}?. We say that A is decidable when

∀α. α ∈ A ∨ α 6∈ A

in the sense that there exists a decidability algorithm which solves the
membership problem of A. We say that A is closed under restriction
when

β ∈ A ∧ α � β → α ∈ A
Finally A is a (binary) tree when it is decidable and closed under restric-
tion. We will refer to the poset {0, 1}? as the full tree.

A tree T is infinite if

∀k∃α ∈ {0, 1}k. α ∈ T

An infinite branch in T is an ω ∈ {0, 1}N such that

∀k. ω̄(k) ∈ T

We will just write “infinite branch” for an “infinite branch in the full tree”.
The first statement which is involved in Ishihara’s implication is the

weak König’s lemma:

Statement 1 (WKL). Every infinite tree has an infinite branch.

A subset B of {0, 1}? is called a bar when all infinite sequences even-
tually meet B, that is

∀ω∃k. ω̄(k) ∈ B
It follows that B cannot be empty.2 A bar B is said to be uniform if there
is a height up to which all infinite branches are sure to have met B, that
is

∃k∀ω∃i ≤ k. ω̄(i) ∈ B
We will say that B is uniform by k. The second statement we need is the
fan theorem:

Statement 2 (FAN). Every decidable bar is uniform.

2 Ishihara’s implication

Ishihara’s reasoning is based on two lemmata: (i) the construction of an
infinite extension of a (possibly non-infinite) tree and (ii) the equivalence
of WKL to the existence of a ‘projection axis’ for any tree.

For the mental model of the first lemma: if we are given a ‘finite’ tree
T , an economical way of extending it to an infinite one T̂ is to pick up its
highest leaves and consider their full-tree expansions. In case T is already
an infinite one, such an extension can and need not be made.

For the second lemma: the observation is that WKL yields a handy
means of handling the lengths of nodes in a tree T , namely a ‘projection
axis’, that is an infinite branch ω, whereon whenever we project nodes of
T we still remain in T . If the tree is infinite the axis is one of its infinite
branches, else it is an infinite extension of one of the highest nodes in T ,
that is an infinite branch of the corresponding T̂ .

2A set B which is a bar defines in a natural way a tree TB which is prevented from being
infinite because of B; we may think of B as barring the tree TB from being infinite. This will
be made clear in the proof of the main theorem (see page 4).
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Let then T be an arbitrary tree; induce the set T̂ which consists of T
together with all finite extensions of its highest leaves:

T̂ = {β ∈ {0, 1}? | β ∈ T ∨ (∃β̄ ∈ T. ∀α ∈ {0, 1}≤|β|. α ∈ T → |α| ≤ |β̄|)}

Lemma 1. If T is a tree then the set T̂ is an infinite tree.

Proof. T̂ is decidable: This follows directly from the definition, where
only the decidable T and finite lengths are involved.

T̂ is closed under restriction: Let β ∈ T̂ and γ be an arbitrary prefix.
Since T is decidable, we have

γ ∈ T ∨ γ 6∈ T

In the first case we have γ ∈ T̂ . In the second case it must also be that
β 6∈ T . Let β̄ be the highest leaf prefix which is provided by the definition
of T̂ , for which

α ∈ T → |α| ≤ |β̄|
Since γ 6∈ T and ∀α ∈ {0, 1}≤|γ|. α ∈ T → |α| ≤ |β̄|, that is since β̄ serves
as a highest leaf prefix for γ too, we have γ ∈ T̂ .

T̂ is an infinite tree: Let k be an arbitrary length. By decidability of
T we have

(∃β ∈ {0, 1}k. β ∈ T ) ∨ (∀β ∈ {0, 1}k. β 6∈ T )

In the first case we have ∃β ∈ {0, 1}k. β ∈ T̂ . In the second case choose
a highest leaf δ ∈ T 3 and let

β = δ ∗ 〈0, . . . , 0︸ ︷︷ ︸
k−|δ|

〉

Obviously β ∈ {0, 1}k ∧ β ∈ T̂ .

Lemma 2. The following statements are equivalent:

1. Every tree has a projection axis, that is for every tree T

∃ω ∈ {0, 1}N. α ∈ T → ω̄(|α|) ∈ T

2. Statement 1.

Proof. (1) ⇒ (2): Let T be an infinite tree and ω be a projection axis of
T . Since it is infinite

∀k∃α ∈ {0, 1}k. α ∈ T

We can project this α on ω and still be in T :

∀k∃α ∈ {0, 1}k. ω̄(|α|) ∈ T

which yields
∀k. ω̄(k) ∈ T

So ω is an infinite branch in T .
(2) ⇒ (1): Let T be an arbitrary tree. The set T̂ it induces is an

infinite tree by lemma 1, so by (2) it will have an infinite branch ω. Let
α ∈ T . By decidability of T it is

ω̄(|α|) ∈ T ∨ ω̄(|α|) 6∈ T
3This choice is decidable since it is bounded by k.
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Suppose it was ω̄(|α|) 6∈ T . By definition of T̂ there would exist a highest
leaf prefix of ω̄(|α|), say δ ∈ T . But then we would have

|δ| ≤ |ω̄(|α|)| = |α| and |α| ≤ |δ|

that is |δ| = |ω̄(|α|)|, and since the first is a prefix of the other

T 3 δ = ω̄(|α|) 6∈ T

which is a contradiction.

We are now able to prove the main

Theorem. Statement 1 implies statement 2.

Proof. Let B be a decidable bar. If the empty sequence 〈〉 belongs to B
then B is trivially uniform by 0, since 〈〉 is a prefix of every sequence.

Assume that 〈〉 6∈ B. Define

TB = {α | γ � α→ γ 6∈ B}

This set is evidently a tree, so by lemma 2 it will have a projection axis
ω. Since B is a bar

∃k. ω̄(k) ∈ B
Let now ψ be any infinite branch and suppose that we had ∀i ≤ k. ψ̄(i) 6∈
B. By definition of TB it would be ψ̄(k) ∈ TB , so its projection on ω
would still lie in TB , that is ω̄(|ψ̄(k)|) ∈ TB . But then

B 3 ω̄ ∈ TB

which is a contradiction. So B is uniform by k.
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