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Abstract

We prove basic facts about the properties of atomicity and coherence for Scott
information systems, and we establish direct connections between coherent infor-
mation systems and well-known point-free structures.

1 Introduction
Domain theory has been a well-established branch of mathematics for several years
now, one that exhibits a wide array of applications [1, 5]. In particular it bears
great significance regarding the denotational semantics of programming languages,
which was historically one of the reasons that the theory emerged in the first place.

In [24], Dana Scott represents Scott domains, that is, pointed complete partial
orders (cpo’s) which are additionally consistently complete and algebraic, by in-
formation systems. These are supposed to structure atomic tokens of information
according to their consistency and entailment, where entailment models deduction
of information and preorders the carrier, so that the actual objects of the domain
are then recovered as ideals. Scott’s information systems have served as a natural
approach to the domain-theoretic treatment of semantics, at least from the com-
puter scientist’s viewpoint, since they provide the means to discuss higher-type
algorithms in a tangible way, namely in terms of their finite approximations: their
tokens and the finite consistent sets of tokens that they consist of. In the context
of information systems, the principle of finite support for computation finds one of
its uttermost formulations: an algorithm is but a consistent and deductively closed
collection of concrete, finite pieces of information. But there are also theoretical
merits, as information systems are more basic than the domains they induce. In
particular, properties of ideals reduce to properties of tokens and consistent sets,
thus providing the possibility of elementary methods of argumentation. A prime
example of this is the solution of domain equations up to identity [24, 29, 28],
rather than up to isomorphism, as previous arguments could already show [25].

In our case, favoring the tangible nature of information systems is tied to the
development of a constructive formal theory of partial computable functionals,
one that should lend itself as naturally and intuitively as possible to an imple-
mentation in a proof assistant [7]. This objective motivates an in-depth study of
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information systems in their own sake, and leads to a bottom-up, constructive, and
implementable redevelopment of domain theory for higher-type computability.

Helmut Schwichtenberg [22] started this redevelopment by employing a
cartesian-closed class of information systems which feature coherence as well as
atomicity, which technically reduce consistency and entailment, respectively, to
binary predicates. Both of these properties, in one version or another, have proved
crucial for various studies in denotational semantics. Already in the formative pe-
riod of domain semantics, coherence came to the attention of Gordon Plotkin [16],
when he was arguing for using cpo’s instead of lattices, and noticed that it is a
quite omnipresent property in the usual domains of study; later, it became one of
the key features of the standard model of Jean-Yves Girard’s linear logic [6]. As
for atomicity (also known as “linearity”), it is notably needed for the representation
of stable domains [30], which are important in the study of the notorious notion of
sequentiality [2], but also appears, again, in particular models of linear logic [4].

In this work we retain a top-down approach and present results [9] which relate,
in a direct way, some of the point-free structures that have been put to successful
use in the past by the community, to coherent information systems. The work has
a rather cartographic flavor which we deem necessary in order to clearly under-
stand the nature of information systems we have used in practice from a point-free
viewpoint.

We begin in section 2 by recalling basic facts and observations concerning in-
formation systems. In section 3 we define the notions of atomicity and coherence
and we show that atomic and coherent versions of information systems feature
more ideals than the generic version. In section 4 we concentrate on point-free
versions of coherence (atomicity, of apparently limited use in comparison to co-
herence, would be a subject for another text): we consider well-known point-free
structures, namely domains, precusl’s, and formal topologies, and impose appro-
priate coherence properties on them to show that they correspond to coherent infor-
mation systems. Such correspondences naturally imply certain categorical equiv-
alences, which we make explicit in the case of formal topologies, the less covered
case of the three in the literature. In section 5 we gather some relevant notes and
an outlook on future work.

2 Scott information systems
A (Scott) information system is a triple ρ “ pTokρ ,Conρ ,$ρ q, where Tokρ is a
countable set of tokens, Conρ ĎP f pTokρ q is a collection of consistent sets, also
called (formal) neighborhoods and $ρ Ď Conρ ˆTokρ is an entailment relation,
such that: consistency is reflexive and closed under subsets; entailment is reflexive
and transitive; consistency propagates through entailment. Formally we have1

tau P Con,

U P Con^V ĎU ÑV P Con,

a PU ÑU $ a,

U $V ^V $ cÑU $ c,

U P Con^U $ bÑUYtbu P Con,

where U $ V is a shorthand for @bPVU $ b. Among the properties that follow
directly from the definition we have

U $V ^U $V 1ÑU $V YV 1. (1)

1In general, we may drop the subscripts when we can afford it.
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Figure 1: Entailments in ConC zH and TokL .

An ideal in ρ is a set uĎTok which is consistent and closed under entailment,
in the sense that

U P Con^pU $ aÑ a P uq

for all U Ď f u and a P Tok. Denote the empty ideal by K and the collection of all
ideals of ρ by Ideρ . Define the deductive closure of a neighborhood U P Conρ by

clρ pUq :“
 

a P Tok |U $ρ a
(

.

When ρ is clear from the context we just write U , and we also write Conρ for the
collection of all such closures. It is clear that U P Ideρ for any U P Conρ . Write
U „ρ V if both U $ρ V and V $ρ U .

Lemma 1. It is U „V if and only if U “V .

Proof. The right direction follows from transitivity and the left one from reflexiv-
ity and transitivity of entailment.

Examples. Consider the strings over the alphabet tl,r,mu, the empty one denoted
by ε . Define C by TokC :“ tε, l,ru, ConC :“P f pTokC q, and

tlu $C l, tru $C r, tεu $C ε,

tl,ru $C l,r,ε, tr,εu $C r,ε, tl,εu $C l,ε,

tl,r,εu $C l,r,ε.

Once we see that tl,ru $C ε is the only nontrivial entailment at hand, it is direct
to also see that IdeC “P f pTokC qztl,ru.

Further define L by TokL :“ tε, l,m,r, lm, lr,mru, U P ConL when there is a
token a P TokL which is a superword of all b PU , and U $L b when there exists
an a PU which is a superword of b. Its ideals, IdeL , are

K, tεu ,

tl,εu , tm,εu , tr,εu ,

tl,m,εu , tl,r,εu , tm,r,εu ,

tlm, l,m,εu , tlr, l,r,εu , tmr,m,r,εu .

We will use these finite systems in section 3 to illustrate the notions of atomicity
and coherence.

Let ρ and σ be information systems. Define their function space ρ Ñ σ by the
following clauses.
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• If U P Conρ and b P Tokσ then pU,bq P TokρÑσ .

• Let U1, . . . ,Ul P Conρ , b1, . . . ,bl P Tokσ , and J :“ t1, . . . , lu; if for all
I Ď J,

Ť

iPI Ui P Conρ implies
Ť

iPI tbiu P Conσ , then
 

pU j,b jq | j P J
(

P

ConρÑσ .

• Let U1, . . . ,Ul ,U P Conρ , b1, . . . ,bl ,b P Tokσ , and J :“ t1, . . . , lu; if for
some I Ď J, it is both U $ρ Ui for all i P I and tbi | i P Iu $σ b, then
 

pU j,b jq | j P J
(

$ρÑσ pU,bq.

The definition of entailment can be formulated in terms of application between
neighborhoods: tpU1,b1q, . . . ,pUl ,blquU :“

 

bi |U $ρ Ui, i P J
(

; so

• tpU1,b1q, . . . ,pUl ,blquU $σ b implies tpU1,b1q, . . . ,pUl ,blqu$ρÑσ pU,bq.

These make ρ Ñ σ an information system.
A relation r Ď Conρ ˆTokσ is called an approximable map from ρ to σ if it

is consistently defined and deductively closed:

@bPV pU,bq P rÑV P Conσ ,

U 1 $ρ U^@bPV pU,bq P r^V $σ b1Ñ pU 1,b1q P r.

Write ApxρÑσ for these relations. Approximable maps provide an alternative
description of ideals in a function space; in particular, it is ApxρÑσ “ IdeρÑσ .

As already remarked by Scott in [24, §5] (where actually the converse route was
taken), any approximable map r from ρ to σ induces a relation r̂ Ď Conρ ˆConσ

by letting pU,V q P r̂ if and only if pU,bq P r for all b PV .

Fact 2. Let r be an approximable map from ρ to σ . For the relation r̂ it is

pH,Hq P r̂,

pU,V q P r̂^pU,V 1q P r̂Ñ pU,V YV 1q P r̂,

U 1 $ρ U^pU,V q P r̂^V $σ V 1Ñ pU 1,V 1q P r̂.

Conversely, if RĎ Conρ ˆConσ satisfies the above, then the relation ŘĎ Conρ ˆ

Tokσ , defined by
pU,bq P Ř :“ pU,tbuq P R,

is an approximable map from ρ to σ .

In what follows we will identify r with r̂ and R with Ř.

3 Atomicity and coherence of information
Let ρ “ pTok,Con,$q be an arbitrary information system. Define its atomic en-
tailment by U $A

ρ b when tau $ρ b for some a PU ; define its coherent neighbor-
hoods by U P HConρ when

 

a,a1
(

P Conρ for all a,a1 P U . Further, for each
coherent neighborhood U and token b define the coherent entailment U $H

ρ b
by U $ρ b or b P U . Write Aρ and Hρ for the triples pTokρ ,Conρ ,$

A
ρ q and

pTokρ ,HConρ ,$
H
ρ q respectively. If Aρ “ ρ , call ρ atomic, and if Hρ “ ρ ,

call it coherent; the system L in Figure 1 is atomic but incoherent, since
tl,mu ,tl,ru ,tm,ru P ConL but tl,m,ru R ConL , whereas C is coherent but
nonatomic because of tl,ru $C ε .2

2The information system C is based on a remark by Thierry Coquand at the Mathematics, Algorithms,
and Proofs summer school in Genoa, August 2006, against the choice of atomicity for information systems
which are induced by algebras given by superunary constructors. The system L stems from [16] by Gor-
don Plotkin, where he uses the entailment graph of L as an example of a “consistently complete” but not
“coherent” complete partial order.
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As we mentioned in section 1, these two notions have each proven important
for program semantics in several relevant works. In conjunction, they were used
in [22], where various fundamental results were established, like density, preserva-
tion of values, and adequacy, while in [7] definability was established as well3. For
the general setting of [23, Chapter 6], atomic-coherent systems turn out to be par-
ticularly appropriate when modeling type systems over data types like the natural
or the boolean numbers, whose tokens are built by at most unary constructors [9,
§1.4], while in general it would seem more reasonable to work within coherent
systems.

Back on an abstract level, there are some direct observations to make, like
that it is in general $A

ρ Ď$ρ and Conρ Ď HConρ , or that for any U P Conρ it is
clAρ pUq Ď clρ pUq as well as clHρ pUq “ clρ pUq. The important and most basic
observation is the following.

Proposition 3. Let ρ be an information system. The triples Aρ and Hρ are both
information systems. Furthermore, let σ be an information system; if σ is atomic
then ρ Ñ σ is also atomic; if σ is coherent, then ρ Ñ σ is also coherent.

Proof. In order to show that Aρ is an information system we have to check the laws
of the definition concerning entailment. For reflexivity, if U P Con then tau $ a
for all a PU , so U $A a for all a PU . For transitivity, let U $A V ^V $A c; by
the atomicity we get an ab P U for each b P V , such that tabu $ b, as well as a
bc P V such that tbcu $ c; it follows that there is an abc PU , such that

 

abc

(

$ c.
Finally, consistency propagates through atomic entailment, since it does so through
entailment in general.

We now show that Hρ is an information system. The reflexivity for coherent
consistency is immediate from the definition, since all singletons are already in
Con. For the closure of coherent consistency under subsets, let U P HCon and
V Ď U ; for all a,a1 P V it is a,a1 P U , so

 

a,a1
(

P Con by the coherence of U .
The reflexivity of coherent entailment follows directly from the definition. For the
transitivity of coherent entailment, let U $H V and V $H c; then, for each b PV it
is either U $ b or b PU , and similarly V $ c or c PV ; it follows from the transitivity
of entailment (and elementary set theory) that U $ c or c PU , so U $H c by the
definition. To show that coherent consistency propagates by coherent entailment,
consider a U P HCon and a b P Tok, such that U $H b. It suffices to show that
ta,bu P Con for an arbitrary a PU : by the definition of coherent entailment it is
either U $ b or b P U ; in both cases it is indeed ta,bu P Con for all a P U , so
UYtbu P HCon.

Now assume that σ is atomic. Let
 

pU j,b jq | j P J
(

P ConρÑσ and
pU,bq P TokρÑσ . By definition,

 

pU j,b jq | j P J
(

entails pU,bq at ρ Ñ σ if
 

pU j,b jq | j P J
(

U entails b at σ . Let J0 be the subset of these indices j P J for
which U $ρ U j; by the atomicity in σ ,

 

b j | j P J0
(

$σ b implies that
 

b j
(

$σ b
for a specific j P J0; then

 

pU j,b jq
(

$ρÑσ pU,bq for the same j. The case of
coherence is treated in an equally straightforward way.4

Both atomicity and coherence may provide extra ideals. For example, for the
information systems of Figure 1, it is direct to check that tl,ru is an ideal in AC
but not in C , and that tl,m,r,εu is an ideal in HL but not in L . So atomic and
coherent information systems may be ideal-wise richer. We now show that this is
the only direction that we get richer in ideals and also that this is the richest we can

3Along the same lines, see also the independent work of Fritz Müller [13], which came to our attention
only recently.

4A proof can be found in [23, Chapter 6]. In [22], the preservation of both atomicity and coherence by
the formation of the function space is shown simultaneously for atomic-coherent systems.
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get in this manner. Write ρ ãÑ σ if there is an embedding of Ideρ into Ideσ , and
ρ » σ if Ideρ and Ideσ are isomorphic.

Theorem 4. Let ρ be an information system.

1. It is ρ ãÑ Aρ and ρ ãÑ Hρ .

2. Atomicity and coherence are idempotent, in the sense that ApAρq » Aρ and
HpHρq » Hρ .

Proof. We show that Ideρ Ď IdeAρ : let u P Ideρ ; if U Ď f u, then U P Con by the
consistency in ρ; if further U $A b, then U $ b since $A Ď $, so b P u by the
deductive closure in ρ . We now show that Ideρ Ď IdeHρ : let u P Ideρ ; if U Ď f u,
then U P Con Ď HCon by the consistency in ρ; if further U $H b, then U $ b
since U P Con again, so b P u by the deductive closure in ρ .

Now we show idempotence. For atomicity, the only thing we have to show is
that$AA

“$A. By definition, it is U $AA
b if and only if there is an a PU such that

tau $A b; this in turn means that there is an a1 P tau such that
 

a1
(

$ b; clearly
it must be a “ a1, so we’ve found an a PU such that tau $ b. So it is ApAρq »

Aρ—actually with the trivial isomorphism. For the idempotence of coherence, let
U P HpHConρ q; then

@a,a1PU
 

a,a1
(

P HConρ

p‹q

ô@a,a1PU
 

a,a1
(

P Conρ ,

which means that U P HConρ . The step (‹) holds since two-element sets that are
consistent are also coherently consistent and vice versa. Finally, let U $HH

b; by
the definition, it is either U $H b, so we’re done, or b PU , whereby U P HCon,
and again U $H b by the reflexivity of coherent entailment.

4 Coherent point-free structures
Links between domain theory and point-free topology have been studied by sev-
eral people already [21, 18, 14, 15, 26]. Our main objective here is to find direct
correspondences between the information systems that we find useful in practice
and respective point-free structures, domains included.

The basic problem that we face in such an endeavor lies, not surprisingly, in
the very nature of atomicity and coherence, which are both defined in terms of to-
kens; but tokens are not observable in a point-free setting, where everything starts
with a formal version of neighborhoods. With atomicity in particular, the problem
seems more involved, since it is a property which fully exploits the presence of
atomic pieces of data. Indeed, in order to express atomicity in a point-free setting,
it seems that we can not avoid talking about “atomic” or “prime neighborhoods”
(which would correspond intuitively to singletons of tokens); regarding the rela-
tively limited status of atomic systems in our pursued applications, this has not
proved a convincing task up to now.5

On the other hand, coherent cpo’s appear already in [16] by Gordon Plotkin,
where he attributes the notion to George Markowsky and Barry Rosen from [11].
In the handbook chapter [1] by Samson Abramsky and Achim Jung, coher-
ence is studied in the more general setting of continuous domains, while Viggo
Stoltenberg-Hansen et al. introduce the notion too as an exercise [26, Exer-
cise 8.5.19]. Also, as already mentioned, Jean-Yves Girard’s coherence spaces [6]

5However, in strict regard to domain theory, atomic information systems are shown in [4] to represent
prime algebraic domains. See also section 5.
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are used instead of Scott–Ershov domains to model linear logic. Moreover, co-
herence has been considered in point-free topology as well, at least since Peter
Johnstone discussed coherent locales [8].

On the technical side, unlike atomicity, coherence lends itself to a characteri-
zation on the level of consistent sets in a trivial way.

Lemma 5. A finite set of tokens is a coherent neighborhood if and only if every two
of its subsets have a coherent union: it is U P HCon if and only if U PP f pTokq
and U1YU2 P HCon for any U1,U2 ĎU.

By this we stress that the issue of acceptance of a neighborhood in a coherent
system is raised from comparisons of its tokens, to comparisons of its subsets. The
coherence conditions (2), (3), and (5), that we pose in the following are all modeled
after Lemma 5.

In this section we restrict ourselves to the case where we have countable carrier
sets.

4.1 Domains
We start with the known correspondence of arbitrary Scott information systems
and domains (of countable base), which we quickly recount here without proofs,
to set the mood for what comes next—for details we refer to [26].

Let D“ pD,Ď,Kq be a domain and define IDpDq :“ pTok,Con,$q by

Tok :“ Dc,

tuiuiPI P Con :“ tuiuiPI Ď
f Dc^ lubtuiuiPI P D,

tuiuiPI $ u :“ u Ď lubtuiuiPI .

Note that, by the well-known fact that a bounded finite set of compact elements has
a compact least upper bound, if tuiuiPI P Con then lubtuiuiPI P Dc. Conversely,
for an information system ρ “ pTok,Con,$q, define Dpρq :“ pIdeρ ,Ď,Kq.

Fact 6. If D is a domain and ρ an information system, then IDpDq is an informa-
tion system and Dpρq a domain, where Dpρqc “ Conρ , and lub

 

U ,V
(

:“UYV .
Furthermore, if D is a domain then IdeIDpDq » D, through the isomorphism pair
u ÞÑ lubu and u ÞÑ tv P Dc | v Ď uu (the set of the compact approximations of u).

Let now r be an approximable map from ρ to σ . Define a mapping Dprq :
Dpρq Ñ Dpσq by

Dprqpuq :“
ď

!

V P Conσ | DUPConρ
pU Ď f u^pU,V q P rq

)

.

Conversely, let f be a continuous mapping from a domain D to a domain E. Define
a relation IDp f q Ď ConIDpDqˆConIDpEq by

ptuiuiPI ,tviuiPIq P IDp f q :“ lubtviuiPI Ď f plubtuiuiPIq.

These establish a bijective correspondence, as the following statement expresses.

Fact 7. If r is an approximable map from ρ to σ then Dprq : Dpρq Ñ Dpσq is
a continuous mapping. Conversely, if f : D Ñ E is a continuous mapping then
IDp f q is an approximable map from IDpDq to IDpEq. Furthermore, the collection
of continuous mappings from D to E is in a bijective correspondence with the
collection of approximable maps between IDpDq and IDpEq.
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Coherent domains

Let D“ pD,Ď,Kq be a domain and tuiuiPI Ď
f Dc an arbitrary finite set of compact

elements. Call D a coherent domain if

lubtuiuiPI P Dc Ø@i, jPI lub
 

ui,u j
(

P Dc. (2)

Note that the choice of Dc instead of the more modest D is justified again by the
basic fact that bounded finite sets of compacts have a compact least upper bound.

Theorem 8. Let D be a coherent domain and ρ a coherent information system.
Then IDpDq is a coherent information system and Dpρq is a coherent domain.

Proof. Let D be a coherent domain and tuiuiPI Ď
f TokIDpDq be such that

 

ui,u j
(

P

ConIDpDq for every pair i, j in I. By the definition of IDpDq, lub
 

ui,u j
(

P D.
Since bounded finite sets of compacts have a compact least upper bound, it is
lub

 

ui,u j
(

PDc for every such i, j P I, so by (2) we get lubtuiuiPI PDc, and there-
fore tuiuiPI P ConIDpDq.

Let now ρ be a coherent information system. By Fact 6, it is u PDpρqc if there
is a U P Con with U “ u, and lub

 

U ,V
(

“UYV . So let
 

Ui
(

iPI Ď
f Dpρqc and

set U :“
Ť

iPI Ui. We show that (2) holds for Dpρq. Assuming that U P Con, and
since U $Ui for all i, we have UiYU j P Con for each i, j P I, by propagation; it
follows that UiYU j P Con. For the other direction, assume that UiYU j P Con for
each i, j P I; by the coherence of ρ and Lemma 5, we get that U PCon, so U PCon,
and we’re done.

4.2 Precusl’s
Precusl’s are structures that provide yet another representation of domains, this
time with a more order-theoretic emphasis. Stoltenberg-Hansen et al. [26, Chap-
ter 6] have used precusl’s as an alternative to information systems to solve domain
equations up to identity. In their textbook one can also find a correspondence be-
tween precusl’s and information systems, which we recall here before moving to
the issue of coherence.

A preordered conditional upper semilattice with a distinguished least element,
or just precusl, is a consistently complete preordered set with a distinguished least
element, that is, a quadruple P “ pN,Ď,\,Kq, where Ď is a preorder on N, K is
a (distinguished) least element and \ is a partial binary operation on N which is
defined only on consistent pairs, that is, on pairs having an upper bound, and then
yields a (distinguished) least upper bound:

U\V P N :“ DWPN pU Ď W ^V Ď W q ,

U\V P N ÑU Ď U\V ^V Ď U\V

^@WPN pU Ď W ^V Ď W ÑU\V Ď W q .

We think of N as “a set of formal basic opens”, Ď as “formal inclusion”, K as “a
formal empty set” and \ as “a formal union”. Call a subset uĎ N a precusl ideal
when it satisfies

K P u ^ @U,VPuU\V P u ^ @UPu pV Ď U ÑV P uq .

Write IdeP for the class of all precusl ideas of P. Observe that the second of
the three requirements for a precusl ideal expresses the property of being upward
directed, so it follows that any finite subset in a precusl ideal will have a least upper
bound in the ideal.
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Let now P“ pN,Ď,\,Kq be a precusl and define IPpPq “ pTok,Con,$q by

Tok :“ N,

U P Con :“U Ď f N^
ğ

U P N,

U $U :“U Ď
ğ

U .

Conversely, let ρ “ pTok,Con,$q be an information system and define Ppρq “
pN,Ď,K,\q by

N :“ Con,

U Ď V :“V $U,

K :“H,

U\V :“UYV if UYV P Con.

The following is Theorem 6.3.4 of [26].

Fact 9. If P is a precusl and ρ an information system, then IPpPq is an infor-
mation system and Ppρq is a precusl. Furthermore, it is IdeP “ IdeIPpPq and
Ideρ » IdePpρq.

A precusl approximable map from P to P1 is a relation R Ď NˆN1, such that

• pK,K1q PR,

• pU,V q PR^pU,V 1q PR Ñ pU,V \V 1q PR,

• U Ď U 1^pU,V q PR^V 1 Ď V Ñ pU 1,V 1q PR,

where pU,V \V 1q PR naturally implies that V \V 1 is defined. Write ApxPÑP1

for all precusl approximable maps from P to P1. For every R P ApxPÑP1 define a
relation IPpRq Ď ConIPpPqˆConIPpP1q by

pU ,V q P IPpRq :“
´

ğ

U ,
ğ

V
¯

PR.

Conversely, let r be an approximable map from ρ to σ . Define a relation Pprq Ď
NPpρqˆNPpσq by

pU,V q P Pprq :“ pU,V q P r.

One can show [26, pp. 151–2] that these establish a bijective correspondence.

Fact 10. If r is an approximable map from ρ to σ then Pprq is a precusl approx-
imable map from Ppρq to Ppσq. Conversely, if R is a precusl approximable map
from P to P1 then IPpRq is an approximable map from IPpPq to IPpP1q. Further-
more, it is ApxρÑσ » ApxPpρqÑPpσq and ApxPÑP1 » ApxIPpPqÑIPpP1q.

Coherent precusl’s

Call a precusl coherent if, for a finite collection U Ď f N,
ğ

U P N Ø@U,VPU U\V P N. (3)

Theorem 11. If P is a coherent precusl then IPpPq is a coherent information sys-
tem. Conversely, if ρ is a coherent information system then Ppρq is a coherent
precusl.

Proof. Suppose first that P is coherent. Let U P ConIPpPq, which by definition
means

Ů

U P N; by (3), this is equivalent to U \V P N for all U,V P U , which
is equivalent to tU,Vu P ConIPpPq, again by definition. So IPpPq is a coherent
information system.

9



Now suppose that ρ is a coherent information system, that is, such that

U P ConØ@a,bPU ta,bu P Con (4)

for all U Ď f Tok. Let U Ď f NPpρq, that is, U Ď f Con, and assume that
Ů

U P

NPpρq. By definition it is
Ť

U P Con; by (4) and Lemma 5, we get that
Ť

U Ď f

Tok and U YV P Con, that is, U \V P NPpρq for all U,V Ď
Ť

U ; a fortiori it
is U \V P NPpρq for all U,V P U . Conversely, assume that U Ď f NPpρq and
U\V PNPpρq for all U,V PU ; by definition it is U Ď f Con and U\V P Con for
all U,V PU ; by (4), it must hold that ta,bu P Con for every a,b PU YV , where
U,V P U ; it follows that the same must hold for every a,b P

Ť

U ; by (4) again
we get

Ť

U P Con, so
Ů

U P NPpρq, by definition. So Ppρq is indeed a coherent
precusl.

4.3 Scott–Ershov formal topologies
The structure of a “formal topology” was defined by Giovanni Sambin [17] as
early as 1987, and as the area has developed a number of alternative definitions has
appeared. Suitable for our purposes is a version of the definition in [14], whose
main difference from Sambin’s original is the disposal of the “positivity predicate”.
In fact, we depart a bit from this definition as well, in that we require the presence
of a top element among the formal basic opens.6

We will use order-theoretic notions which are dual to notions appearing before,
namely a greatest or top element and greatest lower bounds of sets of elements; all
of these are to be understood in the usual order-theoretic way.

Define a formal topology as a triple T “ pN,Ď,ăq, where N is the collec-
tion of formal basic opens, ĎĎ NˆN is a preorder with a top element J, which
formalizes inclusion between basic opens, and ă Ď NˆPpNq, called covering,
formalizes inclusion between opens (not just the basic ones), and is reflexive, tran-
sitive, localizing, and extends formal inclusion between formal basic opens, that
is,

U PU ÑU ă U ,

U ă U ^U ă V ÑU ă V ,

U ă U ^U ă V ÑU ă U Ó V ,

V Ď U^U ă U ÑV ă U ,

where we write U ă V for @UPU U ă V and U Ó V for the collection

tW P N | DUPU DVPV pW Ď U^W Ď V qu .

A formal point in T is a subset uĎ N such that

J P u^@U,VPuDWPu pW Ď U^W Ď V q^@UPu pU ă U ÑDVPU V P uq .

Denote the collection of formal points of T by PtT . Call a formal topology T
unary if

U ă U ÑDVPU U ă V,

where we write U ă V for U ă tVu, and consistently complete if

@U,VPN pDWPN pW Ď U^W Ď V q ÑU[V P Nq ,

6Concerning the positivity predicate see [14, §2.4] or [19, footnote 13] for relevant discussions (see also
section 5). For the issue of a top element see [26, Exercise 6.5.21].
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where
Ű

U denotes the greatest lower bound of U . Finally, call T a Scott–Ershov
formal topology if it is both unary and consistently complete.

Note that in the case of a consistently complete formal topology, dually to the
case of precusl ideals, the last two of the requirements for a formal point yield the
property of being downward directed (that is, a filter): if U,V P u, then they are
bounded below by some W P u; by consistent completeness it is U [V P N, and
since W ă tU[Vu, it is U [V P u. It follows that any finite subset in a formal
point will have a greatest lower bound in the formal point.

One can prove that every domain can be represented by the collection of for-
mal points of a certain Scott–Ershov formal topology—see [14, Theorem 4.35]
and [26, Theorem 6.2.15]. Here we proceed to link formal topologies directly to
information systems, before we discuss coherence.

Let T “ pN,Ď,ăq be a Scott–Ershov formal topology. Define IF pT q “
pTok,Con,$q by

Tok :“ N,

U P Con :“U Ď f N^
ę

U P N,

U $U :“
ę

U Ď U.

Conversely, let ρ “ pTok,Con,$q be an information system. Define Fpρq “
pN,Ď,ăq by

N :“ Con,

U Ď V :“U $V,

U ă U :“ DVPU U $V.

Note that the definition is independent from the choice of representatives by
Lemma 1.

Proposition 12. If T is a Scott–Ershov formal topology and ρ an information
system, then IF pT q is an information system and Fpρq is a Scott–Ershov formal
topology. Furthermore, it is PtT “ IdeIFpT q and Ideρ » PtFpρq.

Proof. First let T be a Scott–Ershov formal topology. We check the defining
properties of an information system for IF pT q. For reflexivity of consistency, let
U P N; it is U Ď U , so

Ű

tUu P N and tUu P Con by definition. For closure
under subsets, let U P Con and V Ď U ; then

Ű

U P N and
Ű

U Ď V for all
V P V , so

Ű

V P N and V P Con by definition. For reflexivity of entailment, let
U P Con and U P U ; then

Ű

U Ď U , so U $U by definition. For transitivity
of entailment, let U $ V and V $ W ; then

Ű

U Ď
Ű

V and
Ű

V Ď W ; by
transitivity we get

Ű

U Ď W , so U $W by definition. Finally, for propagation of
consistency through entailment, let U P Con and U $V ; by definition,

Ű

U P N
and

Ű

U Ď V , so
Ű

pU YtVuq P N and U YtVu P Con by definition.
Now let ρ be an information system. We check the defining properties of a

Scott–Ershov formal topology for Fpρq. That Ď is a preorder with J :“ H is
direct to see. For reflexivity of covering, let U PU ; since U $U , it is U ă U by
definition. For transitivity of covering, let W ă U and U ă V ; then there exists a
U PU such that W $U and U $V for some V P V ; by transitivity we get W $V ,
so W ă V by definition. For localization, let W ă U and W ă V ; then there
exists a U P U such that W $U and W $ V for some V P V ; by definition, this
means that W Ď U and W Ď V respectively, so we get W P U Ó V , which gives
W ă U Ó V by reflexivity. To show that the covering extends formal inclusion
between formal basic opens, let W Ď U and U ă V ; then W $U and U $ V for
some V P V ; by transitivity we get W $V , so W ă V , by definition.
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So Fpρq is indeed a formal topology. To show that it is unary is easy: let
U ă U ; by definition there is a V P U , for which U $ V , that is, U Ď V ; by
reflexivity and extension, we get U ă

 

V
(

. To show, finally, that it is consistently
complete, let U ,V ,W P N, with W Ď U and W Ď U , that is, W $U and W $ V ;
by (1), we get W $UYV , and so, W Ď UYV ; let U[V :“UYV ; that this does
the job is direct to see.

We now show the bijective correspondence between information system ideals
and formal points. For PtT Ď IdeIFpT q, let u P PtT and U Ď f u. Since, as we
noted, u is downward directed in T by consistent completeness, it is

Ű

U P uĎN,
and so U P ConIFpT q by definition. If further U $IFpT q U , it is

Ű

U Ď U by
definition, and

Ű

U ă tUu; hence U P u by the third formal point property.
For IdeIFpT q Ď PtT , let u P IdeIFpT q. That J “H P u, follows from down-

ward closure in IF pT q. Let U,V P u; by the consistency in IF pT q, tU,Vu P
ConIFpT q, and then U [V P N by definition; since tU,Vu $IFpT q U [V , it is
U [V P u by the deductive closure in IF pT q. If now U P u and U ă U , then,
since T is unary, there exists a V PU such that U Ď V , which by definition means
that tUu $IFpT q V ; by the deductive closure in IF pPq, it follows that V P u, and
we’re done.

For Ideρ » PtFpρq, take the isomorphism pair

u ÞÑPcpuq : Ideρ Ñ PtFpρq,

u ÞÑ
ď

u : PtFpρqÑ Ideρ ,

where Pcpuq :“
 

U
(

UĎ f u contains the closures of subsets of u.
Indeed, for the right embedding, since H Ď f u, it is J P Pcpuq; for every

U,V Ď f u, since U YV Ď f u, it is also U [V PPcpuq; if U Ď f u and U ă U ,
then there exists a V PU such that U Ď V , that is, such that U $V by definition;
then, for this V PU , it is V Ď f u by the deductive closure in ρ .

For the left embedding, if taiuiăn Ď
f Ťu, then for each i ă n there exists

a Ui P u such that Ui $ ai; since u is downward directed in Fpρq, there exists a
W P u such that W Ď Ui for each i; the latter gives by definition W $ Ui $ ai,
so taiuiăn P Con by the transitivity of entailment and (1). If now U Ď f Ťu and
U $ a, then, by definition, U Ď a, that is U ă tau; by the third formal point
property in Fpρq, we have a P u, so a P

Ť

u.
That the two embeddings are mutually inverse is also quite direct. Indeed, let

u P Ideρ . We have a P
Ť

Pcpuq if and only if there exists a U Ď f u such that
U $ a; but this is equivalent to a P u (rightwards by deductive closure of u and
leftwards by setting U :“ tau). Also, let U PPc p

Ť

uq, which by definition means
that U Ď f Ťu; writing U “ taiuiăn, we have on the one hand

taiuiăn Ď
f
ď

uô@iănDUiPuUi $ ai

ô@iănDUiPuUi Ď ai

ñDWPu@iănW Ď ai (by the second formal point property)

ñDWPu@iănW ă taiu

ñ @iănai P u (by the third formal point property),

and on the other hand ai P u implies taiuiăn Ď
f Ťu trivially; so we have shown

that the latter is equivalent to taiuiăn Ď u; since u, as we noted, is downward
directed, it is

Ű

taiuiăn “ taiuiăn “U P u, and since U P u implies taiuiăn Ď u
(because U ă taiu for each i), we’re done.

An approximable map of Scott–Ershov formal topologies from T to T 1 is a
relation R Ď NˆN1, such that
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• pJ,J1q PR,

• pU,V q PR^pU,V 1q PR Ñ pU,V [V 1q PR,

• U 1 Ď U^pU,V q PR^V Ď V 1Ñ pU 1,V 1q PR.

Write ApxTÑT 1 for all approximable maps of Scott–Ershov formal topologies
from T to T 1. For every R P ApxTÑT 1 define a relation IF pRq Ď ConIFpT qˆ

ConIFpT 1q by

pU ,V q P IF pRq :“
´

ę

U ,
ę

V
¯

PR.

Conversely, let r be an approximable map from ρ to σ . Define a relation Fprq Ď
NFpρqˆNFpσq by

pU ,V q P Fprq :“ pU,V q P r.

Again, it is easy to see that the definition does not rely on the choice of the repre-
sentatives, due to deductive closure of r.

We show that these establish a bijective correspondence.

Proposition 13. If r is an approximable map from ρ to σ then Fprq is an approx-
imable map of Scott–Ershov formal topologies from Fpρq to Fpσq. Conversely,
if R is an approximable map of Scott–Ershov formal topologies from T to T 1

then IF pRq is an approximable map from IF pT q to IF pT
1q. Furthermore, it is

ApxρÑσ » ApxFpρqÑFpσq and ApxTÑT 1 » ApxIFpT qÑIFpT 1q.

Proof. Let r be an approximable map from ρ to σ . Since, by Fact 2, pH,Hq P r, it
is pJ,J1q P Fprq. If pU ,V q,pU ,V 1q P Fprq, then, by the definitions, pU,V YV 1q P
r, so pU ,V YV 1q P Fprq, and pU ,V [V 1q P Fprq. If U 1 Ď U , pU ,V q P Fprq and
V Ď V 1, then, by the definitions, U 1 $U , pU,V q P r and V $ V 1 respectively, so,
pU 1,V 1q P r and pU 1,V 1q P Fprq.

Conversely, let R be an approximable map of Scott–Ershov formal topologies
from T to T 1. Since pJ,J1q PR, it is pH,Hq P IF pRq. If pU ,V q,pU ,V 1q P
IF pRq, then, by definition, p

Ű

U ,
Ű

V q ,
`
Ű

U ,
Ű

V 1
˘

PR; since R is an approx-
imable map of Scott–Ershov formal topologies,

`
Ű

U ,p
Ű

V q[
`
Ű

V 1
˘˘

P R,
or,

`
Ű

U ,
Ű

pV YV 1q
˘

P R, that is, pU ,V Y V 1q P IF pRq. If now U 1 $

U , pU ,V q P IF pRq and V $ V 1, by definition we obtain
Ű

U 1 Ď
Ű

U ,
p
Ű

U ,
Ű

V q P R and
Ű

V Ď
Ű

V 1; then
`
Ű

U 1,
Ű

V 1
˘

P R, so pU 1,V 1q P
IF pRq.

We show that F : ApxρÑσ Ñ ApxFpρqÑFpσq is bijective. To show injectivity,
let Fprq “ Fpr1q; it is pU,V q P r if and only if pU ,V q P Fprq (by the definition of
F), if and only if pU ,V q P Fpr1q, if and only if pU,V q P r1 (by the definition again),
so r “ r1. To show surjectivity, let R P ApxFpρqÑFpσq; set

pU,V q P r :“ pU ,V q PR;

it is straightforward to check that r P ApxρÑσ and Fprq “R.
We show finally that IF :ApxTÑT 1ÑApxIFpT qÑIFpT 1q is bijective. To show

injectivity, let IF pRq “ IF pR
1q and pU,V q PR; since U “

Ű

tUu and V “
Ű

tVu,
it is ptUu ,tVuq P IF pRq by the definition of IF ; by the assumption we get equiva-
lently that ptUu ,tVuq P IF pR

1q, so pU,V q PR1, and R “R1. To show surjectiv-
ity, let r P ApxIFpT qÑIFpT 1q and set

pU,V q PR :“DU PConIF pT q
DV PConIF pT 1q

´

U “
ę

U ^V “
ę

V ^pU ,V q P r
¯

.

It is R P ApxTÑT 1 :

• by r P ApxIFpT qÑIFpT 1q we get pH,Hq P r, which yields pJ,J1q PR;
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• let pU,V1q,pU,V2q PR; then there exist Ui and Vi such that, for each i“ 1,2,
U “

Ű

Ui, Vi “
Ű

Vi, and pUi,Viq P r; since U1YU2 P ConIFpT q because
Ű

pU1YU2q “
Ű

U1[
Ű

U2 “U P NT , and since U1YU2 $Ui, we get
that pU1YU2,Viq P r; this in turn implies that pU1YU2,V1YV2q P r; since,
as we saw,

Ű

pU1YU2q “U , and similarly
Ű

pV1YV2q “
Ű

V1[
Ű

V2 “

V1[V2, by the definition of R we get pU,V1[V2q PR;

• let U 1 Ď U , pU,V q P R, and V Ď V 1; then there exist U , V such that
U “

Ű

U , V “
Ű

V , and pU ,V q P r; on the one hand U 1 Ď U implies
 

U 1
(

$IFpT q U , so
 

U 1
(

$IFpT q U by transitivity in IF pT q, and on the
other hand V Ď V 1 implies tVu $IFpT 1q V 1, so V $IFpT 1q V 1 by transitivity
in IF pT

1q; it follows that p
 

U 1
(

,
 

V 1
(

q P r, so pU 1,V 1q PR, by the defini-
tion.

Finally, by the definitions we have that pU ,V q P IF pRq if and only if
p
Ű

U ,
Ű

V q PR, if and only if pU ,V q P r, which means that IF pRq “ r.

The categories ISys and SEFTop

Category theory is arguably the most appropriate framework to support the discus-
sion of statements like “information systems and Scott–Eshov formal topologies
are essentially the same”, and our presentation certainly would suggest a reformu-
lation in this direction. We show here how to do this.7

Write ISys for the category of information systems with approximable maps
and SEFTop for the category of Scott–Ershov formal topologies with approx-
imable maps. We use the well-known characterization of equivalence via full-
ness, faithfulness, and “essential” surjectivity of a functor (as is found for example
in [10, section IV.4]).

Theorem 14. The categories ISys and SEFTop are equivalent.

Proof. The mapping IF : SEFTopÑ ISys, consisting of the object-mapping and
the synonymous arrow-mapping defined above, is easily seen to be a functor, that
is, to preserve identities and compositions. In the proof of Proposition 13, it is
shown that this functor is full and faithful (the surjectivity and the injectivity prop-
erty respectively for arbitrary topologies T and T 1). Finally, the functor is “es-
sentially” surjective, in the sense that for each information system ρ P ISysob j
there exists a Scott–Ershov formal topology Tρ P SEFTopob j, such that IF pTρ q

and ρ are isomorphic: indeed, set Tρ :“ Fpρq; the information systems ρ and
IF pFpρqq are isomorphic, since for r P ApxρÑIFpFpρqq with

pU,
 

V1, . . . ,Vn
(

q P r if and only if U $ρ

n
ď

j“1

V j,

and s P ApxIFpFpρqqÑρ with

p
 

U1, . . . ,Um
(

,V q P s if and only if
m
ď

i“1

Ui $ρ V,

it is r ˝ s“ idIFpFpρqq and s˝ r “ idρ ; using the easy fact that UYV “UYV , the
above are direct to check, and the claim follows.

7The categorical equivalences between information systems and domains or precusl’s are well known and
covered in the literature, a textbook exposition of both being found for example in [26].
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Coherent Scott–Ershov formal topologies

Call a Scott–Ershov formal topology coherent if, for a finite collection U Ď f N,
ę

U P N Ø@U,VPU U[V P N. (5)

Theorem 15. If T is a coherent Scott–Ershov formal topology then IF pT q is a
coherent information system. Conversely, if ρ is a coherent information system
then Fpρq is a coherent Scott–Ershov formal topology.

Proof. Suppose first that T is coherent, and let U P ConIFpT q. By definition it is
U Ď f N and

Ű

U P N; the latter, by (5), holds if and only if for all U,V P U it
is U [V P N, which is by definition tU,Vu P ConIFpT q, so IF pT q is a coherent
information system.

Now suppose that ρ is a coherent information system, that is, such that

U P ConØ@a,bPU ta,bu P Con (4)

for all U Ď f Tok. Let U Ď f NFpρq, that is, U Ď f Con. Assume that
Ű

U PNFpρq,
that is,

Ť

U PCon, and let U ,V PU ; the assumption implies UYV PCon, so UY
V P Con, and then UYV P Con, hence U [V P NFpρq by definition. Conversely,
assume that U Ď f NFpρq and that for all U ,V P U it is U [V P NFpρq, that is,
U[V PCon; now, for arbitrary U and V , U[V PCon is equivalent to ta,bu PCon
for all a,b PUYV by (4), so we get that ta,bu P Con for all a,b P

Ť

U ; by (4)
again, we have that

Ť

U P Con, which is what
Ű

U P NFpρq means by definition.
So Fpρq is indeed a coherent Scott–Ershov formal topology.

5 Notes
On the notion of atomicity

The defining property of a unary formal topology in section 4.3 looks similar to the
atomicity property for an information system in section 3—in fact, unary formal
topologies are called “atomic” by Erik Palmgren in a preliminary version of [15]—
but the two are not essentially related from our viewpoint. The property of being
unary for a formal topology expresses atomicity of compact covering, whereas
in information systems we have atomicity of information flow (that is, of entail-
ment): in the first case, an “atom” would be a formal basic open while in the
second case, an atom (that is, a token) represents a simple piece of data. In or-
der to avoid confusions, one should notice how the transition from an information
system to a point-free structure—domains included—involves jumping from the
level of atomic pieces of data to (finitely determined) sets of atomic pieces of data:
atomicity of information appears in the presence of atomic pieces of data, which
become indiscernible when one moves to a point-free setting (see however the last
note).

As already mentioned, atomicity of entailment has been studied by various au-
thors in the past. Guo-Qiang Zhang [30] studies a special case of atomic informa-
tion systems which he calls prime information systems, to represent dI-domains;
he seems to have adopted atomicity from Glynn Winskel’s prime event struc-
tures [27]. More generally, atomic information systems (in a different but equiva-
lent axiomatization) are used by Antonio Bucciarelli et al. [4] to provide a model
for intuitionistic linear logic.
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On the absence of positivity

In section 4.3 we associated information systems to a version of formal topolo-
gies, where the positivity predicate is absent. The intuitive meaning of positivity
in this context should be taken as inhabitation: a neighborhood is positive when
it contains a point, that is, when it can be extended to an ideal. This is clearly
an important and necessary concept to raise in a general constructive setting. Our
restricted setting though fulfills inhabitation by design, since U , defined for every
consistent set U , is an ideal; to suppress positivity is merely an Occam’s razor
choice, reflecting our predilection for the barest possible setting within which to
achieve the wanted connection starting from information systems. However, as
Giovanni Sambin has suggested (private communication [20]), starting from for-
mal topologies with positivity we may seek to establish similar connections, in
particular with information systems as well as with appropriate positivity semilat-
tices (that is, semilattices equipped with a monotone positivity predicate) replacing
precusl’s.

Nomenclature discrepancies

Antonio Bucciarelli et al. [4] call atomic information systems linear information
systems. Giovanni Sambin et al. [21] call consistently complete ordered sets co-
herent. Sara Negri [14] says Scott formal topology for a unary formal topology
and consistently complete Scott formal topology for a Scott–Ershov formal topol-
ogy (modulo the presence of a top formal basic open). Viggo Stoltenberg-Hansen
et al. [26] say formal space for a consistently complete formal topology and Scott
space for a Scott–Ershov formal topology.

Outlook

The issue of linking the theory of information systems and formal topology has
many facets, at least as many as the various point-free structures that are currently
studied by the community. Apart from the ones that we have covered in this chap-
ter, further correspondences may be asked of various other settings, from the event
structures of [27] to the apartness spaces of [3], and also with other versions of
formal topologies, ones which accommodate the positivity predicate for instance
(see note above).

From a categorical perspective, in particular, we spelled out the equivalence
of information systems and Scott–Ershov formal topologies in Theorem 14. One
could carry this viewpoint further, and interpret Theorem 15 as expressing the intu-
itive fact that the functors IF and F between ISys and SEFTop preserve coherence.
One way to make this precise could be to delineate an appropriate sort of bicate-
gory of general “coherent structures”, among whose objects we should have ISys
and SEFTop (as well as the corresponding categories of domains and precusl’s),
and whose arrows would be coherence-preserving functors like IF and F .

Apart from coherence, there still remains the issue of a point-free formula-
tion of atomicity. While atomic information systems have been studied domain-
theoretically to some extend (see the first note), to the knowledge of the author
they have not yet been studied in a pure formal topological setting. Further study
in this direction would make our cartography more complete.
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