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Abstract

Many topics of modern probability have counterparts in mathemat-
ical physics and quantum mechanics. For example, the study of the
parabolic Anderson model is related to Anderson localization; interacting
particle systems and spin systems are related to quantum spin systems
and quantum many-body theory; and the Gaussian free field as well as
Malliavin calculus connect to Euclidean quantum field theory. The aim
of these notes is to give an introduction to quantum mechanics for math-
ematicians with a probability background, providing basic intuition and
a dictionary facilitating access to the mathematical physics literature.
The focus is on connections with probability, notably Markov processes,
rather than partial differential equations and spectral theory.
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1 Waves and particles

1.1 Particles

Newton’s second law of motion

In classical mechanics, the motion of a particle of mass m in an external force
field F (x) is described with ordinary differential equations. Let

R→ R3, t 7→ x(t)

be a smooth curve, the trajectory of the particle. Time-derivatives are denoted
with dots. The velocity and acceleration at time t are given by the first and
second time-derivatives

v(t) = ẋ(t) =
dx

dt
(t), a(t) = ẍ(t) =

d2x

dt2
(t).

Newton’s second law of motion says that force is mass times acceleration,
F = ma. This translates into an ordinary differential equation

mẍ(t) = F
(
x(t)

)
. (1.1)

The force field F : R3 → R3 is conservative if there exists a function V : R3 →
R, such that F = −∇V . The function V is called potential. If x(t) solves the
ODE (1.1) and the force is conservative, then

d

dt

(1

2
m|ẋ(t)|2 + V

(
x(t)

))
= 0,

i.e., the energy 1
2m|ẋ|

2 + V (x) is conserved. The energy is the sum of the
kinetic energy 1

2m|ẋ|
2 and the potential energy V (x).

Hamilton function. Momentum

The energy is closely related to the Hamilton function H : R3×R3 → R given
by

H(p,x) =
1

2m
|p|2 + V (x). (1.2)

The variable p is called momentum. Hamilton functions are important in
classical mechanics because they encode the dynamics. Indeed, the differential
equation (1.1) is equivalent to the system

ṗ(t) = −∇xH
(
p(t),x(t)

)
, ẋ(t) = ∇pH

(
p(t),x(t)

)
. (1.3)
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1. Waves and particles

The second equation reads ẋ = 1
mp, which gives the relation

p = mv.

For the Hamiltonian (1.2), momentum is mass times velocity.
Warning. The relation p = mv is correct for the Hamilton function (1.2)

which encodes the ODE (1.1) with conservative force field F = −∇V . For
other Hamilton functions, encoding different ODEs, the relation between mo-
mentum and velocity may change. For example, the Hamilton function for a
relativistic particle with rest mass m without external force is

H(p,x) =
√
m2c4 + c2|p|2

with c > 0 the speed of light (3×108 meter per second). The reader may note
the similarity with Einstein’s famous formula

E = mc2.

The system of ODEs (1.3) becomes ṗ = 0 and

ẋ = ∇pH =
c2√

m2c4 + c2|p|2
p =

1

m
√

1 + |p|2/(m2c2)
p.

instead of ẋ = 1
mp. For a massless particle (m = 0), the relations read

H(p,x) = c |p|, ẋ = c
p

|p|
.

In particular, the speed is equal to the speed of light, as the velocity has norm
|ẋ| = c. We call these particles photons.

1.2 Waves

Plane wave

Let k ∈ R3 and ω > 0. We call the function

ϕ(x, t) = exp
(
i(k · x− ωt)

)
(1.4)

as well as its real and imaginary parts cos(k · x − ωt) and sin(k · x − ωt)
monochromatic plane waves with wave vector k and angular frequency ω. It
function represents an oscillating signal that propagates in the direction of the
vector k at speed ω/|k| (for k 6= 0). The signal could be, for example, light,
sound, or an electromagnetic wave.

In the direction of k, the signal is periodic in x with period

λ =
2π

|k|
,
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1.3. Wave packet

called wave length. For light, different wavelengths λ correspond to different
colors, from violet (400 nanometer) to red (700 nanometer). The signal is also
periodic in time with period

T =
2π

ω
.

The inverse

ν =
1

T
=

ω

2π

is the frequency of the wave.
The angular frequency is considered to be a function of k; functions are

called dispersion relations. For example, light in the vacuum propagates at
constant speed ω/|k| = c = 3× 108 meter per second, hence

ω = ω(k) = c |k|. (1.5)

Other signals or light in a medium may have different speeds of propagation,
hence different dispersion relations ω(k). The dispersion relation is non-linear
when the speed of propagation depends on the wavelength—as is the case for
light in air or water, a phenomenon at the origin of rainbows.

Wave equation

The plane wave (1.4) satisfies

∂2ϕ

∂t2
(x, t) = −ω2ϕ(x, t), ∆ϕ(x, t) = −|k|2ϕ(x, t).

For the dispersion relation (1.5), we have ω2 = c2|k|2 hence

∂2ϕ

∂t2
− c2∆ϕ = 0, (1.6)

plane waves solve the wave equation (1.6). Other solutions are obtained as
superpositions of plane waves

ϕ(x, t) =

∫
A(k)ei(k·x−ω(k)t) dk. (1.7)

1.3 Wave packet

Let us have a closer look at the superposition (1.7) of plane waves when the
amplitude A(k) is proportional to the indicator of a small interval. To simplify
matters, we work in R instead of R3.

Suppose we are given a dispersion relation ω(k), not necessarily of the
form ω(k) = c|k|. Pick k0 ∈ R, ε > 0 and consider the function

ϕ(x, t) =
1

2ε

∫ k0+ε

k0−ε
exp
(
i(kx− ω(k)t)

)
dk.
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1. Waves and particles

In general the integral cannot be computed explicitly, but for small ε there is
a classical heuristic computation. Define

sinc (x) =

{
sinx
x , x 6= 0,

1, x = 0,

the sine cardinal, and let

v0 =
dω

dk
(k0).

On [k0 − ε, k0 + ε] we approximate ω(k) ≈ ω0 + v0(k − k0) and

ϕ(x, t) ≈ 1

2ε

∫ k0+ε

k0−ε
exp
(

i
(
kx− [ω0 + v0(k − k0)]t

))
dk

= ei(k0x−ω0t) 1

2ε

∫ ε

−ε
eiq(x−v0t) dq

= ei(k0x−ω0t) sinc
(
ε(x− v0t)

)
.

The approximate is the product of the envelope sinc [ε(x− v0t)] and the oscil-
lating signal exp(i(k0x − ω0t)). The envelope is maximal at x = x0(t) = v0t
and goes to zero as |x − x0(t)| → ∞. The peak x0(t) of the envelope moves
at speed v0, called group velocity.

The envelope spreads out more when ε is small. As a measure for the
width of the envelope, we can take the distance π/ε between the peak v0t and
the zeros ε(x− v0t) = π. Notice that the width π/ε is large when the window
[k0 − ε, k0 + ε] is small:

The spread of the wave packet in x-space and the window in k-
space cannot both be small. The smaller the window in k-space,
the larger the spread in x-space.

Often 2π/k0 is small compared to the envelope’s width π/ε, then the real part
of ϕ(x, t) is drawn as a rapidly oscillating signal varying within the borders
prescribed by the envelope; the reader is is encouraged to do a quick internet
search for the keyword “wave packet” and look for pictures and animations.

1.4 Wave-particle duality

Light

Is light a wave or a stream of particles? At the end of the 19th century, the
answer was: a wave. Around 1900 however, in order to explain blackbody
radiation, Max Planck postulated that energy in electromagnetic waves is
exchanged with matter in discrete units or quanta of energy. The energy
quantum E is proportional to the wave’s frequency ν, the proportionality
constant h > 0 is Planck’s constant. Thus

E = hν.
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1.4. Wave-particle duality

The relation can also be written with the angular frequency ω and the reduced
Planck constant

~ =
h

2π

(latex command \hbar) as
E = ~ω. (1.8)

It looks as if light of angular frequency ω is made of particles of energy E = ~ω.
Because of the formula H(p,x) = c|p| for the Hamiltonian of a photon and
the dispersion relation ω(k) = c|k|, it is natural to identify

p = ~k. (1.9)

Later developments confirmed that both points of view are useful: Some phe-
nomena are best explained by viewing light as a wave, others are best explained
by viewing light as a stream of particles (photons).

Matter

In the 1920s De Broglie suggested corpuscular matter can be viewn as a wave
too. If we keep the relations (1.8) and (1.9) and combine them with the
expression H(p,x) = |p|2/(2m) for the Hamiltonian of a free particle (no
external force), we arrive at the formula

E =
|p|2

2m
=

~2

2m
|k|2

for the energy of a particle and at the dispersion relation

ω(k) =
1

~
E =

~
2m
|k|2.

With this dispersion relation, the plane wave

ek(x, t) = exp
(
i(k · x− ω(k)t

)
satisfies

i~
∂

∂t
ek =

~2

2m
|k|2ek = − ~2

2m
∆ek.

Superpositions of plane waves as in (1.7) satisfy

i~
∂

∂t
ϕ = − ~2

2m
∆ϕ, (1.10)

which is the Schrödinger equation for a particle of mass m in the absence of
an external potential V .
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2 Quantum mechanics

2.1 Wave function

The basic object of the Schrödinger picture is a measurable function ψ : Rd →
C that is square-integrable with L2-norm 1,

||ψ||2 =

∫
Rd

|ψ(x)|2 dx = 1. (2.1)

The Fourier transform is denoted ψ̂. It is given by

ψ̂(k) =
1

(2π)d/2

∫
Rd

e−ik·xψ(x) dx

if the integral is absolutely convergent, which is the case for a dense class of
functions ψ ∈ L2(Rd). The formula for the Fourier transform is inverted as

ψ(x) =
1

(2π)d/2

∫
Rd

eik·xψ̂(k) dk. (2.2)

The Plancherel theorem says that a function ψ and its Fourier transform have
the same L2-norm, hence

||ψ̂||2 =

∫
Rd

|ψ̂(k)|2 dk = 1. (2.3)

In view of the normalizations (2.1) and (2.3), it is tempting to interpret |ψ(x)|2
and |ψ̂(k)|2 as probability densities, and this is indeed what we shall do:

|ψ(x)|2 is the probability density function for the position of the
particle.

while

|ψ̂(k)|2 is the probability density function for 1
~p, with p the mo-

mentum and ~ the reduced Planck constant.

Let us emphasize one fact:

One function ψ encodes simultaneously two probability distribu-
tions!

As a consequence, fixing the probability distribution of the particle position
imposes restrictions on the momentum distribution and vice-versa.
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2. Quantum mechanics

2.2 Uncertainty principle

Let us fix a wave function ψ ∈ L2(Rd). It is customary in quantum mechanics
to use angular brackets for expectations. For j = 1, . . . , d, define

〈Xj〉 :=

∫
Rd

xj |ψ(x)|2 dx, 〈X2
j 〉 :=

∫
Rd

x2
j |ψ(x)|2 dx

〈Pj〉 :=

∫
Rd

~kj |ψ̂(k)|2 dk, 〈P 2
j 〉 :=

∫
Rd

~2k2
j |ψ̂(k)|2 dk.

We may think of X as a random position vector with probability distribution
function |ψ(x)|2, then 〈Xj〉 and 〈X2

j 〉 represent the expected value and second
moment of the component Xj . Expected values of other polynomials are
defined in a similar manner, e.g., the variance of Xj is〈(

Xj − 〈Xj〉
)2〉

=

∫
Rd

(
xj − 〈Xj〉

)2|ψ(x)|2 dx = 〈X2
j 〉 − 〈Xj〉2.

Finally define deviations

σX :=

(〈 d∑
j=1

(
Xj − 〈Xj〉

)2〉)1/2

, σP :=

(〈 d∑
j=1

(
Pj − 〈Pj〉

)2〉)1/2

In general the integrals considered above may diverge, but we will only con-
sider wave functions ψ for which

〈 |X|2〉 =
〈 d∑
j=1

X2
j

〉
, 〈 |P |2〉 =

〈 d∑
j=1

P 2
j

〉
are both finite. For such wave functions ψ, all integrals considered above are
absolutely convergent.

Theorem 2.1. Let ψ ∈ L2(Rd) be such that 〈|X|2〉 < ∞ and 〈|P |2〉 < ∞.
Then

σX σP ≥
~
2
.

Example 2.2 (Gaussian wave function). It is instructive to work out an exam-
ple in dimension d = 1. Pick s > 0 and set

ψ(x) =
1

(2πs2)1/4
exp
(
− x2

4s2

)
.

Then
∫
|ψ(x)|2 dx = 1 and the Fourier transform is

ψ̂(k) =
1

(2π/[4s2])1/4
exp
(
−s2k2

)
.
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2.3. Observables as operators

Noticing that

|ψ(x)|2 =
1√

2πs2
exp
(
− x2

2s2

)
, |ψ̂(k)|2 =

1√
2π/[4s2]

exp
(
− k2

2/[4s2]

)
,

we recognize the probability density functions of normal random variables
with variances s2 and (4s2)−1. It follows that

σX = s, σP =
~
2s

hence σX σP = ~/2: for Gaussian wave functions, the inequality from Theo-
rem 2.1 holds true and is in fact an equality.

The uncertainty principle shows that σX and σP cannot both be equal to
zero. A probabilist might say:

There is no way to make the position and the momentum both
deterministic,

though a physicist may object to the use of the word “deterministic”.

More generally, the smaller the variance of the momentum, the larger the
variance of the position, and vice-versa, which should remind the reader of
the considerations on wave packets in Section 1.3.

2.3 Observables as operators

How do we express expected values of functions of position and momentum?
For functions that depend on position or momentum but not both, we sim-
ply use integrals involving the probability densities |ψ(x)|2 and |ψ̂(k)|2. For
functions that depend on the position and the momentum, the probabilist’s
first instinct is to look for a joint distribution of the vector (P ,X), however
quantum mechanics proceeds differently.

Hamiltonian

Consider for example the Hamiltonian of a particle of mass m in an external
potential V : Rd → R,

H =
1

2m
|P |2 + V (X).

It is reasonable to define the expected value as

〈H〉 =
〈 1

2m
|P |2

〉
+
〈
V (X)

〉
=

∫
Rd

~2

2m
|k|2|ψ̂(k)|2 dk +

∫
Rd

V (x) |ψ(x)|2 dx.
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2. Quantum mechanics

Mathematical properties of the Fourier transform allow us to replace the in-
tegral over k by an integral over x. The equality∫

Rd

|k|2|ψ̂(k)|2 dk =

∫
Rd

ψ(x)
(
−∆ψ

)
(x) dx

yields

〈H〉 =

∫
Rd

ψ(x)
(
− ~2

2m
∆ψ(x) + V (x)ψ(x)

)
dx. (2.4)

The expression is rewritten more compactly if we view H as an operator in
L2(Rd), (

Hψ
)
(x) = − ~2

2m
∆ψ(x) + V (x)ψ(x) (2.5)

and use the scalar product

〈ψ,ϕ〉 =

∫
Rd

ψ(x)ϕ(x) dx.

Eq. (2.4) becomes
〈H〉 = 〈ψ,Hψ〉.

Remark 2.3. Eq. (2.5) does not define the operator H completely because the
domain D(H) ⊂ L2(Rd) is not specified. The domain must be such that the
operator H is self-adjoint. Finding domains and proving self-adjointness is an
important topic in functional analysis and mathematical quantum mechanics.

Differential operators and multiplication operators

The considerations on the Hamiltonian motivate the point of view adopted in
quantum mechanics. Physical quantities, called observables, are represented
by operators A. Expected values are evaluated by scalar product 〈ψ,Aψ〉 that
involve the normalized wave function ψ.

Functions of position are associated with multiplication operators. For
example, the potential V (X) is associated with the operator

MV : D(MV )→ L2(R3), ψ 7→MV ψ

with domain

D(MV ) =

{
ψ ∈ L2(Rd) :

∫
Rd

|V (x)|2 |ψ(x)|2 dx <∞
}

given by (
MV ψ

)
(x) = V (x)ψ(x).

Functions of momentum are associated with differential operators, as summa-
rized in the formula

P =
~
i
∇.
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2.4. Hilbert space

Differential operators in x-space become multiplication operators in k-space,
i.e., after Fourier transform. The functions in the operator domains are not
necessarily pointwise differentiable, instead derivatives are understood as weak
derivatives, which the reader may know from the theory of Sobolev spaces.

For example, the j-th component Pj of the momentum is identified with
the operator

Pj : D(Pj)→ L2(R3), ψ 7→ Pjψ =
~
i

∂

∂xj
ψ

with domain

D(Pj) =

{
ψ ∈ L2(Rd) :

∫
Rd

|kj |2 |ψ̂(k)|2 dk <∞
}
. (2.6)

The choice of domain is motivated by the relations

~
i

∂ψ

∂xj
(x) =

1

(2π)d/2

∫
Rd

~kjψ̂(k) eik·x dk

(remember (2.2)) and

~̂
i

∂ψ

∂xj
(k) = ~kjψ̂(k).

2.4 Hilbert space

The level of abstraction can be pushed a bit further. Instead of working with
the concrete space L2(Rd), we may work with a general Hilbert space H. The
scalar product 〈·, ·〉 is taken to be conjugate-linear in the first entry and linear
in the second entry. The normalized wave function is replaced by a unit vector

ψ ∈ H, ||ψ||2 = 〈ψ,ψ〉 = 1.

Observables are self-adjoint operators A in the Hilbert space H. The expected
value of an observable relative to ψ is

〈A〉ψ = 〈ψ,Aψ〉
(
ψ ∈ D(A)

)
.

There are states ψ for which a given observable A has no well-defined expected
value, much in the same way as some random variables have infinite variance or
no expected value. The expected value 〈A〉ψ does not change if ψ is multiplied
by a scalar u ∈ C with modulus |u| = 1:

〈uψ,A(uψ)〉 = uu〈ψ,Aψ〉 = |u|2 〈ψ,Aψ〉 = 〈ψ,Aψ〉. (2.7)

Therefore ψ and uψ represent the same physical state of a system:
A state in quantum mechanics is a ray in Hilbert space.
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2. Quantum mechanics

Probability Quantum mechanics

Probability distribution P Ray in Hilbert space,
unit vector ψ ∈ H

Real-valued random variable X Self-adjoint operator A
Expected value E[X] 〈ψ,Aψ〉
X = λ, P-almost surely Aψ = λψ
|X| ≤M everywhere Bounded operator norm ||A|| ≤M

Table 2.1: Probability vs. quantum mechanics

The self-adjointness of A guarantees that the expected value is real because

〈ψ,Aψ〉 = 〈A∗ψ,ψ〉 = 〈Aψ,ψ〉 = 〈ψ,Aψ〉

and z = z implies Im z = 0. Eigenvectors play a special role: if

Aψ = λψ,

then the variance of A relative to ψ vanishes,

〈A2〉ψ − 〈A〉2ψ = 〈ψ, λ2ψ〉 − 〈ψ, λψ〉2 = 0.

For later purpose we introduce the set B(H) of bounded operators on H. An
operator A : D(A)→ H belongs to B(H) if D(A) = H and

||Aϕ|| ≤M ||ϕ||

for all ϕ ∈ H and some constant M ∈ [0,∞). The smallest constant M is the
operator norm of A,

||A|| = sup
ψ∈H,
ψ 6=0

||Aψ||
||ψ||

.

If A is a bounded observable, i.e., A = A∗ and A ∈ B(H), then for all ψ ∈ H,∣∣〈ψ,Aψ〉∣∣ ≤ ||A|| ||ψ||2 = ||A||

The expected value of A is bounded by a constant that does not depend on
the state ψ. This is similar to bounded random variables: if a measurable
map X : Ω → R on some measurable space (Ω,F) satisfies |X(ω)| ≤ M for
all ω ∈ Ω, then |E[X]| ≤M for every probability measure P on (Ω,F).
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2.5. Time evolution: Schrödinger picture

2.5 Time evolution: Schrödinger picture

Time-dependent systems are modeled by time-dependent wave functions. For
a particle with Hamilton operator (2.5), the time evolution is governed by a
partial differential equation, the Schrödinger equation

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m
∆ + V (x)

)
ψ(x, t) (2.8)

compare Eq. (1.10). In the Hilbert space set-up, the time-dependent state of
the system is given by a time-dependent unit vector ψ(t) ∈ H that solves

i~
d

dt
ψ(t) = Hψ(t) (2.9)

with H a self-adjoint operator, the Hamilton operator. It can be shown that
if ψ(0) ≡ ψ0 is in the domain of H, then there exists a uniquely defined
map t 7→ ψ(t) from R to H that is norm-differentiable, stays in D(H), and
satisfies (2.9) for all t ∈ R. The solution is given by

ψ(t) = exp
(
−i
t

~
H
)
ψ0. (2.10)

The operator

Ut = exp
(
−i
t

~
H
)

is defined using spectral calculus of self-adjoint operators. The right-hand side
of (2.10) is well-defined for all time-zero vectors ψ0 ∈ H.

The family (Ut)t∈R is a strongly continuous unitary group, which means
the following.

(i) Each Ut : H → H is unitary, i.e., it is norm-preserving and bijective.

(ii) The family satisfies the group property

Ut+s = UtUs (s, t ∈ R).

(iii) For every ϕ ∈ H and all t ∈ R,

lim
s→t
||Usϕ− Utϕ|| = 0.

Stone’s theorem establishes a one-to-one correspondence between strongly con-
tinuous unitary groups and self-adjoint operators. The theorem is similar to
the Hille-Yosida theorem for strongly continuous contraction semi-groups in
Banach spaces, which enters the theory of a special class of continous-time
Markov processes, the Feller-Dynkin processes. The unitary group (Ut)t∈R
plays a role analogous to the Markov semi-groups (Pt)t≥0 and the Hamilton
operator is similar to the infinitesimal generator L of the process. The analo-
gies are summarized in Table 2.2.
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2. Quantum mechanics

Markov processes (Feller-Dynkin) Schrödinger equation

Banach space Hilbert space
Contraction semi-group (Pt)t≥0 Unitary group (Ut)t∈R
Hille-Yosida theorem Stone theorem
Infinitesimal generator L Hamilton operator H
Pt = exp(−tL) Ut = exp(−itH/~)

Table 2.2: Markov processes vs. Schrödinger time evolution.

Eigenfunctions play again a special role. If

Hψ = Eψ

with E ∈ R, then
ψ(t) = e−itE/~ψ(0)

and the only effect of time evolution is to multiply the unit vector ψ(0) with
a complex number of modulus 1. As noted in Eq. (2.7), such a multiplication
does not affect expected values and the resulting physical states are considered
identical:

Eigenfunctions of the Hamilton operator correspond to stationary
states.

2.6 Time evolution: Heisenberg picture

Instead of letting the time evolution act on the state ψ, we can also let it
act on observables. We introduce a family of maps on the set of bounded
operators

τt : B(H)→ B(H), τt(A) = U∗t AUt.

Notice that for all ψ ∈ H,

〈Utψ,AUtψ〉 = 〈ψ, τt(A)ψ〉.

For Markov processes, a loose analogue of the Schrödinger and Heisenberg
picture is the action of the semi-group (Pt)t≥0 on measures or functions. If
(Xt)t≥0 is a real-valued Markov process with initial law µ0, defined on some
underlying probability space (Ω,F ,P), then for every bounded measurable
test function f : R→ R, the expected value of f(Xt) can be expressed in two
ways: we have

E
[
f(Xt)

]
=

∫
R

(Ptf) dµ0 =

∫
R
f dµt, µt = µ0Pt.

See Table 2.3.

16



2.7. Commutation relations

Markov processes Quantum mechanics

Semi-group acts on functions Heisenberg picture
Ptf τt(A) = U∗t AUt
Semi-group acts on measures Schrödinger picture
µ0Pt Utψ

Table 2.3: Schrödinger vs. Heisenberg picture

The family (τt)t∈R satisfies the group property

τs+t(A) = τs
(
τt(A)

)
(s, t ∈ R, A ∈ B(H))

or more succinctly, τs+t = τs ◦ τt. If the Hamilton operator is bounded, then
for each A ∈ B(H), the mapping t 7→ τt(A) is differentiable in operator norm
with derivative

d

dt
τt(A) =

(
− i

~
HUt

)∗
AUt + U∗t A

(
− i

~
HUt

)
=

i

~
(HU∗t AUt − U∗t AUtH)

=
i

~
(
Hτt(A)− τt(A)H

)
.

The relation is rewritten in a compact form with the commutator

[A,B] = AB −BA

as
d

dt
τt(A) =

i

~
[H, τt(A)].

If the Hamilton operator H is unbounded, then complications may arise be-
cause of domains.

2.7 Commutation relations

Canonical commutation relations

Let H be the Hilbert space of square-integrable, measurable functions ψ :
Rd → C. Let Xj be the multiplication operator

(Xjψ)(x) = xjψ(x)

with domain

D(Xj) =

{
ψ ∈ H :

∫
Rd

x2
j |ψ(x)|2 dx <∞

}
.
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2. Quantum mechanics

The momentum operators are given by Pj = ~
i
∂
∂xj

, j = 1, . . . , d with do-

main (2.6). Then, for every smooth wave function ψ and all `, j ∈ {1, . . . , d},
we have

∂

∂xj

(
x`ψ(x)

)
= δj,` ψ(x) + x`

∂

∂xj
ψ(x)

with δj,` the Kronecker delta, hence [Pj , X`]ψ = ~
i δj,`ψ or or equivalently,

[X`, Pj ]ψ = i~δ`,jψ

This holds true for all smooth wave functions ψ. Physicists write

[X`, Pj ] = i~δ`,j (2.11)

where the right-hand side should be read as i~δ`,j times the identity operator.
The relations (2.11) with j, ` = 1, . . . , d are called canonical commutation
relations.

From a mathematical point of view, commutators [A,B] of unbounded op-
erators A,B /∈ B(H) are dangerous objects. Section VIII.5 in the book [RS75]
describes in detail some pitfalls. Unitary groups provide a way out.

Weyl relations

For a, b ∈ Rd, define unitary operators U(a) and V (b) by(
U(a)ψ

)
(x) = exp

(
ia · x

)
ψ(x),

(
V (b)ψ

)
(x) = ψ

(
x+ ~b

)
.

Notice that for smooth ψ,

∂

∂t

(
V (tb)ψ

)
(x)

∣∣∣∣
t=0

= ~
(
b · ∇ψ

)
(x) = i

(
b · P

)
ψ(x).

In fact the operators b · P and a ·X, with suitable domains, are self-adjoint
and

U(a) = exp(ia ·X), V (b) = exp(ib · P ).

We compute (
V (b)U(a)ψ

)
(x) = exp

(
ia · (x+ ~b)

)
ψ(x+ ~b)

= exp(i~a · b)
(
U(a)V (b)ψ

)
(x)

which yields the Weyl relations

U(a)V (b) = exp(−i~a · b)V (b)U(a). (2.12)

The canonical commutation relations (2.11) are recovered by taking partial
derivatives with respect to a` and bj . The reader may think of the Weyl
relations as an exponential form of the canonical commutation relations. A
notable advantage of the Weyl relations is that they involve only bounded
operators.
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2.7. Commutation relations

Heisenberg group

Physicists often look for representations of commutation relations, i.e., families
of matrices or operators that satisfy a given set of relations but may differ from
the operators a ·X and b · P with which we started.

The three-dimensional real Heisenberg group consists of the set of upper
triangular 3×3 matrices with diagonal entries equal to 1 and real entries above
the diagonal,

M(a, b, c) =

1 a c
0 1 b
0 0 1

 , a, b, c ∈ R.

equipped with the usual matrix product. Define Ua = M(a, 0, 0) and Vb =
M(0, b, 0), and let I = E1,3 be the matrix that has zeros everywhere except in
the upper right corner. The matrix E1,3 is not in the Heisenberg group but
its exponential is. It is easily checked that I2 = 0 and exp(cI) = M(0, 0, c).
In addition,

UaVb = exp(abI)VbUa,

which bears a strong resemblance to the Weyl relations (2.12).
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3 Path integrals

3.1 Laplacian, Brownian motion, Wiener measure

The Hamilton operator of a free particle in L2(Rd) is given by

H0 = − ~2

2m
∆

with domain

D(H0) =

{
ψ ∈ L2(Rd) :

∫
Rd

|k|4|ψ̂(k)|2 dk <∞
}
. (3.1)

We note

Ĥ0ψ(k) =
~2

2m
|k|2ψ̂(k).

To simplify formulas, we choose units in such a way that

~ = 1, m = 1

so that H0 = −1
2∆. The reader familiar with Brownian motion may remem-

ber that 1
2∆, with suitable domain, is precisely the infinitesimal generator of

Brownian motion. The relation is best understood by looking at the family of
operators

Pt = exp
(
−tH0), t ≥ 0

instead of Ut = exp(−itH0). For t > 0 the operator Pt is an integral operator

(
Ptf
)
(x) =

∫
Rd

pt(x,y)f(y) dy

with kernel

pt(x,y) =
1

(2πt)d/2
exp
(
−|x− y|

2

2t

)
.

The kernel is non-negative pt ≥ 0 and satisfies∫
Rd

pt(x,y) dy = 1

as well as the semi-group property∫
Rd

pt(x, z)ps(z,y) dz = ps+t(x,y).
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3. Path integrals

The probabilist will recognize the transition function of Brownian motion (or
more precisely, the Radon-Nikodym derivative of the transition function with
respect to Lebesgue measure). Mathematical physicists and analysts often
prefer to phrase things with probability measures on spaces of paths rather
than stochastic processes and random variables, and it is often enough to
work on finite time horizons [0, β]. Let C([0, β];Rd) be the space of continous
paths γ : [0, β] → Rd. The space is equipped with the topology of uniform
convergence and associated Borel σ-algebra.

Theorem 3.1. Fix β > 0. Then, for all x, y ∈ Rd, there exists a uniquely
defined measure µβx,y on C([0, β];Rd) such that∫

f
(
γ(0), γ(t1), . . . , γ(tn), γ(β)

)
µβx,y( dγ)

=

∫
(Rd)n

f(x, q1, . . . , qn,y)pt1(x, q1)pt2−t1(q1, q2) · · · ptn−tn−1(qn−1, qn)

× pβ−tn−1(qn,y) dq1 · · · dqn

for all n ∈ N, 0 < t1 < · · · < tn < β, and bounded measurable f : (Rd)n → R.

The measure has total mass

µβx,y

(
C([0, β];Rd)

)
= pβ(x,y)

and charges only paths starting in x and ending in y,

µβx,y

(
{γ : γ(0) 6= x or γ(β) 6= y}

)
= 0.

The probability measure (pβ(x,y))−1µβx,y is the distribution of a Brownian
bridge; roughly, d-dimensional Brownian motion (Bt)t∈[0,β] started in x and
conditioned on Bβ = y.

3.2 Feynman-Kac formula

The Feynman-Kac formula provides a representation of the integral kernel of
exp(−t(H0 + V )) for some external potentials V , in terms of integrals over

paths space against the Brownian bridge measure µβx,y from Theorem 3.1.
Let V : Rd → R be a measurable function and H0 = −1

2∆ the operator
with domain (3.1). By some abuse of notation we use the same letter V for
the multiplication operator MV . If V is bounded, then H = H0 + V with
domain D(H) = D(H0) is self-adjoint.

Theorem 3.2. If V is bounded, then for all t > 0, the operator exp(−t(H0 +
V )) is an integral operator with kernel

kt(x,y) =

∫
exp
(
−
∫ t

0
V (γ(s)) ds

)
µtx,y( dγ), (x,y ∈ Rd).
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3.3. Discrete Laplacian. Continuous-time random walk

The outer integral is over continuous paths γ : [0, t]→ Rd starting in γ(0) = x
and ending in γ(t) = y.

Probabilists might be more familiar with another form of the Feynman-Kac
formula. Let (

Ω,F , (Px)x∈Rd , (Bs)s≥0

)
be a d-dimensional Brownian family, by which we mean the following:

(i) (Ω,F ) is a measurable space.

(ii) Each Px, x ∈ Rd, is a probability measure on (Ω,F ).

(iii) Each Bs, s ≥ 0, is a measurable map from Ω to Rd.
(iv) For every x ∈ Rd: Px(B0 = x) = 1 and for all n ∈ N and 0 < t1 < · · · <

tn, the distribution of (Bt1 , . . . ,Btn) under Px has probability density
function

pt1(x; q1)pt2−t1(q1, q2) · · · ptn−tn−1(qn−1, qn).

(v) The sample paths s 7→ Bs(ω) are continuous, Px-almost surely, for ev-
ery x.

Let

u(x, t) = Ex
[
exp
(
−
∫ t

0
V (Bs) ds

)
u0(Bt)

]
.

Notice u(x, 0) = u0(x).

Theorem 3.3. Under suitable assumptions on u0 and V , the function u(x, t)
satisfies the partial differential equation

∂

∂t
u =

1

2
∆u− V u.

3.3 Discrete Laplacian. Continuous-time random walk

Feynman-Kac formulas exist as well for quantum particles on a lattice. Let
` ∈ N. The Hilbert space for a free quantum particle hopping on the lattice
{1, . . . , `} is C`. Column vectors in C` are identified with functions from
{1, . . . , `} to C. The discrete Laplacian with periodic boundary conditions
acts on vectors ϕ ∈ C` as

(L0ϕ)(x) = ϕ(x+ 1)− 2ϕ(x) + ϕ(x− 1). (3.2)

with ϕ(0) = ϕ(`), ϕ(` + 1) = ϕ(1). The linear map L0 is given by the
Hermitian matrix

L0 =
(
L0(x, y)

)
x,y=1,...,`

=


−2 1 0 · · · 0 1
1 −2 1 · · · 0 0

. . .

1 0 0 · · · 1 −2.


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3. Path integrals

The Hamiltonian of a free quantum particle, with periodic boundary condi-
tions, is H0 = −1

2L0.

The matrix L0 has non-negative off-diagonal matrix elements and row sums
equal to zero. Such matrices are called Q-matrices in probability theory.
Q-matrices are important because they generate semi-groups of stochastic
matrices: if Q is a Q-matrix, then for each t ≥ 0, the matrix exponential Pt =
exp(tQ) is a stochastic matrix, i.e., it has non-negative matrix elements and
row sums equal to zero. The semi-group (Pt)t≥0 has the additional property

lim
t→0

Pt = id = P0,

sometimes called standardness. Such semi-groups (Pt)t≥0 are associated with
Markov families with state space E = {1, . . . , `} and càdlàg sample paths, i.e.,
families (

Ω,F , (Px)x∈E , (Xt)t≥0

)
such that

(i) (Ω,F ) is a measurable space.

(ii) Each Px, x ∈ E, is a probability measure on (Ω,F ).

(iii) Each Xt, t ≥ 0, is a measurable map from Ω to E.

(iv) For every x ∈ E: Px(X0 = x) = 1 and

Px
(
Xt1 = x1, . . . , Xtn = xn

)
= Pt1(x, x1)Pt2−t1(x1, x2) · · ·Ptn−tn−1(xn−1, xn).

for all n ∈ N, 0 < t1 < · · · < tn, and x1, . . . , xn ∈ E.

(v) For every x ∈ E: the sample paths t 7→ Xt(ω) are right-continuous and
have left limits, Px-almost surely.

The process (Xt)t≥0 associated with the Q-matrix 1
2L0 is a continuous-time

random walk on {1, . . . , `} with periodic boundary conditions.

3.4 Lie-Trotter product formula

The exponential of complex numbers satisfies exp(a+ b) = exp(a) exp(b). For
matrices A and B that do not commute, it is no longer true that exp(A+B)
is equal to exp(A) exp(B), however the following is true.

Theorem 3.4 (Lie product formula). Let A and B be two d × d matrices.
Then

exp(A+B) = lim
n→∞

(
exp
( 1

n
A
)

exp
( 1

n
B
))n

.

Extensions to unbounded operators in Hilbert spaces are available, however
conditions on the operators need to be imposed in order to be able to define
an exponential, and the type of convergence has to be specified (convergence
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3.4. Lie-Trotter product formula

in operator norm, in strong topology. . . ). Infinite-dimensional versions of the
Lie product formula are called Trotter product formulas.

Let us apply the theorem to A = t1
2L0 with t > 0 and L0 the discrete

Laplacian with periodic boundary conditions from (3.2). The matrix B is
chosen as B = −tV with V a diagonal matrix

V =


V (1) 0 · · · 0

0 V (2) · · · 0
. . .

0 0 · · · V (`)

 , V (1), . . . , V (`) ∈ R.

Diagonal matrices are the analogue in C` of multiplication operators in L2(Rd).
Define

H = −1

2
L0 + V.

and

P 0
t = exp

(
− t

2
L0

)
.

Then −tH = A+B and

e−tH = lim
n→∞

(
P 0
t/ne−tV/n

)n
.

The right-hand side has matrix elements

(
P 0
t/ne−tV/n

)n
(x, y) =

∑
x1,...,xn−1

n∏
k=1

P 0
t/n(xk−1, xk)e

−tV (xk)/n

with x0 = x and xn = y. In terms of the associated Markov family,

(
P 0
t/ne−tV/n

)n
(x, y) = Ex

[
exp
(
−

n∑
k=1

t

n
V (Xtk/n)

)
1l{Xt=y}

]
.

It follows that

e−tH(x, y) = Ex
[
exp
(
−
∫ t

0
V (Xs) ds

)
1l{Xt=y}

]
,

which is again a Feynman-Kac formula. The Feynman-Kac formula and the
irreducibility of the continuous-time random walk imply the strict positivity
of matrix elements,

e−tH(x, y) > 0 (3.3)

for all t > 0 and x, y ∈ {1, . . . , `}.
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3. Path integrals

3.5 Perron-Frobenius theorem. Ground states

Physicists are often interested in minimizing the expected energy 〈ψ,Hψ〉 for
a given Hamilton operator H,

E0 = inf
{
〈ψ,Hψ〉 : ψ ∈ H, ||ψ|| = 1

}
.

In finite-dimensional Hilbert spaces, the infimum on the right-hand side is
always a minimum and E0 is the smallest eigenvalue, and every minimizer is
necessarily an eigenvector. The minimum E0 is the smallest eigenvector,

E0 = min
{
λ ∈ R : λ is an eigenvalue of H

}
,

and every minimizer ψ0 is an eigenvector, Hψ0 = E0ψ0. The minimum E0

and minimizers ψ0 are called ground state energy and ground states.
It is natural to ask whether the ground state is unique. The Feynman-

Kac formula helps answer this question by bringing in the Perron-Frobenius
theorem, a theorem from linear algebra about matrices with positive entries.

Perron-Frobenius theorem

We recall the definition of the spectral radius of a matrix A: it is given by

ρ(A) = max
{
|λ| : λ is an eigenvalue of A

}
.

The adjoint of A is the matrix A∗ with entries A∗(x, y) = A(y, x). For a
matrix with real entries, the adjoint is the same as the transpose AT.

Theorem 3.5. Let ` ∈ N and A = (A(x, y))x,y=1,...,` a matrix with strictly
positive entries, A(x, y) > 0. Then the spectral radius ρ(A) is an eigenvalue
with algebraic multiplicity 1 of both A and A∗, and the associated eigenvectors
can be chosen to have strictly positive entries.

Thus if we write λ0 = ρ(A), then λ0 is a simple eigenvalue of A and every
other eigenvalue λ satisfies |λ| < λ0. Moreover there exist strictly positive
mappings w, v : {1, . . . , `} → (0,∞) such that

∑̀
x=1

v(x)A(x, y) = λ0v(y),
∑̀
y=1

A(x, y)w(y) = λ0w(x).

We may associate with v a row vector v and with the mapping w a column
vector, then we have the matrix equalities

vA = λ0v, Aw = λ0w.

The scalar λ0 is the principal eigenvalue, the vectors w and v are called right
and left principal eigenvectors.
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3.5. Perron-Frobenius theorem. Ground states

In the context of Markov chains, the Perron-Frobenius theorem provides
sufficient conditions for the existence of a unique invariant measure. Indeed if
A = P is a stochastic matrix with strictly positive entries, then the principal
eigenvalue is λ0 = 1, the right principal eigenvector is the vector v = 1 that
has all its entries equal to 1, and the left principal eigenvector w = µ is an
invariant measure.

Non-degeneracy of ground states

Now we turn to ground states of Hermitian matrices H for which the semi-
group (exp(−tH))t≥0 satisfies the positivity condition (3.3). This covers in
particular the Hamiltonian H = −1

2L0 + V treated in Section 3.4.

Theorem 3.6. Let H be a Hermitian `×` matrix (H = H∗). Suppose that the
matrix exp(−tH) has strictly positive entries, for all t > 0. Then the smallest
eigenvalue E0 is a simple eigenvalue and there is an associated eigenvector
with strictly positive entries.

Put differently, the ground state ψ0 is unique (up to multiplication by a
scalar, ψ0 → c ψ0) and strictly positive, ψ0(x) > 0 for all x. The spirit of
the argument carries over to infinite-dimensional spaces, however existence
of ground states may fail and statements become more involved. See Chap-
ter XIII.12 about non-degeneracy of ground states in [RS78].

Proof of Theorem 3.6. It is a standard result from linear algebra that every
Hermitian matrix H is diagonalizable with an orthonormal basis of eigenvec-
tors and it has only real eigenvalues. Let ψ0 be an eigenvector of H for the
eigenvalue E0. Then

e−tHψ0 = e−tE0ψ0

for all t > 0 and ψ0 is an eigenvector of exp(−tH).

On the other hand, the eigenvalues of exp(−tH) are precisely the expo-
nentials exp(−tλ) of the eigenvalues λ ∈ R of H. Because of λ ≥ E0 for all
eigenvalues, we have

0 ≤ exp(−tλ) ≤ exp(−tE0)

and we see that exp(−tE0) is equal to the spectral radius of exp(−tH). Let
us fix some arbitrary t > 0, e.g., t = 1. Because of the strict positivity of the
entries of exp(−H), we can apply the Perron-Frobenius theorem and deduce
that the spectral radius exp(−E0) is a simple eigenvalue and there exists an
eigenvector vector v with strictly positive entries. The vector v spans the
eigenspace so there exists a constant c ∈ R such that ψ0 = cv. This proves
that the eigenspace N (H − E0 id) is one-dimensional and spanned by the
vector v, which has strictly positive entries.
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3. Path integrals

Ground state transformation

Theorem 3.6 allows us to transform the semi-group (exp(−tH))t≥0 of matrices
with strictly positive matrix elements into a proper Markov semi-group. Let
ψ0 be the unique eigenvector with strictly positive entries that is normalized,∑`

x=1 ψ0(x)2 = 1. Write H − E0 instead of H − E0 id, where “id” is the
identity matrix. Set

Pt(x, y) =
1

ψ0(x)
e−t(H−E0)(x, y)ψ0(y), µ(x) = ψ0(x)2. (3.4)

Then

Pt(x, y) > 0,
∑̀
y=1

Pt(x, y) = 1

and ∑̀
x=1

µ(x) = 1,
∑̀
x=1

µ(x)Pt(x, y) = µ(y). (3.5)

Thus (Pt)t≥0 is a semi-group of stochastic matrices with invariant measure µ.
Moreover µ and Pt satisfy the detailed balance equation

µ(x)Pt(x, y) = ψ0(x)e−t(H−E0)(x, y)ψ0(y) = µ(y)Pt(y, x).

and the measure µ is reversible. The ground state transformation is discussed
by Bakry, Gentil and Ledoux [BGL14, Section 1.15.6], it is closely related to
the h-transform of Markov processes.

3.6 Harmonic oscillator and Ornstein-Uhlenbeck
process

The quantum harmonic oscillator is an important reference model in quan-
tum mechanics. The Ornstein-Uhlenbeck process is a Markov process and
stochastic diffusion that models systems with Brownian noise and a linear
drift towards equilibrium. The ground state transformation explained for dis-
crete systems in the previous section shows that the harmonic oscillator and
Ornstein-Uhlenbeck process are deeply related.

In this section we bring back in the mass m > 0 of a particle and the
reduced Planck constant ~ > 0.

Harmonic oscillator

The Hamilton operator of the harmonic oscillator with angular frequency
ω0 > 0 acts on smooth functions ψ : R→ C as

Hψ(x) = − ~2

2m

d2ψ

dx2
(x) +

1

2
mω2

0x
2ψ(x). (3.6)
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3.6. Harmonic oscillator and Ornstein-Uhlenbeck process

The operator H with suitable domain D(H) ⊂ L2(R) is self-adjoint. The
name harmonic oscillator reflects the behavior of the associated classical sys-
tem: For the Hamilton function H(p, x) = 1

2mp
2 + 1

2ω
2
0x

2, the differential
equation (1.3) reads ṗ = −∂xH = −ω2

0x, ẋ = ∂pH = p, which gives

mẍ(t) +mω2
0x(t) = 0.

The solutions are given by linear combinations of cos(ω0t) and sin(ω0t). The
differential equation models the behavior of oscillating systems (think of a
pendulum).

The spectrum of the Hamilton operator H consists of a discrete countably
infinite set of simple eigenvalues, the eigenvectors form a complete orthonormal
system. Remember that a family (en)n∈N0 is a complete orthonormal system
if 〈en, em〉 = δn,m and the set of finite linear combinations

∑
k xkenk

is dense
in H.

Theorem 3.7. The Hilbert space has a complete orthonormal system (ψn)n∈N0

that consists of eigenfunctions of H, with

Hψn = ~ω0

(
n+

1

2

)
ψn (n ∈ N0).

An explicit computation shows that

ψ0(x) =
1

(2π/[2mω0/~])1/4
exp
(
−1

2

mω0

~
x2
)

(3.7)

is a strictly positive, normalized eigenfunction for the smallest eigenvalue E0 =
~ω0/2. More generally, ψn is proportional to a polynomial of degree n times
ψ0, see for example [Far10, Section 2.10].

Ornstein-Uhlenbeck process

From now on we go back to ~ = 1 and m = 1. The following computation is
motivated by strict positivity of the eigenfunction (3.7) and the ground state
transformation (3.4). Let f ∈ C∞c (R), i.e., f : R→ C is smooth with compact
support. Then

1

ψ0(x)

(
(H − E0)(ψ0f)

)
(x)

=
1

ψ0(x)

{(
(H − E0)ψ0(x)

)
f(x)− ~2

m
ψ′0(x)f ′(x)− ~2

2m
ψ0(x)f ′′(x)

}
= − ~2

2m
f ′′(x) + ~ω0xf

′(x) = −Lf(x) (3.8)

with

Lf(x) =
1

2
σ2f ′′(x)− θxf ′(x), σ2 =

~2

m
, θ = ~ω0. (3.9)
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3. Path integrals

The operator L with suitable domain D(L), as an operator in the Banach
space C0(R) of continuous functions vanishing at infinity, is the generator of a
continuous-time Markov process (Xt)t≥0, the Ornstein-Uhlenbeck process. The
Ornstein-Uhlenbeck process satisfies a stochastic differential equation with
linear drift and Brownian noise,

dXt = −θXt dt+ σ dWt.

The Ornstein-Uhlenbeck process has a unique stationary distribution µ, the
normal law N (0, σ2/[2θ]) with mean zero and variance σ2/(2θ). For our choice
σ = 1 and θ = ω0, the variance becomes

σ2

2θ
=

~
2mω0

and we recognize that ψ0(x)2 with ψ0(x) given in (3.7) is precisely the prob-
ability density of the invariant measure µ. This is similar to the discrete
relations (3.4) and (3.5).

Unitary equivalence

The somewhat computational relations sketched above can be recast as a more
structural statement using unitary equivalence of Hilbert spaces. Let ψ0 be
the normalized positive ground state from (3.7) and µ = N (0, 1/(2ω0)) the
normal distribution with mean zero and variance 1/(2ω0).

In addition to the Hilbert space H = L2(R) ≡ L2(R,Leb) of complex-
valued measurable functions with norm

||ψ||2H =

∫ ∞
−∞
|ψ(x)|2 dx,

we introduced the Hilbert space h = L2(R, µ) with norm

||f ||2h =

∫ ∞
−∞
|f(x)|2µ( dx) =

∫ ∞
−∞
|f(x)|2ψ0(x)2 dx.

The linear map
U : h→ H, f 7→ ψ0f

is norm-preserving
||Uf ||2H = ||ψ0f ||2H = ||f ||2h

and bijective with norm-preserving inverse

U−1 : H → h, ψ 7→ 1

ψ0
ψ.

Thus U is a unitary isomorphism between H and h. Disregarding issues with
domains etc. we have

U−1(H − E0)U = −L.
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3.7. Action functional

3.7 Action functional

We conclude with some additional vocabulary and complementary points of
view. They are helpful for some aspects of quantum field theory but can be
skipped on first reading.

Path integrals: heuristic formulas

Let us go back to the Wiener measure or more precisely, the Brownian bridge
measures µβx,y from Theorem 3.1. Physicists tend to think of the measure
µtx,y as a measure on the set Γtx,y of continuous paths γ : [0, t] → Rd with
γ(0) = x and γ(t) = 0 that is absolutely continuous with respect to some
fictitious analogue of Lebesgue measure,

µtx,y(A) ∝
∫

Γt
x,y

1lA(γ) exp

(
−1

2

∫ t

0
|γ̇(s)|2 ds

)
D[γ]. (3.10)

Mathematicians view this expression as highly problematic because the infinite-
dimensional Lebesgue measure D[γ] is not defined and sample paths of Brown-
ian motion are not differentiable. The heuristic formula (3.10) exponential is
motivated by a correct formula on the kernel pt(x,y)

pt/n(x0, x1)pt/n(x1, x2) · · · pt/n(xn−1, xn)

=
1

(2πt/n)d/2
exp

(
−

n∑
i=1

|xi − xi−1|2

2t/n

)
.

The exponent looks like a Riemann sum for the integral
∫ t

0 |γ̇(s)|2 ds with
γ(jt/n) = xj ,

n∑
j=1

|xj − xj−1|2

2t/n
=

1

2

n∑
j=1

t

n

∣∣∣xj − xj−1

t/n

∣∣∣2 ≈ 1

2

∫ t

0
|γ̇(s)|2 ds.

Let’s brush our concerns aside and insert the problematic formula (3.10) into
the Feynman-Kac formula. Then we get another ill-defined formula,

kt(x,y) ∝
∫

Γt
x,y

exp

(
−
∫ t

0

{1

2
m|γ̇(s)|2 + V (γ(s))

}
ds

)
D[γ]

for the integral kernel of exp(−tH).
A similar ill-defined formula is derived heuristically for the integral kernel

of the unitary Ut = exp(−itH/~), with the help of the Lie-Trotter product
formula and an explicit formula for the integral kernel of exp(−iH0t/m) where

H0 = − ~2
2m∆. The heuristic formula is

e−itH/~(x,y) ∝
∫

Γt
x,y

exp

(
i

~

∫ t

0

{1

2
m|γ̇(s)|2 − V (γ(s))

}
ds

)
D[γ].

This is the Feynman path integral representation of the propagator in physics.
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3. Path integrals

Action functional and Lagrange formulation of classical mechanics

The function

L(x,v) =
1

2
m|v|2 − V (x)

is the Lagrange function, the functional γ 7→ S(γ) given by

S(γ) =

∫ t

0

{1

2
m|γ̇(s)|2 − V (γ(s))

}
ds =

∫ t

0
L
(
γ(s), γ̇(s)

)
ds

is the action functional. The action functional enters the Lagrangian formu-
lation of classical mechanics: The equation of motion corresponds to critical
points of the action functional, i.e., points for which

d

dε
S(γ + εh)

∣∣
ε=0

= 0

for all smooth variations h : [0, t]→ Rd with h(0) = h(t) = 0. Assuming that
integrals and derivatives can be exchanged, we have

d

dε

∫ t

0
L
(
γ(s) + εh(s), γ̇(s) + εḣ(s)

)
ds

∣∣∣∣
ε=0

=

∫ t

0

{
h(s) ·

(
∇xL

)
(γ(s), γ̇(s)) + ḣ(s) ·

(
∇vL

)
(γ(s), γ̇(s))

}
ds

=

∫ t

0
h(s) ·

{(
∇xL

)
(γ(s), γ̇(s))− d

ds

(
∇vL

)
(γ(s), γ̇(s))

}
ds

The term in braces is equal to

−∇V (γ(s))− d

ds
mγ̇(s) = −∇V (γ(s))−mγ̈(s),

it vanishes for solutions of mγ̈ = −∇V (γ). Action functionals on path space
play a role in probability as well, the natural context is large deviations of
stochastic processes [FW84, FK06].

Propagators, imaginary time, Wick rotation

The operator Ut = exp(−itH/~) and its integral kernel are called propagator
in physics. The operator Pt = exp(−tH/~) from the semi-group (Pt)t≥0 is
called imaginary-time propagator because of the formal relation Pt = Ut/i,
or Ut = Pit. Switching back and forth between t and it is a useful device,
especially when aiming for a probabilistic interpretation of various formulas.
The device sometimes goes under the name of Wick rotation—notice that the
linear map z 7→ iz in the complex plane is a rotation with angle π/2.
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4 Harmonic oscillator

Setting all parameters m, ~, ω0, σ
2, θ to 1, the Hamilton operator (3.6) and the

generator (3.9) of the Ornstein-Uhlenbeck process become

H = −1

2

d2

dx2
+

1

2
x2, L =

1

2

d2

dx2
− x d

dx
.

The eigenfunction from (3.7) becomes ψ0(x) = π−1/4 exp(−x2/2) and the
relation (3.8) reads

− Lf =
1

ψ0

(
H − 1

2

)
(fψ0). (4.1)

We view H as an operator in L2(R) = L2(R,Leb) and L as an operator in
L2(R, µ0) with µ0(dx) = π−1/2 exp(−x2)dx. The precise choice of domain is
left open. For now we only ask that D(L) contains all polynomials and D(H)
contains all functions f : R→ R with

f ∈ C∞(R), ∀m, k ∈ N0 : sup
x∈R

∣∣∣xk dmf

dxm
(x)
∣∣∣ <∞.

The space of such functions is the Schwartz space S(R).

4.1 Hermite polynomials, Hermite functions

The Ornstein-Uhlenbeck operator L and the Hamilton operator H can be di-
agonalized explicitly, the eigenfunctions are given by Hermite polynomials and
Hermite functions. The n-th physicist’s Hermite polynomial is the polynomial

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
.

(The probabilist’s preferred choice is exp(±x2/2) instead of exp(±x2).) The
Hermite polynomials satisfy the recurrence relation

H0(x) = 1, Hn(x) = 2xHn−1(x)−H ′n−1(x).

We note without proof that

1√
π

∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = 2nn!δn,m,
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4. Harmonic oscillator

in particular the polynomials are orthogonal with respect to the Gaussian
measure µ0(dx). The n-th Hermite function is

ψn(x) =
1√

2nn!
√
π
Hn(x)e−x

2/2 =
1√

2nn!
Hn(x)ψ0(x). (4.2)

The Hermite functions form a complete orthonormal system in L2(R).

Proposition 4.1. We have LHn = −nHn, for all n ∈ N0.

Proof. We show first, by induction over n ∈ N0, that

H ′0 = 0, H ′n = 2nHn−1 (n ≥ 1).

For n = 0, this follows from H0 ≡ 1. For the induction step, we use the
recurrence relation and the induction hypothesis, which yields

H ′n(x) =
d

dx

(
2xHn−1(x)−H ′n−1(x)

)
= 2Hn−1(x) + 2xH ′n−1(x)− 2(n− 1)H ′n−2(x)

= 2Hn−1(x) + 2(n− 1)
(
2xHn−2(x)−H ′n−2(x)

)
= 2nHn−1(x).

The induction is complete. Next we note that for all smooth f ,

Lf(x) =
1

2

d

dx

(
f ′(x)− 2xf(x)

)
which gives

LHn =
1

2

d

dx

(
−Hn+1

)
= −nHn.

Combining the proposition with the similarity relation (4.1), we obtain right
away

Hψn =
(
n+

1

2

)
ψn (n ∈ N0) (4.3)

and the Hermite functions form a complete orthonormal system of eigenfunc-
tions of H. Physicists arrive at this equation slightly differently, with the help
of creation and annihilation or raising and lowering operators.

4.2 Creation and annihilation operators

Let X and P = 1
i

d
dx be the position and momentum operators in L2(R). Then

for all ψ ∈ C∞c (R),

Hψ =
1

2
(P 2 +X2)ψ.
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4.2. Creation and annihilation operators

If P and X were real numbers rather than operators, the operator H would
look like the modulus of a complex number:

x2 + y2 = |x+ iy|2 = (x− iy)(x+ iy) (x, y ∈ R). (4.4)

Define the formal operators

A =
1√
2

(X + iP ), A† =
1√
2

(X − iP )

i.e.

A =
1√
2

(
x+

d

dx

)
, A† =

1√
2

(
x− d

dx

)
.

The operators are merely formal because we haven’t specified the domains.
We carry on with formal computations disregarding questions of domains. For
operators, the analogue of the identity (4.4) is no longer true. Instead we have

(X − iP )(X + iP ) = X2 + P 2 + i[X,P ].

Because of the canonical commutation relation [X,P ] = i = i id, this yields

X2 + P 2 = (X − iP )(X + iP ) + 1

and

H = A†A+
1

2
.

We also note the relation
[A,A†]ψ = ψ,

valid for all ψ ∈ S(R).

Proposition 4.2. We have 〈ψ,Aϕ〉 = 〈A†ψ,ϕ〉 for all ϕ,ψ ∈ S(R), and

A(A†)nψ0 = n(A†)n−1ψ0, H(A†)nψ0 =
(
n+

1

2

)
(A†)nψ0 (4.5)

as well as
〈(A†)mψ0, (A

†)nψ0〉 = n!δn,m.

Proof sketch. A straightforward integration by parts shows 〈ψ,ϕ′〉 = −〈ψ′, ϕ〉
and the first identity follows since A and A† differ only by the sign in front of
the derivative. Next,

Aψ0 =
1√
2

(
x+

d

dx

)
π−1/4e−x

2/2 = 0. (4.6)

The rest of the proof is mainly algebraic and based on the relation (AA† −
A†A)ψ = ψ. For example, the first equality in (4.5) is proven by induction.
For n = 0, it is precisely Eq. (4.6). For the induction step, we compute

A(A†)nψ0 = (A†A)(A†)n−1ψ0 + (A†)n−1ψ0

= A†(n− 1)(A†)n−2ψ0 + (A†)n−1ψ0 = n(A†)n−1ψ0.
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4. Harmonic oscillator

The eigenfunction equation (4.3) is recovered with the following proposition.

Proposition 4.3. The Hermite functions from (4.2) satisfy

ψn =
1√
n!

(A†)nψ0 (n ∈ N0).

Proof. For n = 0, there is nothing to prove. For n ≥ 1, we note

1√
n!

(A†)nψ0 =
(−1)n√

2nn!
ex

2/2 dn

dxn
e−x

2/2ψ0

=
(−1)n√
2nn!
√
π

e−x
2/2
(

ex
2 dn

dxn
e−x

2
)

=
1√

2nn!
ψ0(x)Hn(x) = ψn(x).

Combining the previous two propositions, we obtain

A†ψn =
√
n+ 1ψn+1, Aψn =

√
nψn−1.

The operator A lowers the index of the basis function ψn, much in the same
way as a derivative maps a polynomial of degree n to a polynomial of degree
n−1. The operators A† and A are called raising and lowering operators, also
creation and annihilation operators.

4.3 Birth and death process. Poisson-Charlier
polynomials

Creation and annihilation sounds a bit like birth and death. Can we cash
in on the analogy in a probabilistically meaningful way? The short answer
is: yes! The precise answer involves a birth and death process. Gaussian
measures are replaced with Poisson distributions and Hermite polynomials
with Poisson-Charlier polynomials.

Birth and death process

A birth and death process is a continous-time Markov process (Nt)t≥0 with
state space N0 and transitions n → n ± 1. We consider processes with linear
death rates and constant birth rate λ > 0. The Q-matrix acts on functions
f : N0 → C as

(Qf)(n) = λ
(
f(n+ 1)− f(n)

)
+ n

(
f(n− 1)− f(n)

)
.

The Poisson distribution

pλ(n) =
λn

n!
e−λ
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4.3. Birth and death process. Poisson-Charlier polynomials

is a reversible measure for the process, hence Q is a symmetric operator in the
weighted `2-space `2(N0, pλ). The scalar product in the space is

〈f, g〉λ =
∑
n∈N0

f(n)g(n)
λn

n!
e−λ.

The symmetry relation for Q reads

〈f,Qg〉λ = 〈Qf, g〉λ.

It is valid for all f, g : N0 → C that go to zero sufficiently fast at infinity.
The following theorem says that Q is unitarily equivalent to the Ornstein-

Uhlenbeck generator L.

Theorem 4.4. There exists a unitary operator

U : L2

(
R,

1√
π

e−x
2

dx

)
→ `2(N0, pλ),

such that L and Q, with suitable domains, satisfy

Q = U−1LU.

The proof builds on an explicit diagonalization of Q.

Remark 4.5. By Theorem 4.4 and the unitary equivalence of −L and H − 1
2 ,

the operator −Q is also unitarily equivalent to H − 1
2 . Thus we may view the

Ornstein-Uhlenbeck process and the birth-and-death process as two different
probabilistic incarnations of one and the same quantum object, the harmonic
oscillator.

Poisson-Charlier polynomials

Set
(Df)(n) = f(n+ 1)− f(n), (δf)(n) =

n

λ
f(n− 1)− f(n).

A straightforward computation yields

〈f,Dg〉λ = 〈δf, g〉λ

for all f, g : N0 → C that go to zero sufficiently fast at infinity. In addition,

1

λ
(Qf)(n) = −(δDf)(n).

We define a sequence (Ck)k∈N0 of functions from N0 to R by Ck = δk1. Equiv-
alently, C0(n) ≡ 1 and

Ck(n) =
n

λ
Ck−1(n− 1)− Ck−1(n) (n ∈ N0).
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4. Harmonic oscillator

An induction over k shows that Ck is a polynomial of degree k with highest-
order term nk/λk. The functions Ck(n) are called Charlier or Poisson-Charlier
polynomials. They satisfy the orthogonality relation

〈Ck, Cj〉λ =
∞∑
n=0

Ck(n)Cj(n)
λn

n!
e−λ =

k!

λk
δk,j (4.7)

see [PT11, Chapter 10] for details and further references.

Proposition 4.6. We have QCk = −kCk.

Proof. We show first

DCk =
k

λ
Ck−1.

The proof is by induction over k. For k = 0, we have DC0 = D1 = 0. For the
induction step, we apply the recurrence relation and the induction hypothesis
and obtain

Ck(n+ 1)− Ck(n) =
1

λ
Ck−1(n) +

n

λ

(
Ck−1(n)− Ck−1(n− 1)

)
−
(
Ck−1(n+ 1)− Ck−1(n)

)
=

1

λ
Ck−1(n) +

k − 1

λ
(δCk−2)(n)

=
k

λ
Ck−1(n).

This completes the induction. To conclude we observe

QCk = −λδDCk = −kδCk−1 = −kCk.

The unitary U in Theorem 4.4 maps normalized Hermite polynomials to nor-
malized Charlier polynomials. Operators that map a complete orthonormal
system to another complete orthonormal system are automatically unitary.
The unitary equivalence of the operators follows from the eigenfunction rela-
tions given in Propositions 4.1 and 4.6.

Remark 4.7. There is a treasure-trove of relations between orthogonal polyno-
mials and stochastic processes, beyond the Gaussian and Poisson world. See
the book by Schoutens [Sch00] and Section 2.7 in the book by Bakry, Gentil
and Ledoux [BGL14].
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5 Spin

Probabilists are most likely to encounter spins in the context of interacting
particle systems (spin flip dynamics on {−1, 1}Zd

) and statistical mechanics
(Ising model). Another context in which spin and spherical harmonics appear
is the study of random fields and statistics on spheres [MP11].

Here we provide some quantum background for the concept of spin and
additional probabilistic connections. The reader most interested in discrete
systems should jump right ahead to Section 5.4.

5.1 Rotations in R3

Geometry

Let ex, ey, ez be the canonical basis vectors in R3. Consider the matrix

R(θ; ez) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (5.1)

The matrix describes a rotation in R3 of angle θ around the axis ez. Notice
the group property

R(θ + α; ez) = R(θ; ez)R(α; ez) (α, θ ∈ R).

For every v = (x, y, z) ∈ R3, we have

d

dθ
R(θ; ez)v

∣∣∣∣
θ=0

=

0 −1 0
1 0 0
0 0 0

xy
z

 =

−yx
0

 = ez × v

and if we call the antisymmetric matrix appearing in the previous equation
Az, then

R(θ; ez) = exp(θAz).

More generally, let n = (p, q, r) be a unit vector in R3. Then for all v ∈ R3,

n× v =

qz − ryrx− pz
py − qx

 =

 0 −r q
r 0 −p
−q p 0

xy
z

 .

Let A(n) be the antisymmetric matrix appearing in the previous equation.
Then

R(θ;n) = exp
(
θA(n)

)
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5. Spin

represents a rotation of angle θ around n.
For later purpose we note the relation

ex × (ey × r)− ey × (ex × r) = ez × r. (5.2)

Linear algebra. Matrix group SO(3)

The special orthogonal group in R3, denoted SO(3), is the group of orthogonal
3 × 3-matrices with determinant 1. A classical result from linear algebra
that for every R ∈ SO(3) can be brought into the form (5.1) after suitable
change of orthonormal basis. Thus every R ∈ SO(3) represents a rotation as
discussed above. Furthermore, every matrix R ∈ SO(3) can be written as the
exponential of some antisymmetric matrix A (however the matrix need not
be unique). Conversely, for every antisymmetric matrix A, the exponential
R = exp(A) is in SO(3). Notice that every antisymmetric matrix with real
matrix elements has diagonal elements zero, hence trace equal to zero and
det exp(A) = exp(trA) = 1.

5.2 Angular momentum

In classical mechanics

Let r(t) = (x(t), y(t), z(t)) be the trajectory of a particle in R3. Suppose that
the motion is a rotation of angular speed ω around the z-axis,

r(t) = R(ωt; ez)r(0).

Then
ṙ(t) = ωez × r(t), r(t)× ṙ(t) = (x2 + y2)ωez.

Multiplying with the mass m > 0 of the particle, we get

r(t)×mṙ(t) = (x2 + y2)ωez = Izωez, Iz = m(x2 + y2).

In the cases that interest us, momentum is mass times velocity. The angular
momentum is the vector

L = r × p.
For rotations as above, the vector L is parallel to the axis of rotation and its
magnitude is the product of the speed of rotation and the moment of inertia
of the mass around the rotational axis.

In quantum mechanics

In quantum mechanics, the angular momentum becomes an operator-valued
vector, L = r × ~

i∇. Thus for ψ : R3 → C, leaving aside domain issues,

(Lzψ)(x, y, z) =
(
x
~
i

∂

∂y
− y~

i

∂

∂x

)
ψ(x, y, z).
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5.3. Spherical harmonics. Brownian motion on a sphere

Notice

d

dt
ψ
(
R(t; ez)r

)∣∣∣∣
t=0

= (∇ψ(r)) · (ez × r) = ez · (r ×∇ψ(r)),

where we have used

a · (b× c) = det[a, b, c] = det[b, c,a] = b · (c× a).

As a consequence,

~
i

d

dt
ψ
(
R(t; ez)r

)∣∣∣∣
t=0

= (Lzψ)(r).

In this sense Lz generates a unitary group of rotations of the wave function.

Commutation relations

A straightforward but somewhat tedious computation yields

[Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx, [Lz, Lx] = i~Ly, (5.3)

The first equality is a sibling of the relation (5.2) for cross products. The
second and third equalities are obtained from the first equality by a cyclic
permutation of (Lx, Ly, Lz).

The commutation relations are often rewritten with raising and lowering
operators. Set L± = Lx ± iLy. Then

[L+, L−] = 2~Lz [Lz, L
−] = −~L−, [Lz, L

+] = ~L+. (5.4)

Suppose that ψ is an eigenfunction of Lz, i.e., Lzψ = `~ψ. Then—assuming
there is no issue with domains—we have

LzL
+ψ = L+Lzψ + [Lz, L

+]ψ = (`+ 1)~L+ψ.

Similarly, LzL
−ψ = (` − 1)~L+ψ. Hence L± map eigenfunctions of Lz to

eigenfunctions of Lz, all the while raising or lowering the eigenvalue.

5.3 Spherical harmonics. Brownian motion on a
sphere

Laplace operator on the sphere

Angular momentum is all about rotations and it does not care about the radial
component of a function. That is, suppose that

ψ(r) = f
(
|r|
)
g
( r
|r|

)
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5. Spin

for all r = (x, y, z) ∈ R3 \ {0} and suitable functions f : (0,∞)→ C,

g : S2 → C, S2 = {r ∈ R3 : |r| = 1}.

Then

(L2
x + L2

y + L2
z)ψ(r) = f

(
|r|
)

(−~2∆S2g)
( r
|r|

)
with ∆S the Laplace operator on the sphere. It can be defined as follows [Shu01,
Section 22.2]. Set g̃(r) = g(r/|r|). Then g̃(tr) = g̃(r) for all t and therefore

t2(∆g̃)(tr) = ∆g̃(r).

Then ∆S2g is the uniquely defined function with

∆g̃(r) =
1

|r|2
(
∆S2g

)( r
|r|

)
.

The operator 1
2∆S2 is the infinitesimal generator of Brownian motion on

the sphere [Yos49, Hsu02]. The spherical heat semi-group is also presented
in [BGL14, Section 2.2].

Spherical coordinates

The operators Lx, Ly, and Lz are associated with differential operators on
S2 in a similar way. The expression of Lz is particularly simple in spherical
coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ

where r ≥ 0, θ ∈ [0, π], and ϕ ∈ [0, 2π). On the unit sphere r = 1. The
equations above determine a map (r, θ, ϕ) 7→ r(r, θ, ϕ). Let f : R3 → R and g
be the function f in polar coordinates, i.e.,

f
(
r(r, θ, ϕ)

)
= g(r, θ, ϕ).

Then

(Lzf)
(
r(r, θ, ϕ)

)
=

~
i

∂

∂ϕ
g(r, θ, ϕ).

By some abuse of notation we write

Lz =
~
i

∂

∂ϕ

and we also use the same letter Lz for the differential operator on S2.
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5.4. Pauli matrices. Spin 1/2

Spherical harmonics

Let L2(S2) be the space of complex-valued measurable functions that are
square-integrable with respect to the unique rotationally invariant measure
on S2 with total mass 4π (in spherical coordinates, sin θ dθ dϕ).

Theorem 5.1. The space L2(S2) has a complete orthonormal system Y m
`

indexed by
` ∈ N0, m ∈ {−`,−`+ 1, . . . , `− 1, `}

such that

∆S2Y
m
` = −`(`+ 1)Y m

` ,
1

~
LzY

m
` = mY m

` .

The eigenfunctions Y m
` are called spherical harmonics. In spherical coordi-

nates,
Y m
` (θ, ϕ) ∝ eimϕPm` (cos θ)

with Pm` given by yet another family of orthogonal polynomials, the Leg-
endre polynomials. In probability theory, the spherical harmonics enter the
eigenfunction expansion of the transition function of Brownian motion on the
sphere [Yos49]. They also help analyze random fields on a sphere [MP11].

Theorem 5.1 also implies that the full space L2(R3) has a complete or-
thonormal system of joint eigenvectors of L2 and Lz—just multiply spherical
harmonics with an orthonormal system for the radial coordinate. The spec-
trum of L2 is

σ(L2) =
{
`(`+ 1)~2 : ` ∈ N0

}
,

the spectrum of Lz consists of integer multiples of ~. Basis functions satisfy

L2ψ = `(`+ 1)~2ψ, Lzψ = m~ψ

with `,m as in Theorem 5.1. The existence of a basis of joint eigenvectors
reflects that L2 and Lz commute—remember from linear algebra that two
Hermitian matrices that commute can be codiagonalized.

5.4 Pauli matrices. Spin 1/2

Pauli matrices

The Pauli matrices are three 2× 2 matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

They form a basis of the three-dimensional real vector space of Hermitian
2 × 2-matrices with trace zero and satisfy the relations σxσy = iσz = −σxσy
and cyclic permutations thereof, as well as σ2

x = σ2
y = σ2

z . Define

Sx =
~
2
σx, Sy =

~
2
σy, Sz =

~
2
σz
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5. Spin

then
[Sx, Sy] = i~Sz, [Sy, Sz] = i~Sx, [Sz, Sx] = i~Sy.

Thus we have found Hermitian 2×2 matrices that satisfy the same set of com-
mutation relations as the components Lx, Ly, Lz of the angular momentum.
The raising and lowering operators become

S+ = Sx + iSy = ~
(

0 1
0 0

)
, S− = Sx − iSy = ~

(
0 0
1 0

)
.

Further notice that the eigenvalues of Sz are ±~/2 and

S2 = S2
x + S2

y + S2
z =

3

4
~2 = `(`+ 1)~2, ` =

1

2
.

This should remind us of Theorem 5.1: the action of the matrices Sx, Sy, Sz in
C2 is similar to the action of Lx, Ly, Lz in a (2`+ 1)-dimensional eigenspace
of −∆S2 , except now ` = 1/2.

Particles with spin 1/2

The question arises whether the matrices Sx, Sy, Sz have any physical rele-
vance at all even though ` = 1/2 does not appear in Theorem 5.1. The answer
is yes: Some physics experiments (e.g., the Stern-Gerlach experiment) are best
explained by viewing particles like the electron not as a point, but instead as
an object with some internal degree of freedom. They are often visualized as
a little sphere that can rotate around its own axis. The rotation around the
axis brings its own angular momentum, called spin.

The visualization is then often complemented by somewhat mysterious-
sounding phrases like “when you rotate the object by 360 degrees you haven’t
come full circle, instead you have to rotate twice”. This sentence reflects the
following: let us set ~ = 1, then

exp(i2πSz) = exp(i2πσz/2) =

(
exp(iπ) 0

0 exp(−iπ)

)
= −id.

(The relation between exp(iθσz/2) and rotations is explained in more detail
in the next subsection.)

The mathematical implementation of the picture is simply to choose a
different Hilbert space. The Hilbert space of a spin 1/2 particle moving in R3

is the tensor product
L2(R3)⊗ C2,

which is isomorphic to the space of functions ψ : R3×{−1
2 ,

1
2} → C with norm

||ψ||2 =

∫
R3

|ψ(x, 1
2)|2 dx+

∫
R3

|ψ(x,−1
2)|2 dx.

In this representation |ψ(x,±1
2)|2 represents the probability (density) that the

particle is at x and has spin in z-direction equal to ±~/2.
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5.4. Pauli matrices. Spin 1/2

From SU(2) to SO(3)

The similarity of commutation relations suggests there should be a relation
between 2×2 matrices of the form exp(−i(xSx+ySy +zSz)/~)) and rotations
in R3, and indeed there is. For r = (x, y, z) ∈ R3, we denote

r · σ = xσx + yσy + zσz

Every matrix of this form is Hermitian and has trace zero; in fact every Her-
mitian, trace-zero matrix can be written in this way. Hence we may identify
R3 with the space of Hermitian, trace-zero 2 × 2-matrices. The Euclidean
norm is recovered with the determinant as

det(r · σ) = det

(
z x− iy

x+ iy −z

)
= −(x2 + y2 + z2).

The exponential U = exp(−ir · σ) of any such matrix is unitary and has
determinant 1 because the determinant of the exponential is the exponential
of the trace, a well-known fact from linear algebra. The set of unitary 2× 2-
matrices with determinant 1 forms a group. It is called the special unitary
group and denoted SU(2).

If U is in SU(2) and M = M∗ with TrM = 0, then

(UMU∗)∗ = UMU∗, TrUMU∗ = TrM = 0, det(UMU∗) = det(M).

As a consequence, there exists a uniquely defined orthogonal 3× 3-matrix RU
such that

U(r · σ)U∗ = (RUr) · σ

for all r ∈ R3. It turns out that the matrix is also orientation-preserving and
has determinant 1, thus RU ∈ SO(3). Notice R−U = RU and RUV = RURV .

Proposition 5.2. The group homomorphism

SU(2)→ SO(3), U 7→ RU

is surjective but not injective. The preimage of each R ∈ SO(3) is of the form
{+U,−U} for some U ∈ SU(2).

Let’s work out the image R(t) of

U(t) = exp(−itσz/2).

Differentiating
e−itσz/2(r · σ)eitσz/2 = (R(t)r) · σ

at t = 0, we get

− i

2

[
σz, r · σ

]
= (R′(0)r) · σ.

45



5. Spin

An explicit computation shows that the commutator on the left is equal to
2i(ez × r) · σ and we deduce R′(0)r = ez × r. Together with R(0) = id,
R(t+ s) = R(t)R(s), and the geometric considerations from Section 5.1, this
shows

RU(t) = R(t) = R(t; ez)

is the rotation of angle t around the z-axis. Notice that U(t + 2π) = −U(t)
but R(t+ 2π) = R(t).

5.5 Spin n/2, Ehrenfest model, Kravchuk polynomials

Motivated by Theorem 5.1 and Section 5.4 we can look for matrices that
satisfy the given commutation relations and are associate with half-integer `.
The matrices should be (2` + 1) × (2` + 1) matrices. In algebraic language,
we look for irreducible unitary representations of the special unitary group
SU(2) with dimension 2`+ 1.

The existence and uniqueness (up to isometry) of such representations
is well-known. We provide here a representation which at first sight looks
different from the standard physicist’s and analyst’s representation but lends
itself more easily to a probabilistic interpretation.

Spin n/2. Kac matrix

Let ` ∈ N and ` = n/2. We label the canonical basis vectors of C2`+1 = Cn+1

as e0,. . . , en and define linear maps by

J+ek = (n− k)ek+1, J−ek = kek−1, Jzek =
(
k − n

2

)
ek.

A straightforward computation shows

[Jz, J
+] = J+, [Jz, J

−] = −J−, [J+, J−] = 2Jz

and we recognize the commutation relations from (5.4). Set Jx = 1
2(J+ +J−)

and Jy = 1
2i(J

+ − J−), then J± = Jx ± iJy and

J2
x + J2

y + J2
z =

n

2

(n
2

+ 1
)

=
`(`+ 1)

2

(times identity matrix). The eigenvalues of Jz are −`,−`+1, . . . , `−1, `. Thus
we have indeed found a set of matrices associated with half-integer ` ∈ 1

2N.
We note in passing that

2Jx = J+ + J− =



0 1
n 0 2

n− 1 0 3
. . .

. . .
. . .

2 0 n
1 0


(5.5)
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is sometimes called Kac matrix after [Kac47, Eq. (47)] but it was also investi-
gated by others, see the references in [TT91]. Notice that for ` = 1/2 (n = 1),
it is equal to the Pauli matrix σx.

The matrices Jx and Jy are not Hermitian but this can be remedied as
follows. Let

D = diag
((n

0

)
,

(
n

1

)
, . . . ,

(
n

n

))
.

be the diagonal matrix with binomial coefficients on the diagonal. Then
J−D = (J+D)T. Set J̃u = D−1/2JuD

1/2, then J̃x, J̃y, J̃z are Hermitian
matrices.

Ehrenfest model. Elastic random walker

The matrix 2Jx has non-negative entries and constant column sums equal to
n, therefore

Q = (2Jx)T − n id

is a Q-matrix. As usual we identify Cn+1 with functions f : {0, . . . , n} → C,
then

(Qf)(k) = (n− k)
(
f(k + 1)− f(k)

)
+ k
(
f(k − 1)− f(k)

)
. (5.6)

The binomial distribution Bin(n, 1
2) is reversible.

The associated continuous-time Markov process with state space {0, . . . , n}
is the Ehrenfest model. Suppose you have a left and right container separated
by a membrane and n particles distributed over the two containers (if you
prefer, think of two urns containing n balls in total). The particles move
independently and change containers at rate 1. If the left container contains
k particles, then the net rate that one out of the k particles moves to the right
is k, resulting in a decrease k → k − 1 in the number of particles on the left.
Similarly, the net rate for one of the n − k partices on the right container to
move to the left is n− k, resulting in an increase k → k + 1 in the number of
particles on the left.

Another interpretation is in terms of a random walk on a hypercube
{0, 1}n. Suppose that the rate for one coordinate to flip is 1 and you want to
count the number of 0’s in the time-dependent vector. Then the rate for one
out of the k coordinates to flip from zero to 1 is k and the rate for one out of
the n− k coordinates equal to 1 to flip back to zero is n− k.

Yet another interpretation is obtained by recentering. In the long-time
limit, we expect there should be on average n/2 particles in both containers
and we might decide to keep track of the deviations k − n

2 , n
2 + k instead of

the absolute number counts k and n − k. The change of variable x = k − n
2

leads to a process with state space {−n
2 , . . . ,

n
2 − 1, n2 } and generator(

Lf
)
(x) =

n

2

(
f(x+ 1)− 2f(x) + f(x− 1)

)
− x
(
f(x+ 1)− f(x− 1)

)
,
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which looks like a discrete version of an Ornstein-Uhlenbeck generator. The
associated process is a continuous-time random walk with position-dependent
transition rates that push the walker back to the origin. Loosely following
Kac [Kac47] we may call the walk elastic.

Eigenfunctions. Kravchuk polynomials

The similarity of the elastic random walk with the Ornstein-Uhlenbeck process
carries over to the spectrum and the eigenfunctions, given by the Kravchuk
polynomials, a discrete version of the Hermite polynomials. (Another fre-
quently used transliteration of the Ukrainian name is Krawtchouk.) For r ∈
{0, . . . , n}, define a function Kr : {0, . . . , n} → R by

Kr(k) =
r∑
j=0

(−1)j
(
k

j

)(
n− k
r − j

)
.

(Binomial coefficients
(
N
m

)
with N < m are defined as zero.) For example,

K0(k) = 1, K1(k) = n− 2k.

More generally, Kr is a polynomial of degree r. The Kravchuk polynomials
satisfy the orthogonality relation

n∑
k=0

(
n

k

)
Kr(k)Ks(k) = 2n

(
n

r

)
δr,s.

The following proposition is an analogue of Propositions 4.1 and 4.6 on the
Ornstein-Uhlenbeck process and the birth and death process.

Proposition 5.3. The generator of the Ehrenfest model given by (5.6) satis-
fies

QKr = −rKr, r = 0, . . . , n.

Proof. The generating function of the Kravchuk polynomials is

G(t, k) =
n∑
r=0

trKr(k) = (1− t)k(1 + t)n−k.

It follows that

−
n∑
r=0

rtrKr(k) = −t d

dt
G(t, k)

= tk(1− t)k−1(1 + t)n−k − t(n− k)(1− t)k(1 + t)n−k−1.
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5.5. Spin n/2, Ehrenfest model, Kravchuk polynomials

We write ±t = 1± t− 1 and find

−
n∑
r=0

rtrKr(k) = k
(
G(t, k − 1)−G(t)

)
+ (n− k)

(
G(t, k + 1)−G(t)

)
.

As this holds true for all t, the coefficients of tr on the left side and on the
right side must be equal, for all r, and the proposition follows.

Remark 5.4. Kravchuk polynomials also enter the analysis of random walks
on hypercubes [Dia88, DGM90].
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