

MATHEMATISCHES INSTITUT

Sommersemester 2013 23. Mai 2013

Prof. Dr. Andreas Rosenschon Thomas Jahn

Höhere Algebra – Übungsblatt 6

Aufgabe 1 (Tensorprodukt von Gruppen).

Sei *A* eine abelsche Gruppe. Zeigen Sie:

- (i) Für alle $m \ge 0$ sind $A \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z}$ und A/mA isomorph.
- (ii) Für $m, n \ge 1$ mit ggT d sind $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/d\mathbb{Z}$ isomorph.
- (iii) Ist A eine Torsionsgruppe, so ist $A \otimes_{\mathbb{Z}} \mathbb{Q} = 0$.
- (iv) Es gilt $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$.

Aufgabe 2 (Eigenschaften von Tensorprodukten).

Geben Sie jeweils Beispiele von A-Moduln M und N an, die folgende Eigenschaften erfüllen:

- (i) $M \otimes_A N \ncong M \otimes_{\mathbb{Z}} N$.
- (ii) Es gibt ein $u \in M \otimes_A N$ das nicht von der Form $u = x \otimes y$ für $x \in M$ und $y \in N$ ist.
- (iii) Es gibt $x, y \in M$ mit $x \otimes y \neq y \otimes x$ in $M \otimes_A M$.

Aufgabe 3 (Tensorprodukte).

Zeigen Sie:

- (i) Für einen Ring A, ein Ideal $\mathfrak{a} \subseteq A$ ein A-Modul M sind $(A/\mathfrak{a}) \otimes_A M$ und $M/\mathfrak{a}M$ isomorph.
- (ii) Ist A ein lokaler Ring und sind M, N endlich erzeugte A-Moduln, so folgt aus $M \otimes_A N = 0$ bereits M = 0 oder N = 0. (Benutzen Sie das Lemma von Nakayama.)

Aufgabe 4 (Bimodule und Tensorprodukte).

Seien A, B Ringe, M ein A-Modul, N ein (A, B)-Bimodul und P ein B-Modul. Beweisen Sie, dass $(M \otimes_A N) \otimes_B P$ und $M \otimes_A (N \otimes_B P)$ isomorph sind.

Abgabe bis einschließlich 4. Juni 2013 im Übungskasten (in der Nähe der Bibliothek). Bitte geben Sie Ihren Namen gut lesbar an.