

MATHEMATISCHES INSTITUT

Sommersemester 2013 17. Mai 2013

Prof. Dr. Andreas Rosenschon Thomas Jahn

Höhere Algebra – Übungsblatt 5

Aufgabe 1 (Quotient von Moduln).

Sei M ein A-Modul, $N\subseteq M$ ein A-Untermodul und $\pi:M\to M/N, x\mapsto x+N$ die Quotientenabbildung. Zeigen Sie:

- (i) Die Quotientengruppe M/N ist mit der durch a(x+N)=ax+N definierten Skalarmultiplikation ein A-Modul und die Abbildung π ist ein surjektiver A-Modulhomomorphismus.
- (ii) Die Abbildung π induziert eine inklusionserhaltende Bijektion zwischen der Menge der A-Untermoduln von M die N enthalten und der Menge der A-Untermoduln von M/N.

Aufgabe 2 (Isomorphiesätze).

- (i) Seien $N \subseteq M \subseteq L$ *A*-Moduln. Beweisen Sie, dass (L/N)/(M/N) und L/M als *A*-Moduln isomorph sind.
- (ii) Seien $M_1, M_2 \subseteq M$ A-Moduln. Zeigen Sie, dass $M_2/(M_1 \cap M_2)$ und $(M_1 + M_2)/M_1$ als A-Moduln isomorph sind.

Aufgabe 3 (Modulhomomorphismen).

Seien M, M', N A-Moduln und $u \in \text{Hom}_A(M, M')$. Zeigen Sie:

- (i) $u^* : \operatorname{Hom}_A(M', N) \to \operatorname{Hom}_A(M, N), f \mapsto f \circ u$ ist A-linear.
- (ii) $u_* : \operatorname{Hom}_A(N, M) \to \operatorname{Hom}_A(N, M'), f \mapsto u \circ f \text{ ist } A\text{-linear.}$
- (iii) $\operatorname{Hom}_A(A, M)$ und M sind als A-Moduln isomorph.

Aufgabe 4 (\mathbb{Z} -Modulhomomorphismen).

(i) Sei A eine abelsche Gruppe und m eine positive ganze Zahl. Zeigen Sie:

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},A) \cong A[m] := \{a \in A | ma = 0\}.$$

(ii) Seien m, n positive ganze Zahlen und d = ggT(m, n). Zeigen Sie:

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/d\mathbb{Z}.$$

(iii) Sei $\pi: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ die Quotientenabbildung. Zeigen Sie, dass die induzierte Abbildung $\pi_*: \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}) \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$ nicht surjektiv ist.

Abgabe bis einschließlich 28. Mai 2013 im Übungskasten (in der Nähe der Bibliothek). Bitte geben Sie Ihren Namen gut lesbar an.