

MATHEMATISCHES INSTITUT

Sommersemester 2013 13. Mai 2013

Prof. Dr. Andreas Rosenschon Thomas Jahn

Höhere Algebra – Übungsblatt 4

Aufgabe 1 (Irreduzibelität).

Zeigen Sie: Eine affine algebraische k-Varietät $V \subseteq \mathbb{A}^n_k$ ist genau dann irreduzibel, wenn $\mathcal{I}(V) \subseteq k[X_1, \ldots, X_n]$ ein Primideal ist.

Aufgabe 2 (Varietäten in der Ebene).

Sei *k* ein Körper. Zeigen Sie:

- (i) Sind $f,g \in k[X,Y]$ Polynome die keinen gemeinsamen Faktor haben, so ist $V = \mathcal{V}(f,g) = \mathcal{V}(f) \cap \mathcal{V}(g)$ eine endliche Menge.
 - (Tipp: Zeigen Sie, dass ggT(f,g) eine Einheit in k(X)[Y] ist und folgern Sie mit dem Lemma von Bézout, dass es $d \in k[X]$ und $a,b \in k[X,Y]$ mit af + bg = d gibt. Folgern Sie, dass die Anzahl der P_X mit $(P_X,P_Y) \in V$ endlich ist und beenden Sie dann den Beweis.)
- (ii) Ist $f \in k[X,Y]$ irreduzibel und $\mathcal{V}(f)$ unendlich, so ist $\mathcal{I}(\mathcal{V}(f)) = (f)$ und $\mathcal{V}(f)$ irreduzibel.

Aufgabe 3 (Eindeutige Zerlegung in irreduzible Komponenten).

Sei $V \subseteq \mathbb{A}_k^n$ eine affine algebraische k-Varietät.

Zeigen Sie: Es gibt eindeutige irreduzible k-Varietäten V_1, \ldots, V_m mit $V = V_1 \cup \cdots \cup V_m$ und $V_i \not\subseteq V_j$ für alle $i \neq j$.

Diese eindeutigen V_i werden als *irreduzible Komponenten* von V bezeichnet.

Aufgabe 4 (Beispiele).

- (i) Sei K ein Körper der Charakteristik 0. Zeigen Sie, dass $V = \mathcal{V}(\{X_1^3 X_1 X_2^2\})$ irreduzibel ist.
 - (Für $K = \mathbb{R}$ ist V das V_e von Übungsblatt 3. Vergleichen Sie die Aussage dieser Aufgaben mit der graphischen Darstellung von V_e .)
- (ii) Bestimmen Sie die irreduziblen Komponenten der affinen C-Varietät

$$W = \mathcal{V}_{\mathbb{C}^2}((Y^2 - XY - X^2Y + X^3)) \subseteq \mathbb{A}^2_{\mathbb{C}}.$$

Abgabe bis einschließlich 22. Mai 2013 im Übungskasten (in der Nähe der Bibliothek). Bitte geben Sie Ihren Namen gut lesbar an.