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1 Introduction and Preliminaries

1.1 Overview
Given d ∈ N and finite X ⊂ Rd, and r > 0, the geometric graph G(X , r) has vertex

set X and edge set {{x, y} : ‖x− y‖ ≤ r}, where ‖ · ‖ is the Euclidean norm on Rd.

Motivation: wireless communications.
Spatial epidemics. Topological data analysis.

For a random geometric graph (RGG):
take X to be a random set of points.
Let ξ1, ξ2, . . . be independent random d-vectors, uniformly distributed over the set
B(1) := [−1/2, 1/2]d (a box of side 1). Set

Xn := {ξ1, . . . , ξn}.

One reason to study RGGs is to explore ‘typical’ properties of geometric graphs. An-
other reason is to assess statistical tests (e.g. for unifomity) based on the graph G(Xn, rn).

Book [3]: Random Geometric Graphs (2003).
In this course we consider the RGG G(Xn, rn) with (rn)n≥1 a specified sequence of

distance parameters. For simplicity we assume from now on that d = 2, although many
of the ideas here can be extended to higher dimensions.

Notation: for asymptotics as n→∞.
For (0,∞)-valued sequences an and bn:

• an = O(bn) means lim sup(an/bn) <∞.

• an = Θ(bn) means that both an = O(bn) and bn = O(an).

• an ∼ bn means an/bn → 1.
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• ‘With high probability’ or ‘w.h.p.’ means ‘with probability tending to 1 as n→∞’.

(All our asymptotics are as n→∞.)
We investigate the following questions for G(Xn, rn), asymptotically as n→∞:

• How large does rn have to be for G(Xn, rn) to be connected w.h.p.?

• How large does rn have to be for G(Xn, rn) to have a giant component containing
a non-vanishing proportion of the vertices, w.h.p.?

One interpretation of the RGG is as a (crude) model of a spatial epidemic, start-
ing from a single infected individual. The first question above relates to whether the
entire population becomes infected; the second question relates to whether a significant
proportion of the population become infected.

Similar questions have been studied for (e.g.) the Erdös-Rényi random graph
G(n, p), defined as follows. There are n vertices, and for each pair of vertices, an edge
between them is included with probability p, independently of the other pairs. However,
different methods are needed for RGGs.

First question: connectivity of G(n, rn).
Let N0(n) be the number of isolated vertices.
If nπr2n ∼ α log n as n→∞, then

E[N0(n)] = nP[Degree(ξ1) = 0]

≈ n(1− πr2n)n−1

≈ n exp(−(n− 1)πr2n) ≈ n1−α,

which suggests the following:

Ex. 1.1. Suppose nπr2n/ log n→ α. Prove
E[N0(n)]→∞ if α < 1,
E[N0(n)]→ 0 if α > 1.

This suggests that if α < 1 then G(Xn, rn) is unlikely to be connected (because there
are lots of isolated vertices).

In fact, if α > 1 then G(Xn, rn) is likely to be connected, answering our first question:

Theorem 1.2. If nπr2n/ log n→ α ∈ (0,∞):
if α > 1 then G(Xn, rn) ∈ K w.h.p., but
if α < 1 then G(Xn, rn) /∈ K w.h.p.

Here K denotes the class of connected graphs.
2nd question: Giant component of G(Xn, rn).
Consider the degree of a ‘typical’ vertex:

Exercise 1.3. Prove that if rn → 0, then E[Degree(ξ1)] ∼ nπr2n.
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Thus if we take the thermodynamic limit with nr2n → λ for some λ ∈ (0,∞), then
the ‘average degree’ approximates to πλ.

It turns out that if λ exceeds a certain critical value λc, then G(n, rn) has a giant
component w.h.p.:

Theorem 1.4. If nr2n → λ ∈ (0,∞) as n → ∞, then the order of the largest component
of G(Xn, rn), divided by n, converges in probability to a limit p∞(λ). There is a critical
value λc ∈ (0,∞) such that p∞(λ) = 0 for λ ≤ λc and p∞(λ) > 0 for λ > λc.

The p∞(λ) appearing in this result is a continuum percolation function, that we shall
discuss in more detail later on.

Theorems 1.2 and 1.4 are proved in [3]. In this course we shall prove ‘Poissonized’
versions.

1.2 Poissonization

A set X ⊂ R2 is said to be locally finite if X (B) < ∞ for all bounded B ⊂ R2. Here
X (B) means the number of points of X in B.

For bounded measurable g : R2 → [0,∞), a Poisson process in R2 with intensity
function g is a random, locally finite subset P of R2 such that for all disjoint Borel
A1, . . . , Ak ⊂ S;

• P(A1) ∼ Poisson
(∫

A1
g(x)dx

)
• P(A1), . . . ,P(Ak) are independent.

In the special case where g = λ1S, for some constant λ > 0 and some Borel set S ⊆ R2,
we refer to P as a homogeneous Poisson process in S with intensity λ.

Book [2]: Lectures on the Poisson Process (2018).

For s, λ > 0, set B(s) := [−s/2, s/2]2.
We can generate a homogeneous Poisson process Hλ,s of intensity λ on B(s) as follows.
Let ξ1, ξ2, · · · be independent and uniform over B(1).
Let Nλs2 be Poisson distributed with parameter λs2, independent of (ξ1, ξ2, . . .), and

set

Hλ,s := {sξ1, . . . , sξNλs2}. (1.1)

Exercise 1.5. Prove that Hλ,s is a homogeneous Poisson process in B(s) with intensity
λ.

We also write Pn for Hn,1. The ‘Poissonized’ version of the RGG G(Xn, rn) is the
graph G(Pn, rn).

We now state some basic facts about Poisson processes (see [2] for proofs).

Theorem 1.6. (Superposition) Suppose P, P ′ are independent Poisson process in R2

with intensity functions g(·) and g′(·) respectively. Then P ∪ P ′ is a Poisson process in
R2 with intensity function g(·) + g′(·).

Theorem 1.7. (Thinning) Suppose P is a Poisson process in R2 with intensity function
g(·) and 0 < p < 1. Let each point of P be accepted with probability p, independently
of all other points; let P ′ be the point process of accepted points. Then P ′ is a Poisson
process in R2 with intensity function pg(·).
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Theorem 1.8. (Mecke formula.) Let k ∈ N. Let λ, s > 0. For any measurable real-valued
function f , defined on the product of (R2)k and the space of finite subsets of B(s), for
which it exists, the expectation of

6=∑
x1,...,xk∈Hλ,s

f(x1, . . . , xk,Hλ,s \ {x1, . . . , xk})

equals

λk
∫
B(s)

dx1 · · ·
∫
B(s)

dxkEf(x1, . . . , xk,Hλ,s)

where
∑ 6= means the sum is over ordered k-tuples of distinct points of Hλ,s.

For λ > 0, let Hλ be a homogeneous Poisson process of intensity λ in the whole of R2.
Given X ⊂ R2 and y ∈ R2, write X + y for {x+ y : x ∈ X}.

Theorem 1.9 (Translation and rotation invariance). Let λ > 0, y ∈ Rd, and let ρ be any
rotation of R2. Then the point process Hλ + y is also a homogeneous Poisson process in
R2 of intensity λ, as is ρ(Hλ).

Let o := (0, 0), the origin in R2.

Theorem 1.10. (Mecke formula for infinite Poisson process) Suppose h(x;X ) is a bounded
measurable real-valued function defined on all pairs of the form (x,X ) with X a locally
finite subset of R2. Assume that h is translation-invariant, meaning that h(x;X ) =
h(o;X + (−x)) for any (x,X ). Then

E
∑

x∈Hλ∩B(s)

h(x;Hλ \ {x}) = λs2E [h(o;Hλ)] .

Proof. (sketch) LHS equals λ
∫
B(s)

E[h(x,Hλ)] by Mecke. By translation invariance, this

equals the RHS.

2 Connectivity

Recall K := {connected graphs}. Let

ρn = min{r : G(Pn, r) ∈ K}

which is a random variable, called the connectivity threshold. In this section we prove:

Theorem 2.1. It is the case that

nπρ2n/ log n
P−→ 1. (2.1)

Given rn, let δn denote the minimum degree of G(Pn, rn).
For x ∈ R2 and r > 0 define the disk

D(x, r) := {y ∈ R2 : ‖y − x‖ ≤ r}.

Also let Leb(·) denote area (2-dimensional Lebesgue measure).
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Theorem 2.2. If nπr2n/ log n = α < 1 for all n ≥ 2 then P[δn = 0]→ 1.

Proof. Let Nn here denote the number of vertices of Pn ∩ B(1/2) of degree zero in
G(Pn, rn) (we restrict to the smaller square B(1/2) to avoid boundary effects). Then by
the Mecke formula,

E[Nn] = n

∫
B(1/2)

P[Pn(D(x, rn)) = 0]dx

= (n/4) exp(−nπr2n) = (1/4)n1−α,

which tends to infinity as n→∞.
Also Nn(Nn−1) is the number of ordered pairs (x, y) of distinct points in Pn∩B(1/2)

such that (Pn \ {x, y})(D(x, rn)∪D(y, rn)) = 0 and ‖y− x‖ > rn. By the Mecke formula
E[Nn(Nn − 1)] equals

n2

∫
B(1/2)

∫
B(1/2)\D(x,rn)

exp(−nLeb(D(x, rn)

∪D(y, rn)))dydx.

Splitting the inner integral according to whether or not y ∈ D(x, 2r) we find E[Nn(Nn−1)]
is at most

(n/4)2 exp(−2nr2n) + (n2/4)π(4r2n) exp(−nr2n)

= (E[Nn])2 +O(n1−α log n),

so that lim sup(E[N2
n]/(E[Nn])2) ≤ 1. Hence, Var(Nn/E[Nn]) → 0 so Nn/E[Nn] → 1 in

probability. Thus P[Nn = 0]→ 0, and if Nn > 0 then δn = 0. The result follows. .

Corollary 2.3. Given ε ∈ (0, 1) we have
P[nπρ2n/ log n > 1− ε]→ 1.

Proof. Set rn = ((1 − ε) log n/(nπ))1/2, so nπr2n/ log n = 1 − ε. Let δn be the minimum
degree of G(Pn, rn). If the minimum degree of a graph of order greater than 1 is zero,
then it is not connected; hence

P[nπρ2n/ log n < 1− ε] = P[G(Pn, rn) ∈ K]

≤ P[δn > 0] + P[Pn(B(1)) ≤ 1],

which tends to zero by Theorem 2.2.

To complete the proof of Theorem 2.1, it suffices to prove the following:

Theorem 2.4. Suppose (rn)n∈N is such that

nπr2n/ log n = α > 1, ∀n ≥ 2. (2.2)

Then P[G(Pn, rn) ∈ K]→ 1.
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The proof of this requires a series of lemmas. It proceeds by discretization of space.
Assume d = 2 and rn is given, satisfying (2.2). Let ε ∈ (0, 1/9) be chosen in such a

way that

(1− ε)α((1− 3ε)2 − 2ε) > 1 + ε. (2.3)

Divide B(1) into squares of side εrn; actually we should use squares of side 1/b(1/εrn)c
so they fit exactly, but to ease notation we shall ignore this minor technicality and as-
sume/pretend that 1/(εrn) is an integer for all n.

Let Ln be the set of centres of these squares (a finite lattice). Then |Ln| = Θ(n/ log n).
List the squares as Qi, 1 ≤ i ≤ |Ln|, and the corresponding centres of squares (i.e.,

the elements of Ln) as qi, 1 ≤ i ≤ |Ln|.
Given U ⊂ Pn, let us say qi ∈ Ln is U-occupied if U ∩Qi 6= ∅. Let On(U) be the set

of sites qi ∈ Ln that are U -occupied.

Lemma 2.5. Let U ⊂ Pn be such that G(U, rn) ∈ K. Then also G(On(U), rn(1+2ε)) ∈ K.

Proof. Suppose x, y ∈ U with {x, y} an edge of G(U, rn). Choose qi, qj ∈ Ln with
x ∈ Qi and y ∈ Qj. By the triangle inequality

‖qi − qj‖ ≤ ‖qi − x‖+ ‖x− y‖+ ‖y − qj‖
≤ rnε+ rn + rnε = rn(1 + 2ε),

so either i = j or {qi, qj} is an edge of
G(On(U), rn(1 + 2ε)).

Given qk, q` ∈ On(U), pick u ∈ U∩Qk and v ∈ U∩Q`. Then there is a path in G(U, rn)
from u to v and by the above, taking the box centres of the successive points in this path
provides a path in G(On(U), rn(1 + 2ε)) from qk to q`. Hence G(On(U), rn(1 + 2ε)) is
connected.

Let An,m denote the set of σ ⊂ Ln with m elements such that G(σ, rn(1 + 2ε)) ∈ K
(sometimes called ‘lattice animals’).

Let A2
n,m be the set of σ ∈ An,m such that dist(σ, ∂B(1)) > 2rn, i.e. all elements of σ

are distant at least 2rn from the boundary of B(1).
Let A1

n,m be the set of σ ∈ An,m such that σ is distant less than 2rn from just one
edge of B(1).

Let A0
n,m := An,m \ (A2

n,m ∪A1
n,m), the set of σ ∈ An,m such that σ is distant less than

2rn from two edges of B(1) (i.e. near a corner of B(1)).
The counting argument in the next lemma is sometimes called a Peierls argument.

Lemma 2.6. Given m ∈ N, there is constant C = C(m) such that for all n,

|An,m| ≤ C(n/ log n),

|A1
n,m| ≤ C(n/ log n)1/2, |A0

n,m| ≤ C.

Proof. Fix m. Consider how many ways there are to choose σ ∈ An,m.
There are at most r−2n choices, and hence O(n/ log n) choices, for the first element of

σ in the lexicographic ordering. Having chosen the first element of σ, there are a bounded
number of ways to choose the rest of σ.
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Consider how many ways there are to choose σ ∈ A1
n,m. In this case there are O(r−1n ) =

O((n/ log n)1/2) ways to choose the first element of σ (distant at most 2rn from the
boundary of [0, 1]2), and then a bounded number of ways to choose the rest of σ.

Finally consider how many ways there are to choose σ ∈ A0
n,m. In this case there are

O(1) ways to choose the first element of σ, and then a bounded number of ways to choose
the rest of σ.

For n ∈ N, let Kn(Pn) be the collection of vertex sets of the components of G(Pn, rn)
(a partition of Pn). Given σ ⊂ Ln, let Eσ be the event that there exists U ∈ Kn(Pn) such
that On(U) = σ.

Lemma 2.7. Assume rn satisfy (2.2) and ε has been chosen to satisfy (2.3). Let m ∈ N.
Then for all n ∈ N with n ≥ 2,

sup
σ∈A2

n,m

P[Eσ] ≤ n−(1+ε). (2.4)

Also

sup
σ∈A1

n,m

P[Eσ] ≤ n−(1+ε)/2 (2.5)

and

sup
σ∈Aon,m

(P[Eσ]) ≤ n−(1+ε)/4. (2.6)

Proof. Given σ ∈ A2
n,m, let qi (respectively qj) be the lexicographically first (resp.

last) element of σ. Let D−σ be the part of D(qi, rn(1− 3ε)) lying to the left of Qi. Let D+
σ

be the part of D(qj, rn(1− 3ε)) lying to the right of Qj.
We claim that if Eσ occurs, then Pn(D−σ ) = 0 and Pn(D+

σ ) = 0. Indeed, if Eσ occurs
and Pn(D−σ ) 6= 0, we can choose z ∈ Pn∩D−σ , and also U ∈ Kn(Pn) such that On(U) = σ,
and also y ∈ U ∩Qi. Then

‖z − y‖ ≤ ‖z − qi‖+ ‖qi − y‖ ≤ rn(1− 3ε) + εrn < rn,

so also y ∈ U , but then taking k such that z ∈ qk, we have k ∈ On(U) but also qk to
the left of qi, a contradiction. This shows the first part of the claim, and we can argue
similarly for D+

σ . By the claim,

P[Eσ] ≤ P[Pn(D−σ ∪D+
σ ) = 0]

≤ exp(−n[π(rn(1− 3ε))2 − 2εr2n])

≤ exp
[
− (α log n) ((1− 3ε)2 − 2ε)

]
By (2.3), this is less than n−1−ε, completing the proof of (2.4).

To prove (2.5). Take σ ∈ A1
n,m. Consider just the case where σ is near to the left edge

of B(1). Define D+
σ as above. Then

P[Eσ] ≤ P[Pn(D+
σ ) = 0]

≤ exp(−(n/2)π(rn(1− 3ε))2 − 2εr2n)

≤ exp

[
−
(
α log n

2

)
((1− 3ε)2 − 2ε)(1− ε)

]
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and by (2.3) this is less than n−(1+ε)/2 completing the proof of (2.5).
The proof of (2.6) is similar.

Lemma 2.8. Let m ∈ N. Then P[∃U ∈ Kn(Pn) : |On(U)| = m]→ 0 as n→∞.

Proof. By Lemma 2.5, if U ∈ Kn(Pn) with |On(U)| = m, then On(U) ∈ An,m. Hence
by Lemma 2.7,

P[∃U ∈ Kn(Pn) : |On(U)| = m]

≤
∑

σ∈An,m

P(Eσ)

≤ |A2
n,m|n−(1+ε) + |A1

n,m|n−(1+ε)/2

+|A0
n,m|n−(1+ε)/4

and using Lemma 2.6 we find that this tends to zero.
For U ⊂ R2 define

U r := ∪x∈UD(x, r).

Write diam∞ for diameter in the `∞ norm. For any bounded connected A ⊂ R2,
diam∞(A) is the smallest possible side length of a rectilinear square containing A.

Lemma 2.9. Let Q = [−1/2, 1/2]2, Qo = (−1/2, 1/2)2 and ∂Q = Q \Qo. Let r > 0 and
suppose U, V are disjoint finite nonempty subsets of Qo. Suppose the sets U r and V r are
connected and U r ∩ V r = ∅.

Then there exists a connected set
Γ ⊂ Qo ∩ ∂(U r) with

diam∞(Γ) ≥ min(diam∞(U r), diam∞(V r)). (2.7)

Proof. Given x ∈ U , let us define an exposed arc of the circle ∂D(x, r) to be a portion
of this circle within Qo that is not covered by any of the other disks, i.e. a connected
component of Qo ∩ (∂D(x, r)) \ ∪y∈U\{x}D(y, r).

Then ∂Q(U r) (the boundary of U r relative to Q) consists of all the exposed arcs of the
circles ∂D(x, r), x ∈ U , together with some vertices of degree 2 (wherever two exposed
arcs meet) or degree 1 (wherever an exposed arc meets ∂Q). The exposed arcs and vertices
can be seen as a finite plane graph with all vertices of degree 1 or 2.

Such a graph must split into a finite collection of cycles, each of which is a Jordan
curve, along with some curves (paths) which start and end at points in ∂Q. These cycles
and curves are all disjoint from each other. Denote these cycles and curves by Γ1, . . . ,Γm.

The set V r lies in a single component of the complement of ∂Q(U r) and the boundary
of this component (relative to Q) is one of the curves Γ1, . . . ,Γm, without loss of generality
Γ1. Then taking Γ = Γ1, we have that any continuous path in Qo from V r to U r must
pass through Γ.

If diam∞(Γ) < min(diam∞(U r), diam∞(V r)), then we can find a closed rectilinear
square S containing Γ of side diam∞(Γ), but also can find x ∈ U r ∩ Qo \ S and y ∈
V r ∩ Qo \ S. But then we could find a continuous path in Qo from x to y avoiding S,
contradicting our earlier conclusion that any path from U r to V r must pass through Γ.
Therefore (2.7) holds.
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Given K ∈ N, let FK(n) be the event that there exist distinct U, V ∈ Kn(Pn) such
that min(|On(U)|, |On(V )|) ≥ K.

Lemma 2.10. There exists K ∈ N such that P[FK(n)]→ 0 as n→∞.

Proof. Suppose FK(n) occurs. Then there exist distinct U, V ∈ Kn(Pn), such that
min(|On(U)|, |On(V )|) ≥ K. Let U ′ := U rn/2, and V ′ := V rn/2. By Lemma 2.9, there is a
connected set Γ ⊂ ∂U ′ ∩ (−1

2
, 1
2
)2 with

diam∞(Γ) ≥ min(diam∞(U ′), diam∞(V ′)).
Let τ be the set of qi ∈ Ln such that Qi ∩ Γ 6= ∅.
Then τ is ∗-connected in Ln, i.e. for any two sites x, y in τ , there is a path (x0, x1, . . . , xk)

with x0 = x, xk = y and ‖xi − xi−1‖∞ = εrn for 1 ≤ i ≤ k.
Also, for each qi ∈ τ we claim Pn(Qi) = 0. Indeed, any such Qi contains part of

the boundary of U ′, so if there were a point of Pn in Qi it would be distant at most
rn((1/2) + 2ε) from U and therefore would actually be in U so Qi would not include any
of the boundary of U ′, a contradiction.

Next we claim the isoperimetric inequality |τ | ≥ K1/2. To see this note that ∪i:qi∈On(U)Qi

is contained in U ′, and therefore with Leb(·) denoting area,

Leb(U ′) ≥ Leb(∪i:qi∈On(U)Qi) ≥ Kε2r2n.

Also diam∞(U ′) ≥ (Leb(U ′))1/2, sinc U ′ is contained in a square of side diam∞(U ′).
Hence diam∞(U ′) ≥ K1/2εrn. Likewise diam∞(V ′) ≥ K1/2εrn and hence diam∞(Γ) ≥

K1/2εrn. Since |τ | ≥ diam∞(Γ)/(εrn), we have the claim.
Let A′n,m be the set of ∗-connected subsets of Ln with m elements. By a Peierls

argument related to the proof of Lemma 2.6 (see also [3, Lemma 9.3]), there are finite
constants γ and C (we can take γ = 28 for example) such that

|A′n,m| ≤ C(n/ log n)γm.

Set

φn := P[Pn(Qi) = 0] = exp(−n(εrn)2)

= exp[−ε2(α/π)(log n)],

where the last line comes from (2.2). Then

P[FK(n)] ≤
∑

m≥K1/2

C(n/ log n)γmφmn

≤ 2C(n/ log n)(γn−ε
2/π)K

1/2

= 2CγK
1/2

n1−ε2π−1K1/2

/ log n

which tends to zero provided K is chosen large enough so that (ε2/π)K1/2 > 1.

Proof of Theorem 2.4. Choose K ∈ N as in Lemma 2.10. Then by Lemma 2.5 we have
that

P[G(Pn, rn) /∈ K] ≤ P[∃U, V ∈ Kn(Pn), U 6= V ]

≤

(
K∑
m=1

P[∃U ∈ Kn(Pn), |On(U)| = m]

)
+P[FK(n)].

By Lemmas 2.8. and 2.10, this tends to zero.
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3 Percolative ingredients

To prepare for proving results about large components of random geometric graphs, we
recall (without proof) some facts about percolation theory, which is the study of connec-
tivity properties of random sets in space.

3.1 Site percolation on a lattice
The triangular lattice is the the graph G(T, 1), where T is the set in R2 defined by

T := {m(1, 0) + n(1/2,
√

3/2) : m,n ∈ Z}.
Given p ∈ [0, 1], let Zp = (Zp

x, x ∈ T) be a family of mutually independent Bernoulli(p)
random variables. Let

O(Zp) := {x ∈ T : Zp
x = 1}.

Sites in O(Zp) are called open or occupied.
Site percolation theory is concerned with the components of the graph

G(O(Zp), 1),

in partaicular the infinite or large components.
3.2 k-dependent percolation

Let k ∈ N. We say Z = (Zx, x ∈ T) is a (weakly) k-dependent Bernoulli random
field on T, if it is a collection of {0, 1}-valued random variables in the same probability
space, such that for any finite A ⊂ T with ‖x − y‖ > k for any distinct x, y ∈ A, the
random variables (Zx, x ∈ A) are mutually independent. Let O(Z) = {x ∈ T : Z(x) = 1}
(the set of ‘open’ or ‘occupied’ sites)..

Given m,n ∈ N, let LR(Z,m, n) be the event that there is a path in G(O(Z), 1) from
the left edge to the right edge of the rectangle

R(m,n) := [0, n− 1]× [0, (m− 1)
√

3/2].

Lemma 3.1. Let k ∈ N. There exists p∗c(k) ∈ (0, 1) such that for any k-dependent
Bernoulli random field Z on T with
P[Zx = 1] ≥ p∗c(k) for all x ∈ T,

P[{LR(Z,m, n)}] ≤ n2−m ∀n,m ∈ N.

Proof. (Sketch) If LR(Z,m, n) fails, there is a vertical crossing of R(n,m) in G(O(Z)c, 1).
Hence for some path γ in G(T, 1) of length ` ≥ m starting on [0, n− 1]×{0}, we have

γ ⊂ O(Z)c.
The number of such paths γ is at most nβ` for some constant β <∞.
By taking P[Zx = 1] close enough to 1, we can arrange for P[γ ⊂ O(Z)c] ≤ (1/(2β))`.
Then the result follows from the union bound.

3.3 Continuum percolation
We consider the components of the infinite graph G(Hλ; 1). Equivalently, consider the

connected components of the set H+
λ , where for X ⊂ R2 we set

X+ := X 1/2 = ∪x∈XD(x,
1

2
).

Let Hλ,0 := Hλ ∪ {o}, and

C0(λ) := {x ∈ Hλ,0 : o↔ x in G(Hλ,0, 1)}.
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For k ∈ N, set pk(λ) := P[|C0(λ)| = k].
Define the continuum percolation probability p∞(λ) by

p∞(λ) := P[|C0(λ)| =∞] = 1−
∞∑
k=1

pk(λ).

Exercise 3.2. Suppose 0 < λ < λ′. Show that p∞(λ) ≤ p∞(λ′).

Define the critical value λc by

λc = inf{λ > 0 : p∞(λ) > 0}.

Theorem 3.3. We have 0 < λc <∞.

Simulation studies indicate that λc ≈ 1.44.
It is known that p∞(λc) = 0. It is not known if this holds in all dimensions.

3.4 Uniqueness of the infinite cluster

Fix λ > 0 and let N be the number of infinite components of the graph G(Hλ; 1).

Exercise 3.4. Show that if p∞(λ) = 0, then P[N = 0] = 1.

Theorem 3.5. Suppose p∞(λ) > 0. Then P[N = 1] = 1.

In other words, two things happen almost surely when p∞(λ) > 0:

(i) There is an infinite component of G(Hλ, 1).
(ii) There is only one such component.
3.5 The Harris-FKG inequality

We say a real-valued function f , defined on locally finite point configurations X ⊂ Rd,
is increasing if f(X ) ≤ f(Y) whenever X ⊂ Y . We say f is decreasing if −f is
increasing. Given λ > 0, we say E is an increasing (resp. decreasing) event on Hλ if 1E
is an increasing (resp. decreasing) function of Hλ.

Theorem 3.6 (Harris-FKG inequality). Suppose f, g are measurable bounded increasing
real-valued functions defined on locally finite point configurations in R2. Then
Cov(f(Hλ), g(Hλ)) ≥ 0, i.e.

E[f(Hλ)g(Hλ)] ≥ E[f(Hλ)]E[g(Hλ)].

The same inequality holds if f and g are both decreasing.

Corollary 3.7 (Square Root trick). Let λ > 0, k ∈ N, ε ∈ (0, 1). Suppose for i = 1, . . . , k
we have increasing events Ai defined on Hλ. such that P[∪ki=1Ai] > 1− ε.

Then max1≤i≤k P[Ai] > 1− ε1/k.
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Proof. Set M = max1≤i≤k P[Ai]. The events Aci are all decreasing, so by the Harris-FKG
inequality

ε > P[∩ki=1A
c
i ] ≥

k∏
i=1

P[Aci ] ≥ (1−M)k,

so that 1−M < ε1/k and M > 1− ε1/k.

Remark. Often in applications of the Square Root trick, the sets Ai all have the same
probability.

4 The largest component

In this section we aim to prove a Poissonized version of Theorem 1.4, concerning the
theromodynamic limit nr2n → λ. In fact we just take nr2n = λ.

For any finite graph G, let Lj(G) denote the order of its jth-largest component, that is,
the jth-largest of the orders of its components, or zero if it has fewer than j components.

Recall that Hλ,s denotes a homogeneous Poisson process of intensity λ in B(s) =
[−s/2, s/2]2, and Pn := Hn,1. By the representation (1.1), Pn = {ξ1, . . . , ξNn} so

L1(G(Pn, rn)) = L1(G({r−1n ξ1, . . . , r
−1
n ξNn}, 1))

= L1(G(Hnr2n
, 1)) = L1(Gλ,s, 1),

where we set λ = nr2n and s = r−1n .
Therefore we shall consider L1(G(Hλ,s, 1)) (and also L2(G(Hλ,s, 1))) as s → ∞ with

λ fixed. From now on, instead of (1.1) we take Hλ,s := Hλ ∩B(s).
4.1 The subcritical case

Theorem 4.1. Suppose λ > 0 with p∞(λ) = 0. Then

s−2L1(G(Hλ,s; 1))
P−→ 0 as s→∞. (4.1)

Proof. Suppose p∞(λ) = 0. For any locally finite X ⊂ R2 and x ∈ X , let Cx(X ) denote
the vertex set of the component of G(X , 1) containing x.

Let ε > 0. Let Ns be the number of x ∈ Hλ,s such that |Cx(Hλ,s)| ≥ εs2. If
L1(G(Hλ,s, 1)) ≥ εs2, then Ns ≥ εs2. Hence by Markov’s inequality and the Mecke
formula,

P[L1(G(Hλ,s, 1)) ≥ εs2] ≤ (εs2)−1E[Nx]

= (εs2)−1
∫
B(s)

P[|Cx(Hλ,s ∪ {x})| ≥ εs2]λdx

≤ (λ/(εs2))

∫
B(s)

P[|Cx(Hλ ∪ {x})| ≥ εs2]dx

= (λ/ε)
∑
k≥εs2

pk(λ)

which tends to zero as s→∞. Therefore s−2L1(G(Hλ,s, 1))
P−→ 0.
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Exercise 4.2. Suppose λ > λc, and let k,K ∈ N. Let Nk(s) be the number of x ∈ Hλ,s

such that |Cx(Hλ,s)| = k, and set N≤K :=
∑K

k=1Nk(s).

(i) Use the Mecke formula to show that

lim
s→∞

s−2E[Nk(s)] = λpk(λ),

and that lims→∞Var[s−2Nk(s)] = 0.

(ii) Deduce that (λs2)−1N≤K(s)
P−→
∑K

k=1 pk(λ).

(iii) Using (1.1), show that L1(G(Hλ,s, 1)) ≤ max(K,Nλs2 −N≤K(s)).

(iv) Let ε > 0. Deduce that as s→∞,

P[(λs2)−1L1(G(Hλ,s, 1)) > p∞(λ) + ε]→ 0

(v) Show that as s→∞,

P[(λs2)−1L1(G(Hλ,s, 1))

+ (λs2)−1L2(G(Hλ,s, 1)) > p∞(λ) + ε]→ 0

13



4.2 Renormalization
We now write Dr(x) for the disk D(x, r) and Dr for D(o, r). Also let Sr = [−r, r]2,

and let e := (1, 0). Given λ,K,L,M ∈ (0,∞) with L > K,M > 2K, define the following
events:

• UK,L,λ is the event that there is a unique component of H+
λ ∩DL that meets both

DK and ∂DL.

• FK,M,λ is the event that there is a path in H+
λ ∩D3M from DK to DK(Me).

Proposition 4.3. Suppose p∞(λ) > 0 and let ε ∈ (0, 1). There exist constants K > 0
and M > 3K such that P[UK,M/3,λ] > 1− ε and P[FK,M,λ] > 1− ε.

Proof (sketch). We adapt an argument of
Duminil-Copin, Sidoravicius and Tassion [1]. Let ε1 = (1/3)ε32 < ε. Choose K such that
P[DK ↔ ∞] > 1 − ε1. Using uniqueness (Theorem 3.5) we can and do choose n1 ∈ N
with n1 > K such that

P[UK,n,λ] ≥ 1− ε, ∀n ≥ n1. (4.2)

For n ≥ n1, and 0 ≤ α ≤ β ≤ n, let

En(α, β) = {DK ↔ {n} × [α, β] in H+
λ ∩ Sn}.

As P[DK ↔ ∂Sn] ≥ P[DK ↔∞] > 1− ε1, using the square root trick we can show

P[En(0, n)] > 1− ε1/81 .

Given n, choose αn ∈ (0, n) such that

P[En(0, αn)] = P[En(αn, n)].

Can do this since g(α) := P[En(0, α)]−P[En(α, n)] is continuous in α with g(0) < 0, g(n) >
0.

Since En(0, n) = En(0, αn) ∪ En(αn, n), using the square root trick again yields

P[En(αn, n)] = P[En(0, αn)] > 1− ε1/161 . (4.3)

Using the square root trick yet again yields

max(P[En(0, αn/2)],P[En(αn/2, αn)]) > 1− ε1/321 .

Choose either yn = αn/4 or yn = 3αn/4, so

P[En(yn − αn/4, yn + αn/4)] > 1− ε1/321 . (4.4)

Set n2 = 3n1. We claim that there exists N ≥ n2 such that α3N ≤ 4αN . Indeed, if this
were not true then we would have for all k ≥ 1 that α3kn2

≥ 4kαn2 , but since αn ≤ n for
all n, this would imply 3kn2 ≥ 4kαn2 so that (4/3)k ≤ n2/αn2 for all k, which is not true
(here we use the fact that αn2 > 0), justifying the claim.

Choose (deterministic) N ≥ n2 such that α3N ≤ 4αN . Then by (4.2)

min(P[UK,N,λ],P[UK,3N,λ]) > 1− ε1, (4.5)
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and by (4.3) and (4.4), setting ε2 := ε
1/32
1 ,

min(P[EN(αN , N)],

P[E3N(y3N −
α3N

4
, y3N +

α3N

4
)]) > 1− ε2. (4.6)

Now set x = (2N, y3N). Let SN(x) = SN + x. Define the vertical intervals

I = {3N} × [y3N − α3N/4, y3N + α3N/4],

J+ = {3N} × [y3N + αN , y3N +N ],

J− = {3N} × [y3N −N, y3N − αN ].

Let A+ be the event that there is a path from DK(x) to J+ in H+
λ ∩S ′N , and let A− be

the event that there is a path from DK(x) to J− in H+
λ ∩ SN(x). Then P[A+] = P[A−] =

P[EN(αN , N)].
By (4.6) and the union bound,

P[A+ ∩ A− ∩ E3N(y3N −
α3N

4
, y3N +

α3N

4
)]

> 1− 4ε2 = 1− ε.

If the above event holds, then since α3N/4 ≤ αN , there is a path in H+
λ ∩ S3n from DK

to DK(x). Since S3N ⊂ D5N ⊂ D3‖x‖, there is hence a path in H+
λ ∩ D3‖x‖ from DK to

DK(x).
Set M := ‖x‖. By rotation invariance we therefore have

P[FK,M,λ] > 1− ε.

Also M ≥ 2N ≥ 2n2 = 6n1, so M/3 ≥ n1 so that P[UK,M/3,λ] > 1 − ε by (4.2), so the
proof is complete.

4.3 Rectangle crossings
Suppose R = [a, b] × [c, d] with a < b and c < d. We seay a set S ⊂ R2 is 1-crossing

(respectively 2-crossing) for R if there is a continuous path in S ∩R from the left edge of
R to the right edge (resp. from the top edge to the bottom edge).

In this section we establish upper bounds for the probability of non-existence of a
component of (H+

λ;s ∩ R)+ that is 1-crossing for certain rectangles R. Given a, b, λ > 0,
define the rectangle R(a, b) := [−a/2, a/2]× [−b/2, b/2], and the event

Cr(λ, a, b) = {H+
λ is 1− crossing for R(a, b)}.

Lemma 4.4. Let λ > λc. Then there exists c > 0 such that for all large enough t,

1− P[Cr(λ, t2, t)] ≤ exp(−ct)

Proof. Define events UK,m := UK,M,λ and FK,M := FK,M,λ as in subsection 4.2:

• UK,M is the event that there is a unique component of H+
λ ∩DM+1 that meets both

DK and ∂DM .

• FK,M is the event that there is a path in H+
λ ∩D5M from DK to DK(Me).

15



Let p∗c(7) be as in Lemma 3.1. Let ε = (1 − p∗c(7))/9. Using Proposition 4.3, choose
K > 0,M > 3K such that P[UK,M/3] > 1− ε and P[FK,M ] > 1− ε.

For each x, y ∈ T with ‖x − y‖ = 1, let Ux denote the event that there is a unique
component ofH+

λ ∩DM/3(Mx) that meets both DK(Mx) and ∂DM/3(Mx). Let Fxy denote
the event that there is a path in H+

λ ∩D3M(Mx) that meets both DK(Mx) and DK(My).
By translation and rotation invariance of Hλ, P[Ux] > 1− ε for each x, and P[Fxy] >

1− ε for each (x, y).
For x ∈ T, let us say Xx = 1 if event Ux occurs, and also Fxy occurs for each of the

six y ∈ T with ‖y − x‖ = 1; otherwise set Xx = 0.
Then (Xx, x ∈ T) is a 7-dependent Bernoulli random field. For each x ∈ T, by the

union bound
P[Xx = 0] ≤ 7ε < 1− p∗c(7).

If there is a path in G(O(T), 1) that is 1-crossing for the lattice rectangle R((t2/M) +
4, (t/M)− 2) ∩ T then Cr(λ, t2, t) occurs. But by Lemma 3.1, the probability of this not
occurring is at most

(2t2/M)(1/2)t/(2M)

and the result follows.

Now for λ, a, b > 0 define the event

Cr∗(λ, a, b) = {(Hλ ∩R(a, b))+

is 1− crossing for R(a, b)},

which differs from Cr(λ, a, b) because only disks with centres inside R(a, b) are allowed
to be used.

Lemma 4.5. Suppose λ > λc. Then there is a constant c > 0 such that for all large
enough a,

1− P[Cr∗(λ, a, a/3)] ≤ exp(−ca1/2).

Proof. Take µ ∈ (λc, λ). By the superposition theorem (Theorem 1.6), we may assume
that Hλ is obtained as the union of two independent homogeneous Poisson processes Hµ

and Hλ−µ.
Given a, divide R(a, a/4) lengthwise into strips (rectangles) of dimensions a × a1/2.

Take alternate strips in the subdivision (to avoid depencences) and denote these by
Ta,1, . . . , Ta,νa Then νa, the number of strips conidered, is Θ(a1/2).

For 1 ≤ i ≤ νa, if H+
µ is 1-crossing for Ta,i, then (Hµ ∩ R(a, a/3))+ is 1-crossing for

the slightly shorter rectangle (denoted T ′a,i) obtained by moving the left edge of Ta,i by
1/2 to the right, and moving the right edge of Ta,i by 1/2 to the left

Let Gi,a be the event that H+
µ is 1-crossing for T ′i,a. By Lemma 4.4, for a large we have

P[Gc
1,a] ≤ exp(−ca1/2). (4.7)

Let Hi,a be the event that in addition to event Gi,a occurring, there is a continuum
path in (Hλ ∩ Ti,a)+ from the left edge to the right edge of Ti,a. We assert that there is a
constant δ > 0, independent of a, such that for all i ≤ νa we have

P [Hi,a|Gi,a] ≥ δ. (4.8)
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Indeed, given a point x on the left edge of T ′i,a, the probability that there exist two points
X, Y of Hλ−µ such that there is a path to the left edge of Ti,a through {XY}+ is bounded
away from zero. Likewise for the right edge.

If event Gi,a ∩Hi,a occurs for any i ≤ νa, then Cr∗(B(a, a/3)) occurs. Hence by (4.7)
and (4.8), we have for all large enough a that

P[Cr∗(R(a, a/3))c] ≤ P[∪νai=1G
c
i,a]

+P[∩νai=1H
c
i,a| ∩νai=1 Gi,a]

≤ νa exp(−ca1/2) + (1− δ)νa ,

and since νa = Θ(a1/2), this gives us the result.

4.4 The giant component
We are nearly ready to prove the Poisson version of Theorem 1.4 concerning the giant

component, in the supercritical phase.

Proposition 4.6. Suppose λ > λc. Let Es denote the event that there is a unique com-
ponent of H+

λ,s having diameter greater than 6s1/2. Then P[Es]→ 1 as s→∞.

Proof. Divide B(s) into squares of side s1/2 (in general these do not exactly fit, so we
should really take squares of side s/bs1/2c to make them fit, but we ignore this minor issue).
Let Rs,1, Rs,2, . . . Rs,ms denote the collection of rectangles of aspect ratio 3, obtained by
taking a horizontal or vertical line of three of the rectangles in the subdivision. Then
ms = Θ(s).

Then, by Lemma 4.5, there exists a constant c > 0 such that, for large enough s, and
for 1 ≤ i ≤ ms,

P [G(Hλ ∩Rs,i; 1) is crossing

the long way for Rs,i] > 1− e−cs
1/4

. (4.9)

Therefore, if Is denotes the intersection over all i ≤ ms of the events described in
(4.9), P [Is] exceeds 1 − ms exp(−cs1/4). But, on the event Is, the long-way crossing
components of H+

λ ∩ Ra,i must all be part of the same big component of H+
λ,s (since the

long-way crossings for rectangles that intersect at right angles must overlap. Also on Is,
no other component can have diameter greater than 6s1/2 without intersecting this big
component.

We are now finally ready to complete the proof of the Poissonized version of Theorem
1.4, with extra information about the second largest component.

Theorem 4.7. Suppose λ > λc. As s→∞,

s−dL1(G(Hλ,s; 1))
P−→ λp∞(λ). (4.10)

Also,

s−dL2(G(Hλ,s; 1))
P−→ 0. (4.11)
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Proof. Let N∗s be the number of points of Hλ,s lying in components H+
λ,s of diameter at

least 6s1/2. By the Mecke formula (Exercise!), as s→∞ we have

s−2E[N∗s ]→ λp∞(λ),

and moreover
s−4E[N∗s (N∗s − 1)]→ λ2p∞(λ)2.

Therefore Var[s−2N∗s ] → 0, so by Chebyshev’s inequality s−2N∗s converges in probability
to λp∞(λ), as s→∞.

Hence, given ε > 0, we have as s→∞ that

P[N∗s ≥ s2λ(p∞(λ)− ε)]→ 1 (4.12)

If the event Eλ, defined in Proposition 4.6, occurs then all those points of Hλ,s, that lie
in components of H+

λ,s of diameter greater than 6s1/2, must lie in the same component of
G(Hλ,s, 1). Therefore if also N∗s ≥ s2λ(p∞(λ)−ε)] we have L1(G(Hλ,s, 1)) ≥ s2λ(p∞(λ)−
ε). Therefore by (4.12) and Proposition 4.6 we obtain that

P[L1(G(Hλ,s, 1)) ≥ s2λ(p∞(λ)− ε)]→ 1.

Combined with Exercise 4.2(iv), this yields (4.10).
Using Exercise 4.2(v), we obtain that

P[s−2(L1(G(Hλ,s))

+ L2(G(Hλ,s))) > p∞(λ) + ε]→ 0,

and therefore s−2(L1(G(Hλ,s))+L2(G(Hλ,s))) converges in probability to the same limit as
s−2(L1(G(Hλ,s)). This implies s−2L2(G(Hλ,s)) must converge in probability to zero.
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