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Chapter 1

Introduction

1.1 The parabolic Anderson problem and its interpre-

tation

The main object of our investigation is the solution u : R
+ × Z

d → R
+ to the Cauchy

problem for the heat equation with random time-dependent potential

{
∂u
∂t

(t, x) = κ∆u(t, x) + ξ(t, x) u(t, x), (t, x) ∈ R
+ × Z

d;

u(0, x) = 1, x ∈ Z
d.

(1.1)

Here, κ ∈ R
+ is a diffusion constant and ∆ is the discrete Laplacian, acting on f : Z

d → R

as
∆f(x) =

∑

y∼x

[f(y) − f(x)] ,

while
ξ =

{
ξ(t, x)t≥0 |x ∈ Z

d
}

is an R-valued random field evolving over time that ”drives” the equation. Problem (1.1) is
referred to as the parabolic Anderson model. It is the parabolic analogue of the Schrödinger
equation with a random potential.

A popular interpretation arises from population dynamics. The function u(t, x) describes
the mean number of particles present at x at time t when starting with one particle per
site. Particles perform independent random walks on Z

d with jump rate 2dκ and split
into two at rate ξ if ξ > 0 (source) or die at rate −ξ if ξ < 0 (sink). We outline this
interpretation in the next Chapter 2.

If ξ is a nonnegative field, we can also interpret problem (1.1) as a linearized model of
chemical reactions. In this case, the solution of the equation describes the evolution of
reactants u under the influence of a catalyst medium ξ.

The third interpretation of the model stems from evolution theory. Denote by Z
d the space

of phenotypes and by v(t, x) the number of individuals of phenotype x at time t. Then
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∆ represents mutation, whereas ξ(t, x) is the fitness of individuals with phenotype x. We
impose the constraint that the total number of individuals is finite and constant over time.
Within this context, the Fisher-Eigen equation of population genetics reads

∂v

∂t
(t, x) = κ∆v(t, x) + (ξ(t, x) − 〈ξ(t, ·)〉v) v(t, x),

where

〈ξ(t, ·)〉v :=

∑

x ξ(t, x)v(t, x)
∑

x v(t, x)

is the average fitness of the population v(t, ·).
Historically, the Anderson model is derived from solid states physics. The movement of
an electron u in a disordered environment ξ can be described by the discrete Schrödinger
equation

i~
∂u

∂t
(t, x) =

(
−~

2∆ + ξ(x)
)
u(t, x).

This is the original time-independent Anderson model. The evolution of the potential ξ(x)
is independent of time.

Characteristically for the parabolic Anderson model, the two terms on the right hand side
of equation (1.1) compete with each other. The diffusion induced by ∆ tends to make u
flat whereas ξ tends to make u bumpy. In the context of population dynamics, there is
a competition between particles spreading out by diffusion and particles clumping around
sources.

Studying problem (1.1), we distinguish between the quenched setting which describes the
almost sure behaviour of u conditioned on ξ, and the annealed setting, where we average
over ξ.

The theory currently available for the time-dependent model covers various forms of the
potential ξ. In the present paper we consider the case where ξ has the form

ξ(t, x) = γδYt(x), (t, x) ∈ R
+ × Z

d, (1.2)

and (Yt)t≥0 is a random walk with generator ρ∆ starting at the origin 0. The corresponding
expectation will be denoted by 〈·〉. The parameter ρ ∈ [0,∞) is the diffusion constant of
the catalyst, whereas γ ∈ (0,∞) indicates the rate of splitting. In the context of chemical
reactions, we can interpret ξ as a single catalyst particle, performing a random walk in Z

d

with jump rate 2dρ. Reactants split into two at a rate γ > 0 if they are at the same lattice
site as the catalyst.

This overview is inspired by Gärtner and den Hollander [4] and König [8]. For a general
discussion of the parabolic Anderson model with applications, the reader is referred to
the survey paper by Gärtner and König [5]. The interpretation as a linearized model of
chemical kinetics is outlined in Gärtner and Molchanov [6], Section 1.2.
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1.2 The Feynman-Kac formula

Our main tool for the analysis of the solution to the parabolic Anderson problem (1.1) is
the Feynman-Kac formula.

Proposition 1.1 (Feynman-Kac formula)
Let ξ : [0,∞) × Z

d → R be a bounded function which is piecewise constant in the first
variable and let u0 : Z

d → R
+ be an arbitrary bounded and nonnegative function. Then

the Cauchy problem
{

∂u
∂t

(t, x) = κ∆u(t, x) + ξ(t, x) u(t, x), (t, x) ∈ R
+ × Z

d,

u(0, x) = u0, x ∈ Z
d,

has a unique nonnegative solution, given by

u(t, x) = E
X
x exp

{∫ t

0

ξ(t − s,Xs) ds

}

u0(Xt), (1.3)

where (Xs)s≥0 is a random walk on Z
d with generator κ∆ and corresponding expectation

E
X .

This is a standard result for a time-independent random medium ξ(x). In Appendix A we
derive the statement for our case, where the potential ξ(t, x) has the form (1.2).

1.3 Lyapunov exponents and intermittency

The aim of the present thesis is to study the annealed asymptotics of the solution u, i.e.
the asymptotics of the moments of the solution. More precisely, we study the exponential
growth rates of the moments 〈u(t, 0)p〉. Therefore, we introduce the Lyapunov exponents
corresponding to problem (1.1).

Definition 1.2 (Lyapunov exponent)
For p ∈ N, the limit

λp := lim
t→∞

1

t
log〈u(t, x)p〉 (1.4)

is called the p-th moment Lyapunov exponent of the solution u to the parabolic Anderson
problem (1.1).

We will see that the solution u of problem (1.1) with potential (1.2) possesses Lyapunov
exponents of all orders. It will be shown in Theorem 4.1 that the limit (1.4) exists and
that it is independent of x.

With the help of Lyapunov exponents we can give a definition for intermittency behaviour
of the system (1.1).
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Definition 1.3 (Intermittency)
For p ∈ N \ {1}, we call the parabolic Anderson problem (1.1) to be p-intermittent, if the
Lyapunov exponents satisfy

λp−1

p − 1
<

λp

p
. (1.5)

We say the system shows full intermittency, if the system is p-intermittent for all p ∈ N\{1}.

So far there exists no rigorous mathematical definition for intermittency. The above defini-
tion is very much in the spirit of [1] and [6]. Generally, intermittency corresponds to a very
irregular behaviour of the solution u. However, in the case of a stationary random field ξ,
intermittency corresponds to the fact that there are some small, but more and more widely
spaced peaks absorbing the total mass of the solution u. See Gärtner and Molchanov [6],
Section 1.1, for a detailed interpretation of intermittency in this case.

For our model in (1.1), we will see that always λp−1/(p − 1) ≤ λp/p and p-intermittency
implies q-intermittency for all q > p. We will find qualitatively different intermittency
behaviour in dimension d = 1, 2 on the one hand and d ≥ 3 on the other hand.

1.4 Summary of the results

Given p ∈ N, let Bp denote the operator in ℓ2(Zpd) given by

Bpf(x1, . . . , xp) =
∑

v∈Z
d

|v|=1

[f(x1+v, . . . , xp+v)−f(x1, . . . , xp)], f ∈ ℓ2(Zpd), x1, . . . , xp ∈ Z
d,

and introduce the Hamilton operator

Hp := κ∆1 + · · · + κ∆p + ρBp + γδ
(1)
0 + · · · + γδ

(p)
0 (1.6)

on ℓ2(Zpd). Here, ∆i is the discrete Laplacian acting on the i-th argument (i = 1, . . . , p)

and δ
(i)
0 (x1, . . . , xp) = 1 if xi = 0 and 0 else. Note that B1 = ∆.

We consider the model in (1.1). Our main result in the first part of this paper is Theorem
4.1. It states that the p-th moment Lyapunov exponent exists and is equal to the upper
boundary of the ℓ2-spectrum of the operator Hp,

λp = lim
t→∞

1

t
log〈u(t, x)p〉 = sup Sp(Hp). (1.7)

In the second part of the present paper, we analyse the spectrum Sp(Hp) and derive
properties of λp as a function of the parameters κ, ρ and γ. The case p = 1 can be solved
completely by computing the spectrum of

H1 = (κ + ρ)∆ + γδ0. (1.8)
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In Theorem 5.2 we show that in dimension d = 1, 2 always λ1 > 0, whereas in dimension
d ≥ 3, there exists a critical constant rd > 0 such that λ1 > 0 if and only if γ/(κ+ ρ) > rd.
We obtain rd as the reciprocal Gd(0)−1 of the Green’s function associated with ∆ in the
origin with exponential stopping parameter 0.

κ+ρ
γ

κ+ρ
γ

1
rd

λ1 λ1

d ≥ 3d = 1, 2

Figure 1.1: The qualitative behaviour of λ1

We will see that, for λ1 > 0 and ρ > 0, the system shows full intermittency, see Lemma 6.8.
Therefore, in dimension d = 1, 2, the system shows full intermittency for all κ ∈ [0,∞),
ρ, γ ∈ (0,∞).

In dimension d ≥ 3, the system behaves differently. It will be shown in Theorem 6.5 that
the function λp = λp(κ, ρ), κ, ρ ∈ [0,∞), is continuous, convex, monotonically decreasing
in both arguments and vanishes for κ ≥ γ/rd.

Consider the case ρ = 0, i.e., the catalyst is fixed to its starting position 0. Then the
random field ξ is time-independent. We show in Lemma 6.1 that, for all p ∈ N,

λp(κ, 0)

p
= λ1(κ, 0), κ ∈ [0,∞) , (1.9)

and define
λ̄(κ) := λ1(κ, 0). (1.10)

Consequently, for ρ = 0, the system is not intermittent for any p ∈ N.

Furthermore, we show in Theorem 6.4 that, for ρ > 0, λ̄ is an upper bound for λp/p and,
for each κ, ρ ∈ [0,∞),

λp(κ, ρ)

p
ր λ̄(κ) as p ր ∞. (1.11)

This will be used in Theorem 6.7 in order to show that, for κrd < γ and ρ > 0, the system
is p-intermittent for some p ∈ N \ {1}.
Finally, consider the case κ = 0. In the context of chemical kinetics, we can interpret this
constraint as fixed reactants, waiting for the catalyst passing by. Writing λp = λp(κ, ρ, γ),
we prove in Lemma 6.6 the identity

λp(0, ρ, γ) = λ1(0, ρ, pγ).

Hence, λp(0, ρ, γ) > 0 if and only if pγ > rdρ.
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λ1

λ2/2
λ3/3

λ̄

γ
rd

− ρ γ
rd

λp/p

κ

Figure 1.2: The asymptotic behaviour of λp as p → ∞ in dimension d ≥ 3

1.5 Structure of the present work

The present paper is structured as follows.

In Chapter 2 we develop a heuristic approach to the parabolic Anderson model justifying
the population dynamics interpretation.

In Chapter 3 we prove some statements on random walks. These cover properties of simple
symmetric random walks on Z

d as well as the transformation of random walks. They form
a basis for the proofs in Chapter 4.

In the next Chapter 4 we prove the existence of the Lyapunov exponent λp and show that
it is equal to the upper boundary of the ℓ2-spectrum of the Hamiltonian Hp.

The analysis of the spectrum of the operator H1 is the content of Chapter 5. This yields
a representation for the first order Lyapunov exponent λ1.

In Chapter 6 we examine the asymptotic behaviour of higher moments of the solution to
the parabolic Anderson model and prove statements on the intermittency of the system
(1.1).

Finally, the appendix contains a derivation of the Feynman-Kac formula for the time-
dependent model and lists some theorems cited from other works.

1.6 Related work

There exists a wide variety of papers on the parabolic Anderson model with time-inde-

pendent random field ξ, see Gärtner and König [5]. The theory for the time-dependent

parabolic Anderson model is less developed, [4] and [1] have been specifically important
for the present work.

In the article [4], Gärtner and den Hollander consider the situation where the potential ξ
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is given by

ξ(t, x) = γ
∑

k

δ0(x − Yk(t)), (t, x) ∈ R
+ × Z

d,

with {Yk(t); t ≥ 0, k ∈ N} being a collection of independent random walks with generator
ρ∆ starting from a Poisson random field with intensity ν ∈ R

+. The system describes
the interaction of two types of particles. Catalyst particles have diffusion constant ρ and
initial intensity ν, whereas reactant particles have diffusion constant κ and initial intensity
1. Then u(t, x) is the average number of reactant particles at site x at time t conditional
on the evolution of the catalyst particles.

Gärtner and den Hollander consider the quantity

Λp(t) =
1

t
log
(
e−νγt〈u(0, t)p〉1/p

)

and define the Lyapunov exponents

λ∗
p = lim

t→∞

1

t
log Λp(t),

λp = lim
t→∞

Λp(t).

They say that, for p ∈ N, the system is
(a) strongly catalytic if λ∗

p > 0 and
(b) weakly catalytic if λ∗

p = 0.
Furthermore, for p ∈ N \ {1}, the system is
(a) strongly p-intermittent if λp > λp−1 and
(b) weakly p-intermittent if λp = λp−1.
They show that λ∗

p equals the upper boundary of the ℓ2-spectrum of the operator

ρ∆ + pγδ0.

Consequently, the system is always strongly p-catalytic in dimension d = 1, 2, while in
dimension d ≥ 3 it is strongly p-catalytic if and only if pγ/ρ > rd. If the system is strongly
p-catalytic, then it is also p-intermittent and λp = ∞.
Further results cover the weakly p-catalytic regime and the κ-dependence of λp. If d ≥ 3
and 0 < pγ/ρ = rd, then the limit λp exists and is infinite for any choice of parameters.
If d ≥ 3 and 0 < pγ/ρ < rd, then the limit λp exists, is finite and satisfies that, on [0,∞),
the mapping κ 7→ λp(κ) is continuous, strictly decreasing, convex and

λp(0) = νγ
1

ρrd

pγ
− 1

.

Finally, they show that, in dimension d ≥ 3, κλp(κ) converges to a finite positive value. In
contrast to λ∗, it was not possible to identify λp with the spectrum of an operator. This
leads to rather complicated expressions when analysing the κ-dependence of λp(κ).
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The monograph by Carmona and Molchanov [1] provides a complete analysis of the growth
rates of successive moments of u(t, 0) averaged over ξ in the case of a white noise potential,
where

ξ(t, x) = γẆx(t), (t, x) ∈ R
+ × Z

d,

with
{
(Wx(t))t≥0 |x ∈ Z

d
}

being a collection of independent Brownian motions. They
consider the function

mp(t, x1, . . . , xp) := 〈u(t, x1) · · · u(t, xp)〉

and define the Lyapunov exponent

λp := lim
t→∞

1

t
log mp(t).

Obviously, λp is independent of the spatial variable x. They show that mp(t) satisfies the
differential equation

∂mp

∂t
= [κ(∆1 + · · · + ∆p) + Vp] mp

on ℓ2(Zpd) with

Vp(x1, . . . , xp) = γ
∑

1≤j<k≤p

δ0(xj − xk), x1, . . . , xp ∈ Z
d,

and derive that the limit λp exists for all p ∈ N and

λp = sup Sp (κ(∆1 + · · · + ∆p) + Vp) .

In contrast to our work, they always have λ1 = 0, because V1 ≡ 0. Thus, they observe
intermittent behaviour (in the sense of Definition 1.3) for all p with λp > 0. Carmona and
Molchanov proceed by analysing the κ-dependence of λp. They show that λp(κ) is convex
and monotonically decreasing for all p. If κ is small, then

λp

p
=

p − 1

2
− 2dκ + O(κ2) as κ ց 0.

The asymptotics for large values of κ depends on the dimension d. If p ≥ 2 and κ → ∞,
then there exist positive constants cp and dp with

λp(κ) ≍ cp

κ
for d = 1,

log λp(κ) ≍ dp

κ
for d = 2

and, for d ≥ 3, there exists a constant κ̄p, such that

λp(κ) = 0 for all κ ≥ κ̄p.
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The notation ap ≍ bp means that 0 < c1 < ap/bp < c2 < ∞ for some constants c1 and c2

and p large enough.

Our model in (1.1) is similar to the situation discussed by Gärtner and den Hollander,
but the methods we use are more related to the approach of Carmona and Molchanov.
Their analysis is triggered by the disturbed potential Vp, whereas in our model, we have
disturbances of the jump term caused by Bp.

1.7 Open problems and extensions of the model

In this section we list some questions and open problems not covered in the present paper.

1o For p ∈ N, let
κp,cr := inf

{
κ ≥ 0

∣
∣λp(κ) = 0

}

denote the critical value for κ, where λp(κ) hits the horizontal axis. It is clear from our
results in Chapter 6 that

κp,cr ր γ/rd as p ր ∞.

In the present thesis we were not able to show that κp,cr is strictly monotonically increasing
in p. But we conjecture κ1,cr 6= κ2,cr, which, by Lemma 6.1, is satisfied if there exists a
corresponding Eigenfunction for H1 at (κ + ρ)γ = rd.

2o Next, after having studied the time evolution of the moments of the solution u, it seems
natural to ask about the almost sure behaviour of u. More precisely, it is an open problem
whether the almost sure Lyapunov exponent

lim
t→∞

1

t
log u(t, x)p

exists and what his properties are as a function of the parameters κ, ρ and γ.

3o In the present work we investigate the asymptotic behaviour of the mean number of
particles u. As a next step one can ask about the evolution of the exact number of particles
η. In this case the following problem arises: Instead of a single differential equation, we
get a system of infinitely many connected differential equations.

4o Finally, one can extend the setting to a multiple catalyst model. Let us assume that
the system has a finite number n of catalyst particles and the potential ξ has the form

ξ(t, x) = γ

n∑

i=1

δ0

(

x − Y
(i)
t

)

, (t, x) ∈ R
+ × Z

d,

with Y (1), . . . , Y (n) being a collection of n independent random walks with generator ρ∆.
The degenerate cases κ = 0 and ρ = 0 can be solved easily, but the general case is more
complex than the single catalyst setting. However, with the Feynman-Kac formula one can
see that the first order Lyapunov exponent with n catalysts λ

(n)
1 satisfies the equation

λ
(n)
1 (κ, ρ, γ) = λ(1)

n (ρ, κ, γ).
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Note that the roles of κ and ρ are exchanged. We conjecture that there exists again an
operator replacing the role of Hp in our work.
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Chapter 2

Branching Processes in
Time-Dependent Random Medium

In this chapter we develop an intuition for the correctness of the population dynamics
interpretation of the parabolic Anderson model. The reader may skip this chapter and
proceed to Chapter 3, if he is only interested in the analysis of the solution.

We denote by η(t, x) the number of particles in x ∈ Z
d at time t ∈ R

+. In our model, the
time evolution of η(t, ·) is governed by the following rules:

• at time t = 0, each lattice site is occupied by one particle;

• particles act independently of each other;

• particles jump from x to y at rate 2dκ, if x ∼ y, i.e., ‖x − y‖ = 1;

• particles split into two at rate ξ(t, x).

Then (η(t, ·), Pη0
) describes a Markov process on N

Z
d
, where Pη0

is the corresponding
probability measure. Set

u(t, x) := E η(t, x), (t, x) ∈ R
+ × Z

d, (2.1)

where E = Eη0
for η0(·) ≡ 1. We consider the initial condition

u(0, x) = E η(0, x) = 1, x ∈ Z
d. (2.2)

In other words, we start with one particle per site.

Our aim is to derive (on a heuristic level) a differential equation for u. More precisely, we
will show that, together with the initial condition (2.2), u solves the parabolic Anderson
problem (1.1). To this end, we use the log-Laplace method. By (·, ·) we denote the inner
product on ℓ2(Zd). We fix a time horizon t > 0, an initial site z ∈ Z

d and a parameter
λ > 0 and consider the solution v = v(z,t,λ)(s, y) : [0, t] × Z

d → R
+ of

E e−(η(s,·),v(0,·)) = E e−(η(0,·),v(s,·)), s ∈ [0, t], (2.3)
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and the initial condition
v(0, y) = λδz(y), y ∈ Z

d. (2.4)

This is a natural approach for modelling spatial branching processes. The descendants of
every single particle at time t = 0 produce a branching tree (see Figure 2.1). We obtain
the total number of particles at site x at time s by summing up the corresponding values
of all branching trees. The trees are independent of each other, hence we can multiply the
values for distinct trees to justify the ansatz (2.3).

Z
d

t

Figure 2.1: Branching trees for single particles

We can derive u(t, z) from v(z,t,λ) as follows. Define w(z,t)(s, y) by

w(z,t)(s, y) :=
∂

∂λ
v(z,t,λ)(s, y)

∣
∣
∣
∣
λ=0

, (2.5)

assuming that the limit exists. Differentiation of equation (2.3) with respect to λ yields

E (η(t, ·), δz(·)) e−(η(t,·),λδz(·)) = E

(

η(0, ·), ∂

∂λ
v(t, ·)

)

e−(η(0,·),v(t,·)). (2.6)

For λ = 0, this reduces to the formula

E η(t, z) =
(
η0, w(z,t)(t, ·)

)
, (t, z) ∈ R

+ × Z
d. (2.7)

Combining (2.7), (2.1) and the initial condition (2.2), we get a representation for u:

u(t, z) =
∑

y∈Zd

w(z,t)(t, y), (t, z) ∈ R
+ × Z

d. (2.8)

Our next step is to derive an explicit formula for the function v determined by (2.3).
Equation (2.3) is obviously satisfied if

∂

∂s
E e−(η(s,·),v(t−s,·)) = 0, 0 ≤ s ≤ t. (2.9)
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Therefore we try to find a function v satisfying (2.9). In the following we abbreviate η(s)
and v(s) for η(s, ·) and v(s, ·). Let (Ft)t≥0 denote the underlying filtration of the process
η. We use the Markov property for η to derive for every function ϕ ∈ R

Z
d

and all s ∈ R
+

that

E e−(η(s+h),ϕ) = E

[

E
[

e−(η(s+h),ϕ)
∣
∣Fs

] ]

= E

[
∑

x∈Zd

h κ η(s, x)
∑

y∼x

e−(η(s)+δy−δx,ϕ)

+
∑

x∈Zd

h ξ(s, x) η(s, x) e−(η(s)+δx,ϕ)

+

(

1 −
∑

x∈Zd

h κ η(s, x) −
∑

x∈Zd

h ξ(s, x) η(s, x)

)

e−(η(s),ϕ)

+ o(h)

]

,

as h ց 0. The first line on the right hand side represents a jump from x to y, the
second line represents splitting, the third line indicates that nothing happens and the last
line represents the occurrence of more than one of these events during the time interval
[s, s + h]. This yields

lim
hց0

1

h

(
E e−(η(s+h),ϕ) − E e−(η(s),ϕ)

)
(2.10)

= E e−(η(s),ϕ)

[
∑

x∈Zd

κ η(s, x)
∑

y∼x

(
e−(ϕ(y)−ϕ(x)) − 1

)

︸ ︷︷ ︸

diffusion

+
∑

x∈Zd

η(s, x) ξ(s, x)
(
e−ϕ(x) − 1

)

︸ ︷︷ ︸

branching

]

.

Next we compute

∂

∂s
E e−(η(s),v(t−s)) = lim

hց0

1

h

[
E e−(η(s+h),v(t−s−h)) − E e−(η(s),v(t−s))

]

= lim
hց0

1

h

[
E e−(η(s+h),v(t−s−h)) − E e−(η(s),v(t−s−h))

+ E e−(η(s),v(t−s−h)) − E e−(η(s),v(t−s))
]

= lim
hց0

1

h

[
E e−(η(s+h),v(t−s−h)) − E e(η(s),v(t−s−h)))

]

+

(

η(s),
∂v

∂s
(t − s)

)

E e−(η(s),v(t−s)).
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We substitute ϕ = v(t − s) into (2.10) and obtain

∂

∂s
E e−(η(s),v(t−s)) = E e−(η(s),v(t−s))

∑

x∈Zd

η(s, x)

[

κ
∑

y∼x

(
e−(v(t−s,y)−v(t−s,x)) − 1

)

+ ξ(s, x)
(
e−v(t−s,x) − 1

)
+

∂v

∂s
(t − s, x)

]

.

But this vanishes if
∂v

∂s
(t − s, x) = −κ

∑

y∼x

(
e−(v(t−s,y)−v(t−s,x)) − 1

)
− ξ(s, x)

(
e−v(t−s,x) − 1

)

for all x ∈ Z
d and all s ∈ [0, t]. Hence, we have shown that v solves the Cauchy problem

{
∂v
∂s

(s, x) = κ
∑

y∼x

(
1 − e−(v(s,y)−v(s,x))

)
+ ξ(t − s, x)

(
1 − e−v(s,x)

)
, (s, x) ∈ [0, t] × Z

d;

v(0, x) = λδz(x), x ∈ Z
d.

(2.11)

Differentiation of (2.11) with respect to λ yields

∂

∂s

∂

∂λ
v(s, x) = κ

∑

y∼x

(
∂

∂λ
v(s, y) − ∂

∂λ
v(s, x)

)

+ o(1) + ξ(t − s, x)
∂

∂λ
v(s, x) + o(1),

as λ → 0. We set λ = 0 and use equation (2.5) to obtain a differential equation for w:
{

∂w
∂s

(s, x) = κ∆w(s, x) + ξ(t − s, x) w(s, x), (s, x) ∈ [0, t] × Z
d;

w(0, x) = δz(x), x ∈ Z
d.

(2.12)

We use the Feynman-Kac formula (1.3) to obtain a stochastic representation for w(t, x).
Let (Xs, Px) denote a random walk on Z

d with generator κ∆, then

w(t, x) = Ex exp

{∫ t

0

ξ(s,Xs) ds

}

w(0, Xt)

= Ex exp

{∫ t

0

ξ(s,Xs) ds

}

δz(Xt). (2.13)

A time reversion of Xs on the time interval [0, t] leads to

w(t, x) = Ex exp

{∫ t

0

ξ(s,Xs) ds

}

δz(Xt) = Ez exp

{∫ t

0

ξ(t − s,Xs) ds

}

δx(Xt). (2.14)

We combine (2.8), (2.13) and (2.14) to obtain an equation for u,

u(t, z) =
∑

x∈Zd

w(t, x) =
∑

x∈Zd

Ez exp

{∫ t

0

ξ(t − s,Xs) ds

}

δx(Xt)

= Ez exp

{∫ t

0

ξ(t − s,Xs) ds

}

. (2.15)

We use again the Feynman-Kac formula (1.3) to see that u solves the parabolic Anderson
problem (1.1).
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Chapter 3

Preliminaries on Random Walks

In this chapter we state some auxiliary results needed for the proofs in Chapter 4 below.
Lemma 3.1 and 3.2 deal with features of simple symmetric random walks. The statements
are well known, we give the proofs for completeness.

Denote by

QL := [−L,L]d ∩ Z
d

a centered box with side length 2L and Qp
L := QL × · · · ×QL the p-th cartesian product of

QL in Z
pd.

Let (Yt, Py) denote a simple symmetric random walk on Z
d with generator ρ∆.

Lemma 3.1 (Exit probability from a finite box)
For sufficiently large values of t (depending on ρ and the dimension d),

P0

(
Yt /∈ Qt log2 t

)
≤ 2d+1et log2 t. (3.1)

Proof. For L > 0, let τ(L) denote the first exit time of the random walk Yt from the box
QL. From Lemma 4.3 in Gärtner and Molchanov [6] we know that for arbitrary L > 0 and
t > 0,

P0(τ(L) > t) ≤ 2d+1 exp

{

−L log
L

dρt
+ L

}

, (3.2)

which implies

P0 (Yt /∈ QL) ≤ P0 (τ (L) > t)

≤ 2d+1 exp

{

−L log
L

dρt
+ L

}

.

Substituting L = t log2 t, we get

P0

(
Yt /∈ Qt log2 t

)
≤ 2d+1 exp

{
−t log2 t

[
log
(
log2 t

)
− log (ρd)

]
+ t log2 t

}
, (3.3)

but
[
log
(
log2 t

)
− log (ρd)

]
≥ 2 for sufficiently large t, which proves the lemma.
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Denote by
p(t, x) := P0(Yt = x), (t, x) ∈ R

+ × Z
d,

the transition function of the random walk (Yt, Py). Then p(t, 0) is the probability that
the process is again in its starting point at time t. Due to the spatial shift invariance of
simple symmetric random walks,

p(t, 0) = Py (Yt = y)

for all y ∈ Z
d.

Lemma 3.2
The transition function p(t, x) of the random walk (Yt, Py) satisfies

(i) p(t, 0) is monotonically decreasing in ρ;

(ii) the decay of p(t, 0) as t → ∞ is at most polynomial, i.e.,

lim inf
t→∞

p(t, 0)

(ρt)−d/2
≥ 1. (3.4)

Proof. The proof uses Fourier analysis. The transition function p satisfies the initial value
problem

∂p

∂t
= ρ∆p, p|t=0 = δ0.

The Fourier transformation in the spatial variables of p(t, ·) leads to the formula

p(t, x) =
1

(2π)d

∫

[−π,π)d

exp {−ρtϕ̂(k) − ikx} dk,

where
ϕ̂(k) :=

∑

x∈Z
d

|x|=1

(1 − cos(k · x)), k ∈ [−π, π)d.

Substituting x = 0, we get

p(t, 0) =
1

(2π)d

∫

[−π,π)d

exp {−ρtϕ̂(k)} dk

and this is clearly monotonically decreasing in ρ, because ϕ̂ ≥ 0. This proves assertion (i).

From a Taylor expansion for ϕ̂ we obtain

ϕ̂(k) ≤
d∑

i=1

k2
i

2
, k = (k1, . . . , kd) ∈ [−π, π)d .
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We proceed by substituting y :=
√

ρt k1 and obtain

p(t, 0) ≥ 1

(2π)d

∫

[−π,π)d

exp

{

−ρt

d∑

i=1

k2
i

2

}

dk

=




1

2π

π∫

−π

exp

{

−ρt
k2

1

2

}

dk1





d

=

(
1√
ρt

)d






1

2π

π
√

ρt∫

−π
√

ρt

e−y2/2 dy






d

︸ ︷︷ ︸

→ 1 as t → ∞

.

In other words,
lim inf

t→∞
p(t, 0) · (ρt)d/2 ≥ 1.

This proves assertion (ii).

The following proposition is a statement on the transformation of random walks. We will
see that it is a main ingredient in the proof of Theorem 4.1 below. The proof is based on a
more general theorem on the transformation of the state space of Markov processes, which
we cite in Appendix B.

Proposition 3.3 (Transformation of Random Walks)
Let (X1

t , PX
x ), . . . , (Xp

t , PX
x ) and (Yt, P

Y
y ) denote independent random walks on Z

d with
generators κ∆, . . . , κ∆ and ρ∆, respectively. Then,

(Z1
t , . . . , Z

p
t ) := (X1

t − Yt, . . . , X
p
t − Yt)

defines a Markov process on Z
pd, and its generator Ap is of the form

Ap = κ∆1 + · · · + κ∆p + ρBp,

with ∆i acting on the i-th component of the argument (i = 1, . . . , p) and

Bpf(x1, . . . , xp) =
∑

v∈Z
d

|v|=1

[f(x1 + v, . . ., xp + v) − f(x1, . . . , xp)],

f ∈ ℓ2(Zpd), x1, . . . , xp ∈ Z
d.

(3.5)

Proof. The proof uses Theorem B.1 of the Appendix. We consider the process
(X1

t , . . . , Xp
t , Yt) on Z

(p+1)d with the joint probability measure

P
X1,...,Xp,Y
x1,...,xp,y = P

X
x1

⊗ · · · ⊗ P
X
xp

⊗ P
Y
y .
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Due to the independence of the processes X1
t , . . . , Xp

t and Yt,

P
X1,...,Xp,Y
x1,...,xp,y

(
X1

t ∈ Γ1, . . . , X
p
t ∈ Γp, Yt ∈ Γp+1

)

= P
X
x1

(
X1

t ∈ Γ1

)
· · ·PX

xp
(Xp

t ∈ Γp) · PY
y (Yt ∈ Γp+1) , (3.6)

for all sets Γ1, . . . , Γp, Γp+1 ⊂ Z
d, all x1, . . . , xp, y ∈ Z

d, and for all t ∈ R
+. The joint

process (X1
t , . . . , Xp

t , Yt) is again a Markov process and its generator Āp can be written as
the sum of the generators of the single processes, i.e.,

Āp = κ∆1 + · · · + κ∆p + ρ∆p+1. (3.7)

Additionally, we consider the transformation

γ : Z
(p+1)d → Z

pd, γ(x1, . . . , xp, y) = (x1 − y, . . . , xp − y).

Then we have
(Z1

t , . . . , Z
p
t )t≥0 = γ

(
X1

t , . . . , Xp
t , Yt

)

t≥0
.

Let F denote the σ-Algebra generated by the sets {(Z1
t , . . . , Z

p
t ) ∈ Γ̃}, t ≥ 0, Γ̃ ∈ Z

pd, and
define the family of probability measures

P
Z1,...,Zp

γ(x1,...,xp,y)(A) := P
X1,...,Xp,Y
x1,...,xp,y (γ−1A), (x1, . . . , xp, y) ∈ Z

pd, A ∈ F .

1o We show that (

(Z1
t , . . . , Z

p
t ), PZ1,...,Zp

z1,...,zp

)

is again a Markov process. We introduce the transition function

p(t, z, z̃) := P
Z1,...,Zp

z

(
(Z1

t , . . . , Z
p
t ) = z̃

)
, t ≥ 0, z, z̃ ∈ Z

pd. (3.8)

Suppose we are given a couple (x1, . . . , xp, y), (x′
1, . . . , x

′
p, y

′) ∈ Z
(p+1)d satisfying

γ(x1, . . . , xp, y) = γ(x′
1, . . . , x

′
p, y

′) (3.9)

and arbitrary (z1, . . . , zp) ∈ Z
pd, t ∈ R

+. Equation (3.9) is equivalent to

(x1 − y, x2 − y, . . . , xp − y) = (x′
1 − y′, x′

2 − y′, . . . , x′
p − y′). (3.10)

By Theorem B.1, we have to show that

p
(
t, (x1, . . . , xp, y) , γ−1 (z1, . . . , zp)

)
= p

(
t,
(
x′

1, . . . , x
′
p, y

′) , γ−1 (z1, . . . , zp)
)
. (3.11)

Clearly,

γ−1(z1, . . . , zp) = {(x1, . . . , xp, y)| (x1 − y, . . . , xp − y) = (z1, . . . , zp)}
= {(z1 + k, . . . , zp + k, k)| k ∈ Z

d}. (3.12)
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Using equation (3.10), we can extend (3.12) to

γ−1(z1, . . . , zp) = {(z1 + k + (y′ − y), . . . , zp + k + (y′ − y), k + (y′ − y))| k ∈ Z
d}

= {(z1 + k + (x′
1 − x1), . . . , zp + k + (x′

p − xp), k + (y′ − y))| k ∈ Z
d}.

(3.13)

The transition function of the joint process p can be written as the tensor product of the
transition functions of the single processes pX1

, . . . , pXp
, pY . The transition functions are

spatially shift invariant, hence for all k ∈ Z
d,

p (t, (x1, . . . , xp, y), (z1 + k, . . . , zp + k, k))

= pX1

(t, x1, k + z1) · · · pXp

(t, xp, k + zp) · pY (t, y, k)

= pX1

(t, x′
1, k + z1 + (x′

1 − x1)) · · · pXp (
t, x′

p, k + zp + (x′
p − xp)

)
· pY (t, y′, k + (y′ − y))

= p
(
t, (x′

1, . . . , x
′
p, y

′), (k + z1 + (x′
1 − x1), . . . , k + zp + (x′

p − xp), k + (y′ − y))
)
.

Summation over k and equations (3.12), (3.13) yield the desired equation

p
(
t, (x1, . . . , xp, y) , γ−1 (z1, . . . , zp)

)

=
∑

k∈Zd

p (t, (x1, . . . , xp, y), (k + z1, . . . , k + zp, k))

=
∑

k∈Zd

p
(
t, (x′

1, . . . , x
′
p, y

′), (k + z1 + (x′
1 − x1), . . . , k + zp + (x′

p − xp), k + (y′ − y))
)

= p
(
t,
(
x′

1, . . . , x
′
p, y

′) , γ−1 (z1, . . . , zp)
)
.

2o We next show that the Markov process (Z1
t , . . . , Z

p
t ) has generator

Ap := κ∆1 + · · · + κ∆p + ρBp,

where

Bpf(x1, . . . , xp) =
∑

v∈Z
d

|v|=1

[f(x1+v, . . . , xp+v)−f(x1, . . . , xp)], f ∈ ℓ2(Zpd), x1, . . . , xp ∈ Z
d.

Denote by B(Zpd) and B(Z(p+1)d) the Banach space of bounded functionals on Z
pd and

Z
(p+1)d, respectively. We introduce the mapping

γ∗ : B(Zpd) → B(Z(p+1)d),

(γ∗f)(x1, . . . , xp, y) = f(γ(x1, . . . , xp, y))

= f(x1 − y, . . . , xp − y),

f ∈ B(Zpd), (x1, . . . , xp, y) ∈ Z
(p+1)d.
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Let Āp and Ap be the infinitesimal operators of the semigroups associated with the processes
(X1

t , . . . , Xp
t , Yt) and (Z1

t , . . . , Z
p
t ), respectively. We recall from equation (3.7) that

Āp = κ∆1 + · · · + κ∆p + ρ∆p+1.

By Theorem B.1,
γ∗Ap = Āpγ∗. (3.14)

To finish the proof, it is sufficient to show that γ∗Ap = γ∗ (κ∆1 + · · · + κ∆p + ρBp) on
B(Z(p+1)d), because γ is surjective.

Let f ∈ B(Zpd), g := γ∗f ∈ B(Z(p+1)d), (x̄1, . . . , x̄p, ȳ) ∈ Z
(p+1)d. Then

(γ∗Apf)(x̄1, . . . , x̄p, ȳ)

= (Āpγ∗f)(x̄1, . . . , x̄p, ȳ)

= (Āpg)(x̄1, . . . , x̄p, ȳ)

= ((κ∆1 + · · · + κ∆p + ρ∆p+1)g) (x̄1, . . . , x̄p, ȳ)

= κ
∑

x1∼x̄1

[g(x1, x̄2, . . . , x̄p, ȳ) − g(x̄1, . . . , x̄p, ȳ)]

+ · · ·
+κ

∑

xp∼x̄p

[g(x̄1, . . . , x̄p−1, xp, ȳ) − g(x̄1, . . . , x̄p, ȳ)]

+ρ
∑

y∼ȳ

[g(x̄1, . . . , x̄p, y) − g(x̄1, . . . , x̄p, ȳ)]

= κ
∑

z1∼x̄1−ȳ

[f(z1, x̄2 − ȳ, . . . , x̄p − ȳ) − f(x̄1 − ȳ, . . . , x̄p − ȳ)]

+ · · ·
+κ

∑

zp∼x̄p−ȳ

[f(x̄1 − ȳ, . . . , x̄p−1 − ȳ, zp) − f(x̄1 − ȳ, . . . , x̄p − ȳ)]

+ρ
∑

v∼0

[f(x̄1 − ȳ + v, . . . , x̄p − ȳ + v) − f(x̄1 − ȳ, . . . , x̄p − ȳ)]

= (κ∆1 + · · · + κ∆p + ρBp) f(x̄1 − ȳ, . . . , x̄p − ȳ)

= (γ∗(κ∆1 + · · · + κ∆p + ρBp)f) (x̄1, . . . , x̄p, ȳ).

This completes the proof.

Corollary 3.4
Let

(
Xt, P

X
x

)
and

(
Yt, P

Y
y

)
denote two independent random walks on Z

d with generators
κ∆ and ρ∆, respectively. Then Zt := Xt − Yt is a simple symmetric random walk on Z

d

with generator (κ + ρ)∆.

This corollary follows immediately from Proposition 3.3 when p = 1. In addition, the
statement is heuristically quite clear. The process Zt jumps whenever Xt or Yt jump, and
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Zt jumps to one of its 2d neighbours with equal probability. The jump times of Xt and Yt

are independent and exponentially distributed with parameters 2dκ and 2dρ. Hence, the
minimum of both is also exponentially distributed, but with parameter 2d(κ + ρ).
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Chapter 4

Existence and Spectral
Characterization of the Lyapunov

Exponents

We recall from Proposition 3.3 that the generator of the Markov process (X1
t −Yt, . . . , X

p
t −

Yt) is Ap = κ∆1 + · · · + κ∆p + ρBp, where

Bpf(x1, . . . , xp) =
∑

v∈Z
d

|v|=1

[f(x1+v, . . . , xp+v)−f(x1, . . . , xp)], f ∈ ℓ2(Zpd), x1, . . . , xp ∈ Z
d.

We define the Hamilton operator

Hp := Ap + γδ
(1)
0 + · · · + γδ

(p)
0 (4.1)

= κ∆1 + · · · + κ∆p + ρBp + γδ
(1)
0 + · · · + γδ

(p)
0 (4.2)

on ℓ2(Zpd). Here δ
(i)
0 (x1, . . . , xp) = 1 if xi = 0, and 0 else. In our model, the term

γ(δ
(1)
0 + · · · + δ

(p)
0 ) can be regarded as a potential.

Remember that u(t, x) is the solution of the parabolic Anderson problem (1.1) with the
time-dependent potential ξ(t, x) = γδYt(x). The following theorem links the asymptotic
behaviour of 〈u(t, x)p〉 as t → ∞ to the ℓ2-spectrum Sp(Hp) of the operator Hp.

Theorem 4.1 (Existence and spectral characterization)
For each p ∈ N, the Lyapunov exponent

λp = lim
t→∞

1

t
log 〈u(t, x)p〉

exists, is finite, and

λp = sup Sp(Hp). (4.3)
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A natural start for the analysis of 〈u(t, x)p〉 is the Feynman-Kac formula (1.3). Together
with Fubini’s theorem we obtain

〈u(t, x)p〉 = E
X1,...,Xp;Y
x,...,x;0 exp

{

γ

∫ t

0

p
∑

i=1

δYt−s(X
i
s)ds

}

=
∑

z∈Zd

E
X1,...,Xp;Y
x,...,x;0 exp

{

γ

∫ t

0

p
∑

i=1

δ0(X
i
s − Yt−s)ds

}

δz(Yt),

where (X1
t )t≥0, . . . , (X

p
t )t≥0 are p independent random walks on Z

d with generator κ∆. A
time reversion of Y yields

〈u(t, x)p〉 =
∑

z∈Zd

E
X1,...,Xp;Y
x,...,x;z exp

{

γ

∫ t

0

p
∑

i=1

δ0(X
i
s − Ys)ds

}

δ0(Yt). (4.4)

Proceeding from equation (4.4), we prepare the proof of Theorem 4.1. The first lemma
allows us to reduce the analysis to limt→∞

1
t
log 〈u(t, 0)p〉. The following two lemmas are

asymptotic statements needed for the proof. Starting from equation (4.4) we show in the
first part of the proof that sup Sp(Hp) is an upper bound for lim supt→∞

1
t
log〈u(t, 0)p〉,

afterwards we show that it is also a lower bound for lim inft→∞
1
t
log〈u(t, 0)p〉.

First we show that, although the random field ξ(t, x) is not spatially shift-invariant, the
exponential growth of 〈u(t, x)p〉 is independent of x.

Lemma 4.2
If κ, ρ > 0 and the limit

lim
t→∞

1

t
log 〈u(t, 0)p〉

exists, then, for all x ∈ Z
d,

lim
t→∞

1

t
log 〈u(t, x)p〉 = lim

t→∞

1

t
log 〈u(t, 0)p〉. (4.5)

Proof. We start with equation (4.4) and only consider paths of X1, . . . , Xp that are in
y2 at time t = 1. Then we use the Markov-property (MP) for t = 1, which yields for all
y1, y2 ∈ Z

d,

〈u(t, y1)
p〉 =

∑

z∈Zd

E
X1,...,Xp;Y
y1,...,y1;z exp

{

γ

∫ t

0

p
∑

i=1

δ0(X
i
s − Ys)ds

}

δ0 (Yt)

≥
∑

z∈Zd

E
X1,...,Xp;Y
y1,...,y1;z exp

{

γ

∫ t

1

p
∑

i=1

δ0(X
i
s − Ys)ds

}

δ0 (Yt)

× δy2
(X1

1 ) · · · δy2
(Xp

1 ) δz(Y1)
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(MP )
=

∑

z∈Zd

Py1
(X1

1 = y2) · · ·Py1
(Xp

1 = y2) Pz(Y1 = z)

×E
X1,...,Xp;Y
y2,...,y2;z exp

{

γ

∫ t−1

0

p
∑

i=1

δ0(X
i
s − Ys)ds

}

δ0 (Yt−1) .

In the last transformation, we took into account that X1
t , . . . , Xp

t , Yt are independent. As
X1

t , . . . , Xp
t are identically distributed and P0(Y

1
1 = 0) ≥ e−ρ,

〈u(t, y1)
p〉 ≥

[
Py1

(X1
1 = y2)

]p
e−ρ〈u(t − 1, y2)

p〉.

Thus, for y1 = x, y2 = 0,

lim inf
t→∞

1

t
log 〈u(t, x)p〉 ≥ lim inf

t→∞

1

t
log 〈u(t, 0)p〉,

whereas, for y1 = 0, y2 = x,

lim sup
t→∞

1

t
log 〈u(t, 0)p〉 ≥ lim sup

t→∞

1

t
log 〈u(t, x)p〉,

which completes the proof.

We need the following lemma to derive the upper bound in the proof of Theorem 4.1. It
states that we can restrict equation (4.4) to paths that start and finish in the finite box
Qt log2 t.

Lemma 4.3
As t → ∞,

〈u(t, 0)p〉 = (1 + o(1))
∑

z∈Qt log2 t

E
X1,...,Xp;Y
0,...,0;z exp

{

γ

∫ t

0

p
∑

i=1

δ0(X
i
s − Ys)ds

}

δ0 (Yt)

×1l(X1
t ,...,Xp

t )∈Qp

t log2 t
. (4.6)

Proof. We abbreviate At := γ
∫ t

0

∑p
i=1 δ0(X

i
s − Ys)ds. Then 1 ≤ eAt ≤ eγtp. It remains to

check that

r(t) :=

∑

z∈Zd E
X1,...,Xp;Y
0,...,0;z eAt δ0(Yt) −

∑

z∈Qt log2 t
E

X1,...,Xp;Y
0,...,0;z eAt δ0(Yt) 1l(X1,...,Xp)∈Qp

t log2 t
∑

z∈Qt log2 t
E

X1,...,Xp;Y
0,...,0;z eAt δ0(Yt) 1l(X1,...,Xp)∈Qp

t log2 t
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tends to 0 as t → ∞. Obviously, r(t) ≥ 0. Furthermore,

r(t) ≤ eγtp

∑

z /∈Qt log2 t
E

X1,...,Xp;Y
0,...,0;z δ0(Yt) +

∑

z∈Zd E
X1,...,Xp;Y
0,...,0;z δ0(Yt) 1l(X1,...,Xp)∈Qp

t log2 t

E
X1,...,Xp;Y
0,...,0;0 δ0(Yt)

= eγtp

∑

z /∈Qt log2 t
P

Y
z (Yt = 0) + E

X1,...,Xp

0,...,0 1l(X1
t ,...,Xp

t )/∈Qp

t log2 t

PY
0 (Yt = 0)

= eγtp
P

Y
0

(
Yt /∈ Qt log2 t

)
+ P

X1,...,Xp

0,...,0

(

(X1
t , . . . , Xp

t ) /∈ Qp

t log2 t

)

PY
0 (Yt = 0)

(4.7)

In the last transformation we used again a time reversal for Y . Applying Lemma 3.1 and
Lemma 3.2 to the right hand side of (4.7), we get

r(t) ≤ eγtp
2d+1 e−t log2 t +

(

2d+1 e−t log2 t
)p

(ρt)−d/2

≤ 2 eγtp

(

2d+1 e−t log2 t
)p

(ρt)−d/2

= 21+p(d+1) exp

{

γtp − pt log2 t +
d

2
log(ρt)

}

for large t. Since the expression in the last line tends to 0 as t → ∞, we get

lim
t→∞

r(t) = 0.

The next lemma is again an asymptotic statement. We need it for the lower bound in
the proof of Theorem 4.1. It states that paths starting outside the finite box Qt log2 t are
asymptotically negligible.

Lemma 4.4
As t → ∞,

∑

y∈Qt log2 t

E
X1,...,Xp;Y
0,...,0;0 exp

{

γ

∫ t

0

p
∑

i=1

δ0(X
i
s − Ys)ds

}

δy (Yt) δy

(
X1

t

)
. . . δy (Xp

t ) (4.8)

= (1 + o(1))
∑

y∈Zd

E
X1,...,Xp;Y
0,...,0;0 exp

{

γ

∫ t

0

p
∑

i=1

δ0(X
i
s − Ys)ds

}

δy (Yt) δy

(
X1

t

)
. . . δy (Xp

t )

Proof. The technique of the proof is very similar to the previous lemma. We have to show
that

r(t) :=

∑

y/∈Qt log2 t
E

X1,...,Xp;Y
0,...,0;0 exp

{

γ
∫ t

0

∑p
i=1 δ0(X

i
s − Ys)ds

}

δy (Yt) δy (X1
t ) . . . δy (Xp

t )

∑

y∈Zd E
X1,...,Xp;Y
0,...,0;0 exp

{

γ
∫ t

0

∑p
i=1 δ0(X i

s − Ys)ds
}

δy (Yt) δy (X1
t ) . . . δy (Xp

t )
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tends to 0 as t → ∞. We use Lemma 3.1 and Lemma 3.2 and the independence of
X1, . . . , Xp to obtain

r(t) ≤
eγtp

P
Y
0

(
Yt /∈ Qt log2 t

)
P

X1,...,Xp

0,...,0

(

(X1
t , . . . , Xp

t ) /∈ Qp

t log2 t

)

PY
0 (Yt = 0) P

X1,...,Xp

0,...,0 (X1
t = 0, . . . , Xp

t = 0)

≤ eγpt 2(p+1)(d+1) e−t log2 t (ρt)d/2 (κt)pd/2.

But this vanishes as t → ∞.

Now we have made enough preparations to present the proof of Theorem 4.1.

Proof of Theorem 4.1. The proof will be split into two parts:
1o lim sup

t→∞
1
t
log〈u(t, 0)p〉 ≤ sup Sp(Hp),

2o lim inf
t→∞

1
t
log〈u(t, 0)p〉 ≥ sup Sp(Hp).

Once we have proved this, the existence of the limit is established.

1o Upper bound. Using Lemma 4.3, we have

〈u(t, 0)p〉 = (1 + o(1))
∑

z∈Qt log2 t
E

X1,...,Xp;Y
0,...,0;z exp

{

γ
∫ t

0

∑p
i=1 δ0(X

i
s − Ys)ds

}

× δ0 (Yt) 1l(X1
t ,...,Xp

t )∈Qp

t log2 t
. (4.9)

Since δ0(Yt) · 1l(X1
t ,...,Xp

t )∈Qp

t log2 t
≤ 1l(X1

t −Yt,...,X
p
t −Yt)∈Qp

t log2 t
, we find that

〈u(t, 0)p〉 ≤ (1 + o(1))
∑

z∈Qt log2 t

E
X1,...,Xp;Y
0,...,0;z exp

{

γ

∫ t

0

p
∑

i=1

δ0(X
i
s − Ys)ds

}

× 1l(X1
t −Yt,...,X

p
t −Yt)∈Qp

t log2 t
.

Now we apply the transformation

(Z1
t , . . . , Z

p
t ) := (X1

t − Yt, . . . , X
p
t − Yt)

which yields

〈u(t, 0)p〉 ≤ (1 + o(1))
∑

z∈Qt log2 t

E
Z1

t ,...,Zp
t

z,...,z exp

{

γ

∫ t

0

p
∑

i=1

δ0(Z
i
s)ds

}

×1l(Z1
t ,...,Zp

t )∈Qp

t log2 t

≤ (1 + o(1))
∑

z1,...,zp∈Qt log2 t

E
Z1,...,Zp

z1,...,zp
exp

{

γ

∫ t

0

p
∑

i=1

δ0(Z
i
s)ds

}

×1l(Z1
t ,...,Zp

t )∈Qp

t log2 t
. (4.10)
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We can rewrite the sum in (4.10) with the help of the semigroup {etHp | t ≥ 0}, acting on
f ∈ ℓ2(Zpd) as

(
etHp

f
)
(z1, . . . , zp) = E

Z1,...,Zp

z1,...,zp
exp

{

γ

∫ t

0

p
∑

i=1

δ0(Z
i
s)ds

}

f(Z1
t , . . . , Z

p
t ), (4.11)

and obtain

∑

z1,...,zp∈Qt log2 t

E
Z1,...,Zp

z1,...,zp
exp

{

γ

∫ t

0

p
∑

i=1

δ0(Z
i
s)ds

}

1l(Z1
t ,...,Zp

t )∈Qp

t log2 t

=
(

etHp

1lQp

t log2 t
, 1lQp

t log2 t

)

ℓ2(Zpd)
. (4.12)

Finally, we use the spectral theorem for bounded, self-adjoint operators. The operator
Hp is bounded and symmetric on the Hilbert space ℓ2(Zpd), thus it is self-adjoint. Define
µ := sup Sp(Hp) and denote {Eλ; λ ≤ µ} the family of spectral projectors associated with
the operator Hp. During the following, we write (·, ·) for the inner product in ℓ2(Zpd) and
‖ · ‖ for the corresponding norm. Then our semigroup admits the spectral representation

etHp

=

∫

(−∞,µ]

etλ dEλ,

thus
(

etHp

1lQt log2 t
, 1lQt log2 t

)

=

∫

(−∞,µ]

etλ d
(

Eλ1lQp

t log2 t
, 1lQp

t log2 t

)

≤ etµ

∫

(−∞,µ]

d
∥
∥
∥Eλ1lQp

t log2 t

∥
∥
∥

2

≤ etµ |Qp

t log2 t
|2. (4.13)

Combining equations (4.10), (4.12) and (4.13) we get

〈u(t, 0)p〉 ≤ (1 + o(1)) etµ |Qp

t log2 t
|2,

hence

lim sup
t→∞

1

t
log〈u(t, 0)p〉 ≤ µ + lim sup

t→∞

1

t
log |Qp

t log2 t
|2 = µ,

and this proves the upper bound.

2o Lower bound. For convenience, we abbreviate

At := γ

∫ t

0

p
∑

i=1

δ0(X
i
s − Ys) ds.
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Restricting the expectation on the right hand side of equation (4.4) to paths of X i (i =
1, . . . , p) and Y that start and end at 0, we get

〈u(t, 0)p〉
=

∑

z∈Zd

E
X1,...,Xp;Y
0,...,0;z

[
eAt δ0(Yt)

]

≥ E
X1,...,Xp;Y
0,...,0;0

[
eAt δ0(Yt) δ0(X

1
t ) · · · δ0(X

p
t )
]

=
∑

x1,...,xp,y∈Zd

E
X1,...,Xp;Y
0,...,0;0

[

eAt/2 δy(Y t
2
) δx1

(X1
t
2

) · · · δxp(X
p
t
2

)

eAt−At/2 δ0(Yt) δ0(X
1
t ) · · · δ0(X

p
t )
]

. (4.14)

We use the Markov property, which transforms (4.14) into
∑

x1,...,xp,y∈Zd

E
X1,...,Xp;Y
0,...,0;0

[

eAt/2 δy(Y t
2
) δx1

(X1
t
2

) · · · δxp(X
p
t
2

)
]

× E
X1,...,Xp;Y
x1,...,xp;y

[

eAt/2 δ0(Y t
2
) δ0(X

1
t
2

) · · · δ0(X
p
t
2

)
]

.

After a time reversion in the second line, we get

〈u(t, 0)p〉 ≥
∑

x1,...,xp,

y∈Z
d

(

E
X1,...,Xp;Y
0,...,0;0

[

eAt/2 δy(Y t
2
) δx1

(X1
t
2

) · · · δxp(X
p
t
2

)
])2

≥
∑

y∈Qt log2 t

(

E
X1,...,Xp;Y
0,...,0;0

[

eAt/2 δy(Y t
2
) δy(X

1
t
2

) · · · δy(X
p
t
2

)
])2

.

The convexity of the parabola implies that
(

1

n

n∑

i=1

xi

)2

≤ 1

n

n∑

i=1

x2
i , x1, . . . , xn ∈ R.

The above inequality and Lemma 4.4 yield

〈u(t, 0)p〉 ≥ 1

|Qt log2 t|




∑

y∈Qt log2 t

E
X1,...,Xp;Y
0,...,0;0

[

eAt/2 δy(Y t
2
) δy(X

1
t
2

) · · · δy(X
p
t
2

)
]





2

=
1 + o(1)

|Qt log2 t|




∑

y∈Zd

E
X1,...,Xp;Y
0,...,0;0

[

eAt/2 δy(Y t
2
) δy(X

1
t
2

) · · · δy(X
p
t
2

)
]





2

,

which, finally, is

≥ 1 + o(1)

|Qt log2 t|
(

E
X1,...,Xp;Y
0,...,0;0

[

eAt/2 δ0(X
1
t
2

− Y t
2
) · · · δ0(X

p
t
2

− Y t
2
)
])2

.
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As before, we apply the transformation

(Z1
t , . . . , Z

p
t ) = (X1

t − Yt, . . . , X
p
t − Yt).

Hence,

〈u(t, 0)p〉 ≥ 1 + o(1)

|Qt log2 t|

(

E
Z1,...,Zp

0,...,0

[

exp

{

γ

∫ t
2

0

p
∑

i=1

δ0(Z
i
s)ds

}

δ0(Z
1
t
2

) · · · δ0(Z
p
t
2

)

])2

. (4.15)

Again, we express (4.15) with the help of the semigroup
{
etHp

; t ≥ 0
}
. We apply equation

(4.11) and obtain

〈u(t, 0)p〉 ≥ 1 + o(1)

|Qt log2 t|

[(

e
t
2
Hp

δ0, δ0

)

ℓ2(Zpd)

]2

. (4.16)

If there is a positive eigenfunction v corresponding to the principal eigenvalue µ :=
sup Sp(Hp) and µ has algebraic multiplicity 1, then

(

e
t
2
Hp

δ0, δ0

)

= e
t
2
µ (v, δ0)

2 +

∫

(−∞,µ)

e
t
2
λd (Eλδ0, δ0)

≥ e
t
2
µv(0)2, (4.17)

which is positive, because the eigenfunction v is positive.

Otherwise (if there is no such eigenfunction), we restrict the ℓ2-operator to a finite box
with Dirichlet boundary conditions and apply the Perron-Frobenius theory for nonnegative,
irreducible matrices. This is done as follows.

For each n ∈ N, we define Hp
n as the restriction of the operator Hp to the subspace ℓ2(Qp

n).
We embed Hp

n into ℓ2(Zpd) with Dirichlet boundary conditions. Then, the semigroup
generated by Hp

n acts on f ∈ ℓ2(Zpd) as

etHp
nf(z1, . . . , zp) = E

Z1,...,Zp

z1,...,zp

[

exp

{

γ

∫ t

0

p
∑

i=1

δ0(Z
i
s)ds

}

f(Z1
t , . . . , Z

p
t )1lτn>t

]

, (4.18)

where τn := inf{t|(Z1
t , . . . , Z

p
t ) /∈ Qp

n} denotes the stopping time of the first exit from the
box Qp

n. For fn ∈ ℓ2(Qp
n), f ∈ ℓ2(Zpd) with fn(x) = f(x) for every x ∈ Qp

n, we have

(

etHp
nf, f

)

ℓ2(Zpd)
=
(

etHp
nfn, fn

)

ℓ2(Qp
n)

. (4.19)

It follows immediately that

(

etHp
nf, f

)

ℓ2(Zpd)
≤
(

etHp

f, f
)

ℓ2(Zpd)
(4.20)
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for all f ∈ ℓ2(Zpd). We identify ℓ2(Qp
n) = R

|Qp
n| and consider Hp

n as a matrix. Then,
Hp

n +2dκ I is a nonnegative matrix. Furthermore, it is irreducible in the sense of Theorem
C.1, because we can put |Qp

n| into an order such that the minor diagonals of Hp
n + 2dκ I

are nonzero:

Hp
n + 2dκ I =










0 ⋆
⋆ 0 ⋆

⋆ 0
. . .

. . . . . . ⋆
⋆ 0










, ⋆ 6= 0.

Hence, by Theorem C.1, there exists a positive eigenfunction (eigenvector) vn > 0, cor-
responding to the largest eigenvalue of Hp

n + 2dκ I. So vn is also an eigenfunction to the
largest eigenvalue of Hp

n (but corresponds to a different eigenvalue µn), and also of e
t
2
Hp

n .
Denote by {En

λ ; λ < µn} the family of spectral projectors associated with the operator Hp
n.

Analogous to (4.17),

(

e
t
2
Hp

nδ0, δ0

)

= e
t
2
µn (vn, δ0)

2 +

∫

(−∞,µn)

e
t
2
λd (En

λδ0, δ0)

≥ e
t
2
µnvn(0)2. (4.21)

Since vn is positive, the above inequality implies

lim inf
t→∞

1

t
log
(

e
t
2
Hp

nδ0, δ0

)

≥ µn

2
. (4.22)

We combine the inequalities (4.16), (4.20) and (4.22) to obtain for all n ∈ N that

lim inf
t→∞

1

t
log 〈u(t, 0)p〉 ≥ lim inf

t→∞

1

t
log

{
1 + o(1)

|Qt log2 t|
(

e
t
2
Hp

δ0, δ0

)2
}

= 2 lim inf
t→∞

1

t
log
(

e
t
2
Hp

δ0, δ0

)

≥ 2 lim inf
t→∞

1

t
log
(

e
t
2
Hp

nδ0, δ0

)

≥ µn.

It remains to show that
lim

n→∞
µn → µ.

If A is a bounded and self-adjoint operator on ℓ2(Zpd), then the Rayleigh-Ritz formula for
bounded and self-adjoint operators states that

sup Sp(A) = sup
f∈ℓ2(Zpd)
‖f‖=1

(Af, f) . (4.23)
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For f ∈ ℓ2(Zpd) we write f
∣
∣
n

:= f · 1lQp
n
. Then, for all f ∈ ℓ2(Zpd),

(
Hpf

∣
∣
n
, f
∣
∣
n

)
=
(
Hp

nf
∣
∣
n
, f
∣
∣
n

)
, (4.24)

hence we can write the Rayleigh-Ritz formula (4.23) as

µn = sup
‖f‖=1

supp(f)⊂Qp
n

(Hpf, f) . (4.25)

Here supp(f) = {x ∈ Z
d | f(x) 6= 0} denotes the support of f . Additionally, we see from

(4.25) that µn is nondecreasing. It is sufficient that, for any f ∈ ℓ2(Zpd),

lim
n→∞

(
Hpf

∣
∣
n
, f
∣
∣
n

)
= (Hpf, f) , (4.26)

because this validates
sup
‖f‖=1

(Hpf, f) = sup
‖f‖=1

|supp(f)|<∞

(Hpf, f) (4.27)

and

µ = sup
‖f‖=1

(Hpf, f)

= sup
n∈N

sup
‖f‖=1

supp(f)⊂Qp
n

(Hpf, f)

= sup
n∈N

µn

= lim
n→∞

µn.

In order to show (4.26), we calculate

(Hpf, f) −
(
Hpf

∣
∣
n
, f
∣
∣
n

)
=

(
Hpf −Hpf1lQp

n
, f
)

+
(
Hpf, f1lZpd\Qp

n

)

=
(
Hpf1lZpd\Qp

n
, f
)

+
(
Hpf, f1lZpd\Qp

n

)

= 2
(
Hpf, f1lZpd\Qp

n

)
.

In the last transformation, we used the self-adjointness of the operator Hp. The Cauchy-
Schwarz inequality yields

∣
∣(Hpf, f) −

(
Hpf

∣
∣
n
, f
∣
∣
n

)∣
∣ ≤ 2 ‖Hp‖ ‖f‖

∥
∥f1lZpd\Qp

n

∥
∥ ,

but
∥
∥f1lZpd\Qp

n

∥
∥→ 0 as n → ∞ as a remainder of a convergent series. This completes the

proof.
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Chapter 5

Analysis of the First Order Lyapunov
Exponent

In this chapter we investigate the behaviour of the first moment of the solution u. More
precisely, we want to compute the first moment Lyapunov exponent

λ1 = lim
t→∞

1

t
log 〈u(t, 0)〉.

In this case, we can calculate the whole ℓ2-spectrum of the Hamilton operator H1 =
(κ + ρ)∆ + γδ0 (cf. Corollary 3.4). With Theorem 4.1, we obtain λ1 by the identity

λ1 = sup Sp(H1).

Throughout this chapter we will assume that κ + ρ > 0.

Denote by (Pt)t≥0 the semigroup of operators associated with the discrete Laplacian ∆ and
observe that the transition function p(t, x) of the Markov process with generator ∆ may
be written as

p(t, x) = Pt δ0(x). (5.1)

We further denote by Gd the Green’s function associated with ∆ in zero as a function of
the exponential stopping parameter

Gd(λ) :=

∞∫

0

e−λtp(t, 0) dt (5.2)

and introduce the constant
rd := (Gd(0))−1 . (5.3)

Then it is clear that

Claim 5.1

rd

{

= 0, if d = 1, 2;

> 0, if d ≥ 3.
(5.4)
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This is an elementary result. For the sake of completeness, we give the proof at the end of
the chapter.

Theorem 5.2 (Asymptotics of the first moment)
If γ ≤ rd(κ + ρ), then

λ1 = 0.

Otherwise, λ1 equals the unique positive solution of the equation

γ Gd(·) = κ + ρ.

Combining Theorem 5.2 with Claim 5.1 we obtain the following conclusion. In dimension
d = 1, 2, the first moment 〈u(t, x)〉 always grows exponentially fast, whereas in dimension
d ≥ 3 we have exponential growth if γ/(κ + ρ) exceeds the critical value rd. Otherwise
〈u(t, x)〉 grows subexponentially.

We introduce the operator
Hγ := ∆ + γδ0 (5.5)

on ℓ2(Zd). The proof of Theorem 5.2 is based on a characterization of the spectrum of Hγ.
We will compute the spectrum of Hγ and use this result to derive the spectrum of H1 by a
scaling argument. The following lemma is well-known and can be found e.g. in [4], Lemma
1.3.1.

Lemma 5.3 (The spectrum of Hγ)
(i) The ℓ2-spectrum of the operator Hγ has the form

Sp(Hγ) = [−4d, 0] ∪ {µ}, (5.6)

with

µ

{

= 0, if γ ≤ rd,

> 0, if γ > rd,

and, in the latter case, µ is the unique positive solution of the equation

γGd(·) = 1; (5.7)

(ii) if µ > 0, the principal Eigenvalue is simple and corresponds to a positive eigenfunction
of Hγ.

Proof of Lemma 5.3. (i) A sketch of this proof is given in Gärtner and den Hollander
[4].

Let F̂ : ℓ2(Zd) → L2([−π, π)d) denote the Fourier transformation defined by

(

F̂ v
)

(k) =
∑

x∈Zd

e−ikxv(x), k ∈ [−π, π)d ,
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and let Ĥγ denote the Fourier transform of the operator Hγ given by

F̂−1ĤγF̂ = Hγ.

Then Ĥγ acts on v̂ ∈ L2([−π, π)d) as

(

Ĥγ v̂
)

(k) = −ϕ̂(k) v̂(k) + γ
1

(2π)d

∫

[−π,π)d

v̂(l) dl

with
ϕ̂(k) :=

∑

x∈Z
d

|x|=1

(1 − cos(k · x)), k ∈ [−π, π)d.

Since Ĥγ is isometric equivalent to Hγ, it follows that Sp(Hγ) = Sp(Ĥγ). Additionally, Ĥγ

and Hγ are self-adjoint, hence the spectrum of Ĥγ (and of Hγ) consists of those λ ∈ R,

where λ − Ĥγ is not invertible. Thus we have to find all λ, such that for a given g ∈
L2([−π, π)d) there exists no f ∈ L2([−π, π)d) which satisfies the equation (λ − Ĥγ)f = g,
i.e.,

(λ + ϕ̂(k)) f(k) − γ
1

(2π)d

∫

[−π,π)d

f(l) dl = g(k) Lebesgue–a.s. in [−π, π)d. (5.8)

Observe that the range of the continuous mapping ϕ̂ is [0, 4d]. Hence, for λ ∈ [−4d, 0],
there exists k∗ ∈ [−π, π)d such that λ + ϕ̂(k∗) = 0 and

|λ + ϕ̂(k)| = |(λ + ϕ̂(k)) − (λ + ϕ̂(k∗))|
= |ϕ̂(k) − ϕ̂(k∗)|
≤ 2d ‖k − k∗‖ .

We know, that a function of the type f(x) = |x|−α, x ∈ [−π, π)d is in L2([−π, π)d) if
0 ≤ α < d/2. Consider the function

g(k) = ‖ k − k∗‖−(2d−1)/4 ∈ L2
(

[−π, π)d
)

.

For

r :=







π, if
∫

[−π,π)d f(l) dl ≥ 0;
(

− 2γ
(2π)d

∫

[−π,π)d f(l) dl
)−4/(2d−1)

, if
∫

[−π,π)d f(l) dl < 0;
(5.9)

is always r > 0 and, for every k ∈ {k | k ∈ [−π, π)d and ‖k − k∗‖ ≤ r} with λ + ϕ̂(k) 6= 0,

− γ

(2π)d

∫

[−π,π)d

f(l) dl ≤ 1

2
‖k − k∗‖−(2d−1)/4. (5.10)
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Then equation (5.8) transforms into

(λ + ϕ̂(k)) f(k) = ‖k − k∗‖−(2d−1)/4 +
γ

(2π)d

∫

[−π,π)d

f(l) dl

≥ 1

2
‖k − k∗‖−(2d−1)/4 (5.11)

which leads to the inequality

|f(k)| =

∣
∣
∣
∣
∣

g(k) + γ/(2π)d
∫

[−π,π)d f(l) dl

λ + ϕ̂(k)

∣
∣
∣
∣
∣
≥ 1/2 ‖k − k∗‖−(2d−1)/4

2d ‖k − k∗‖ =
1

4d
‖k − k∗‖−(2d+3)/4.

The last inequality shows that f 2 is not (locally) integrable, hence f /∈ L2([−π, π)d). In
other words, the operator (λ−Ĥγ) is not surjective for λ ∈ [−4d, 0], i.e., [−4d, 0] ⊂ Sp(Ĥγ).

Consider the case λ > 0. Then also λ + ϕ̂(k) > 0 for all k ∈ [−π, π)d and equation (5.8)
transforms into

f(k) − γ

λ + ϕ̂(k)

∫

[−π,π)d

1

(2π)d
f(l) dl =

g(k)

λ + ϕ̂(k)
. (5.12)

Multiplying by (2π)−d and integrating over k gives
∫

[−π,π)d

1

(2π)d
f(k) dk −

∫

[−π,π)d

1

(2π)d

γ

λ + ϕ̂(k)
dk

∫

[−π,π)d

1

(2π)d
f(l) dl

=

∫

[−π,π)d

1

(2π)d

g(k)

λ + ϕ̂(k)
dk. (5.13)

The Fourier representation for equation (5.2) reads

Gd(λ) =

∫

[−π,π)d

1

(2π)d

1

(λ + ϕ̂(k))
dk. (5.14)

Combining (5.13) and (5.14), we obtain

(1 − γGd(λ))

∫

[−π,π)d

1

(2π)d
f(l) dl =

∫

[−π,π)d

1

(2π)d

g(k)

λ + ϕ̂(k)
dk. (5.15)

If 1 − γGd(λ) = 0, then the operator (λ − Ĥγ) is not injective, hence λ is an eigenvalue

of Ĥγ. If, on the other hand, 1 − γGd(λ) 6= 0, then we get a unique solution by plugging
(5.12) into (5.15),

f(k) =
1

λ + ϕ̂(k)




g(k) +

γ

1 − γGd(λ)

∫

[−π,π)d

1

(2π)d

g(l)

λ + ϕ̂(l)
dl




 . (5.16)
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Hence (λ − Ĥγ) is invertible and λ /∈ Sp(Ĥγ).

Finally, consider λ < −4d. Then λ + ϕ(k) < 0 for all k ∈ [−π, π)d, hence Gd(λ) < 0 and
γGd(λ) 6= 1. Therefore, f can be written in the form of equation (5.16) and λ /∈ Sp(Ĥγ).

We summarize that the spectrum Sp(Ĥγ) consists of the interval [−4d, 0] and the (unique)
positive solution of the equation 1 − γGd(λ) = 0, if it exists. This solution exists if and
only if γ > rd, because rd = 1/Gd(0) and Gd(λ) is monotonically decreasing.

(ii) The proof of the second assertion uses the resolvent method. For λ > 0, denote by Rλ

the resolvent of the discrete Laplacian ∆,

Rλ = (λ − ∆)−1 . (5.17)

Then, for all f ∈ ℓ2(Zd), x ∈ Z
d,

(Rλf) (x) =

∫ ∞

0

e−λt Ptf(x) dt

=

∫ ∞

0

e−λt
∑

y∈Zd

p(t, x − y)f(y) dt

=
∑

y∈Zd

(∫ ∞

0

e−λtp(t, x − y) dt

)

︸ ︷︷ ︸

=:rλ(x−y)

f(y). (5.18)

Consider the case that the principal eigenvalue µ := sup Sp(Hγ) is positive. The eigenequa-
tion for µ reads

∆v + γδ0v = µv. (5.19)

This is equivalent to
(µ − ∆) v = γ v(0) δ0,

hence
v(x) = γ v(0) (Rµδ0) (x) = γ v(0) rµ(x).

Since rµ > 0, the eigenfunction v corresponding to µ can be chosen positive. The last
equation holds for all eigenfunctions of Hγ corresponding to the eigenvalue µ, hence the
dimension of the corresponding eigenspace is 1.

Proof of Theorem 5.2. With the Rayleigh-Ritz formula (4.23) and Corollary 3.4 we
get

λ1 = sup Sp(H1)

= sup
‖f‖=1

[(κ + ρ)∆f + γδ0f ]

= sup
‖f‖=1

(κ + ρ)

[

∆f +
γ

κ + ρ
δ0f

]

= (κ + ρ) sup Sp(Hγ/(κ+ρ)).
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Now the statement of the theorem is a consequence of Lemma 5.3.

Proof of Claim 5.1. By equation (5.14) is rd positive if and only if the integral
∫

[−π,π)d
dk

ϕ̂(k)
converges. The Taylor expansion for ϕ̂(k) at 0 yields for k → 0,

ϕ̂(k) =
d∑

j=1

(
k2

j + O(k4
j )
)
.

Hence, it remains to show, whether the integral
∫

[−π,π)d

1
∑d

j=1 k2
j

dk

is finite or infinite. Denote by Bd
R :=

{
x ∈ R

d
∣
∣ ‖x‖ ≤ R

}
the d-dimensional ball of radius

R > 0 and set

f(k1, . . . , kd) :=
1

∑d
j=1 k2

j

, (k1, . . . , kd) ∈ R
d.

Let
π : (r, ϕ) 7→ (rϕ1, . . . , rϕd), (r, ϕ) ∈ (0,∞) × Sd−1,

denote the generalized polar coordinate transformation. Here, Sd−1 represents the unit
sphere in R

d. For all R > 0,
∫

Bd
R

f(k) dk =

∫

[0,R]

∫

Sd−1

f(π(r, ϕ)) rd−1 dr dϕ

=

∫

Sd−1

dϕ

∫

[0,R]

r−2 rd−1 dr

= ωn

∫

[0,R]

rd−3 dr,

where ωn represents the area of the surface of the unit sphere Sd−1. Hence for d ≤ 2,
∫

[−π,π)d

f(k) dk ≥
∫

Bd
π

f(k) dk = ∞,

whereas for d ≥ 3, ∫

[−π,π)d

f(k) dk ≤
∫

Bd
π
√

d

f(k) dk < ∞.
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Chapter 6

Analysis of the Higher Lyapunov
Exponents and Intermittency

In this chapter we study the behaviour of λp for varying p ∈ N and analyse the intermittency
of the system.

6.1 General p-intermittency

As before, let u denote the solution of the parabolic Anderson problem (1.1). The state-
ments of this section are valid for any nonnegative potential ξ, given that the Lyapunov
exponents (1.4) exist.

Lemma 6.1 (General properties of Lyapunov exponents)
(i) For all p ∈ N,

λp

p
≤ λp+1

p + 1
;

(ii) the mapping p 7→ λp is convex, i.e., for all p, q ∈ N, α ∈ (0, 1) with αp+(1−α)q ∈ N,

λαp+(1−α)q ≤ αλp + (1 − α)λq.

Proof.

(i) We use Hölder’s inequality, which states that, for any r, s > 1 with 1/r + 1/s = 1 and
any nonnegative random variables f, g,

E[fg] ≤ E[f r]1/r
E[gs]1/s.

Applying this inequality to f = u(t, x)p+1, g = u(t, x)p/(p+1), r = (p + 1)/p, s = p + 1 yields

〈u(t, x)p〉 1
p ≤ 〈u(t, x)p+1〉 1

p+1 .

Hence λp/p ≤ λp+1/(p + 1).
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(ii) Let α ∈ (0, 1) and p, q, αp + (1 − α)q ∈ N. Applying Hölder’s inequality, we find that
for f = u(t, x)pα, g = u(t, x)q(1−α), r = 1/α, s = 1/(1 − α),

〈u(t, x)αp+(1−α)q〉 ≤ 〈u(t, x)p〉α 〈u(t, x)q〉1−α.

This implies the desired inequality λαp+(1−α)q ≤ αλp + (1 − α)λq.

Remark. We had to restrict the convexity to those α ∈ (0, 1) with αp + (1 − α)q ∈ N,
because otherwise limit (1.4) may not exist.

Corollary 6.2
If λp/p < λp+1/(p + 1) for some p ∈ N, then λq/q < λq+1/(q + 1) for all q ∈ N with q > p.

Proof. It is sufficient to show the corollary for q = p + 1. We proceed indirectly by
assuming that λp/p < λp+1/(p + 1) but λp+1/(p + 1) = λp+2/(p + 2). Then, by Lemma
6.1,

λp+1 ≤
1

2
λp +

1

2
λp+2 <

1

2

(
p

p + 1
λp+1 +

p + 2

p + 1
λp+1

)

= λp+1,

which is a contradiction. Therefore, λp+1/(p + 1) < λp+2/(p + 2).

6.2 Large p behaviour

We consider again the case that the random potential ξ has the form (1.2). In this section
we will prove a result for the asymptotic behaviour of λp as p tends to infinity. Denote by
λ̄ the upper boundary of the spectrum Sp(κ∆ + γδ0).

Lemma 6.3
If ρ = 0, then

λp

p
= λ̄, for all p ∈ N. (6.1)

The statement of the lemma implies that in the setting of a fixed catalyst (ρ = 0) the
system is not intermittent.

Proof. Let ρ = 0. We have H1 = κ∆ + γδ0 by Corollary 3.4. For p > 1,

Hp = κ∆1 + · · · + κ∆p + γδ
(1)
0 + · · · + γδ

(p)
0

=

p
∑

i=1

I ⊗ · · · ⊗ I
︸ ︷︷ ︸

i − 1 times

⊗ H1 ⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

p − i times

,

and by Theorem VIII.33 in Reed-Simon [10],

Sp(Hp) =

p
∑

i=1

Sp(H1),



45

where
∑

refers to the addition of sets. Therefore, by Theorem 4.1, λp = pλ1 = pλ̄.

Theorem 6.4
As p ր ∞,

λp

p
ր λ̄. (6.2)

Proof. By Lemma 6.1, λp/p is monotonically increasing. The Rayleigh-Ritz formula (4.23)
yields

λp = sup
f∈ℓ2(Zpd)
‖f‖=1

(Hpf, f)

= sup
f∈ℓ2(Zpd)
‖f‖=1

[(

(κ∆1 + · · · + κ∆p + γδ
(1)
0 + · · · + γδ

(p)
0 )f, f

)

+ (ρBpf, f)
]

.

We recall from 3.5 that for f ∈ ℓ2(Zpd),

Bpf(x1, . . . , xp) =
∑

v∈Z
d

v∼0

[f(x1 + v, . . . , xp + v) − f(x1, . . . , xp)]

=
d∑

i=1

[f(x1 + ei, . . . , xp + ei) − f(x1, . . . , xp)]

+
d∑

i=1

[f(x1 − ei, . . . , xp − ei) − f(x1, . . . , xp)] ,

where ei stands for the i-th unit vector in Z
d. Let f ∈ ℓ2(Zpd). We expand the Dirichlet

form for the operator Bp,

(Bpf, f) =
d∑

i=1

∑

x1,...,xp∈Zd

[f(x1 + ei, . . . , xp + ei) − f(x1, . . . , xp)] f(x1, . . . , xp)

+
d∑

i=1

∑

x1,...,xp∈Zd

[f(x1 − ei, . . . , xp − ei) − f(x1, . . . , xp)] f(x1, . . . , xp)

︸ ︷︷ ︸

=
∑

x1,...,xp∈Zd [f(x1,...,xp)−f(x1+ei,...,xp+ei)] f(x1+ei,...,xp+ei)

=
d∑

i=1

∑

x1,...,xp∈Zd

−[f(x1 + ei, . . . , xp + ei) − f(x1, . . . , xp)]
2

≤ 0.

It is enough to show

lim
p→∞

1

p
(Bpf, f) = 0.
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Since

2 |f(x1 + ei, . . . , xp + ei)f(x1, . . . , xp)| ≤ f(x1 + ei, . . . , xp + ei)
2 + f(x1, . . . , xp)

2,

and ‖f‖ = 1, we obtain

|(Bpf, f)| ≤
d∑

i=1






=1
︷ ︸︸ ︷
∑

x1,...,xp∈Zd

f(x1 + ei, . . . , xp + ei)
2 +

=1
︷ ︸︸ ︷
∑

x1,...,xp∈Zd

f(x1, . . . , xp)
2

+
∑

x1,...,xp∈Zd

2 |f(x1 + ei, . . . , xp + ei)f(x1, . . . , xp)|





≤ 4d

and ∣
∣
∣
∣

1

p
(Bpf, f)

∣
∣
∣
∣
≤ 4d

p

p→∞−→ 0

completes the proof.

6.3 Properties of the Lyapunov exponents λp(κ, ρ)

In this section we regard the p-th moment Lyapunov exponent λp = λp(κ, ρ) as a function
of κ and ρ and study its dependence on κ. If we impose γ to the model, a scaling argument
gives

λp (κ, ρ, γ) = γ · λp

(
κ

γ
,
ρ

γ
, 1

)

, (6.3)

hence λp(κ, ρ) contains the full information for all three parameters κ, ρ and γ.

Theorem 6.5
For each p ∈ N, the function λp(κ, ρ), (κ, ρ) ∈ [0,∞)2, is continuous, convex, non-increasing
in κ and ρ and

λp(κ, ρ) = 0 for all κ ≥ γ

rd

. (6.4)

Proof. The proof uses ideas from Carmona and Molchanov [1]. Fix p ∈ N.

1o Convexity. With the help of the Rayleigh-Ritz-Formula (4.23)we can write

λp = sup Sp (Hp)

= sup
f∈ℓ2(Zpd)
‖f‖=1

[

κ ((∆1 + · · · + ∆p)f, f) + ρ (Bpf, f) + γ
(

(δ
(1)
0 + · · · + δ

(p)
0 )f, f

)]

.
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For a fixed function f ∈ ℓ2(Zpd), the expression in square brackets [· · · ] is linear in κ and
ρ and describes a hyperplane. But the supremum of linear functions is convex.

2o Large κ. By Theorem 6.4, λp(κ, ρ) ≤ λ̄. If we consider the model with ρ = 0, then, by
Lemma 6.3, λ1 = λ̄ and, by Theorem 5.2, λ1(κ, 0) = 0 for κ ≥ γ/rd. Therefore λp(κ, ρ) = 0
for κ ≥ γ/rd and all ρ ∈ R

+.

3o Monotonicity in κ. From the convexity and the fact that λp(κ, ρ) = 0 for κ ≥ γ/rd, it
follows immediately that λp(·, ρ) is monotonically decreasing.

4o Monotonicity in ρ. Fix κ ∈ [0,∞). We want to show that λp(κ, ·) is monotonically
decreasing. We assume the contrary. That means, there exist values 0 ≤ ρ1 < ρ2 with
λ(κ, ρ1) < λ(κ, ρ2). Due to the convexity this implies that λ(κ, ρ) → ∞ as ρ → ∞. This
contradicts the fact that λp has an upper boundary:

〈u(t, 0)p〉 = E
X1,...,Xp;Y
0,...,0;0 exp

{

γ

∫ t

0

p
∑

i=1

δ0(Xs − Yt−s) ds

}

≤ eγtp,

hence

λp(κ, ρ) = lim
t→∞

1

t
log〈u(t, 0)p〉 ≤ γp.

5o Continuity. Since (κ, ρ) 7→ λp(κ, ρ) is convex, it is continuous on (0,∞)2. Hence, it
remains to check the continuity at κ = 0 and ρ = 0.

We start with κ = 0. With the Feynman-Kac formula (1.3) we can write

〈u(t, 0)p〉 =

〈(

E
X
0 exp

{

γ

∫ t

0

δ0(Xs − Yt−s) ds

})p〉

≥
〈(

E
X
0 exp

{

γ

∫ t

0

δ0(0 − Yt−s) ds

}

1l{Xs=0;0≤s≤t}

)p〉

=

〈(

exp

{

γ

∫ t

0

δ0(Yt−s) ds

}

P
X
0 (Xs = 0; 0 ≤ s ≤ t)

)p〉

= e−2dκpt

〈(

exp

{

γ

∫ t

0

δ0(Yt−s) ds

})p〉

,

where we used the fact that (Xt)t≥0 has generator κ∆ and hence the stopping time of the
first jump of (Xt)t≥0 is exponentially distributed with parameter 2dκ. This leads to the
inequality

lim
t→∞

1

t
log 〈(u(t, 0))p〉 ≥ −2dκp + λp(0, ρ).

Taking into account that λp(κ) is monotonically decreasing, one has

λp(0, ρ) − 2pdκ ≤ λp(κ, ρ) ≤ λp(0, ρ), (6.5)
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which implies limκ→0 λp(κ, ρ) = λp(0, ρ).

The case ρ = 0 is very similar. Let again (Xt)t≥0 and (Yt)t≥0 denote random walks on Z
d

with generator κ∆ and ρ∆, respectively. Then,

〈u(t, 0)p〉 =

〈(

E
X
0 exp

{

γ

∫ t

0

δ0(Xs − Yt−s) ds

})p〉

≥
〈(

E
X
0 exp

{

γ

∫ t

0

δ0(Xs − 0) ds

})p

1l{Ys=0;0≤s≤t}

〉

= P
Y
0 (Ys = 0; 0 ≤ s ≤ t)

〈(

exp

{

γ

∫ t

0

δ0(Xs) ds

})p〉

= e−2dρt

〈(

exp

{

γ

∫ t

0

δ0(Xs) ds

})p〉

,

hence,
λp(κ, ρ) ≥ λp(κ, 0) − 2dρ.

Together with the monotonicity of λ(κ, ·) we get the desired limit

lim
ρ→0

λp(κ, ρ) = λp(κ, 0).

We now consider κ = 0. Later, we will use the following lemma to derive a statement on
intermittency in this case.

Lemma 6.6
In the case κ = 0,

λp(0, ρ, γ) = λ1(0, ρ, pγ). (6.6)

Proof. Let κ = 0. Then X i
s = 0 for s ∈ [0, t] almost sure and

〈u(t, 0)p〉 =

〈

E
X1,...,Xp

0,...,0 exp

{

γ

∫ t

0

p
∑

i=1

δ0(X
(i)
s − Yt−s) ds

}〉

=

〈

exp

{

pγ

∫ t

0

δ0(Yt−s) ds

}〉

=

〈

E
X1

0 exp

{

pγ

∫ t

0

δ0(Yt−s) ds

}〉

which, by (1.4), leads to the desired equation

λp(0, ρ, γ) = λ1(0, ρ, pγ).
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Alternatively, one can prove the previous lemma analytically. With the Rayleigh-Ritz
formula it is sufficient to show that

sup Sp
(

ρBp + γ(δ
(1)
0 + · · · + δ

(p)
0 )
)

ℓ2(Zpd)
= sup Sp (ρ∆ + (pγ)δ0)ℓ2(Zd) . (6.7)

This seems to be quite natural, because a jump process on Z
pd with generator Bp makes

only jumps in diagonal directions.

6.4 Intermittency of the parabolic Anderson model

Finally, we want to analyse the intermittency behaviour of the system.

Theorem 6.7 (Intermittency)
Let ρ > 0. If κ rd < γ, then there exists a p ∈ N\{1} such that the system is p-intermittent,
whereas for κ rd ≥ γ the system is not intermittent. Furthermore, for (κ + ρ) rd < γ, the
system shows full intermittency.

For completeness, we recall from Lemma 6.3 that, for ρ = 0, the system is not intermittent.

We have shown in Claim 5.1 that rd = 0 in dimension d = 1, 2. This implies that, for
d = 1, 2, the system shows full intermittency for all κ ∈ [0,∞), ρ, γ ∈ (0,∞).

In the case κ = 0, there exists some p ∈ N \ {1} such that the system is p-intermittent.
One may think that the system shows always full intermittency for κ = 0, but this is not
generally true in dimension d ≥ 3. By Theorem 5.2, λ1(0, ρ, γ) > 0 if and only if

γ > rd ρ.

Hence, with the help of Lemma 6.6, we conclude that λp(0, ρ, γ) > 0 if and only if

p γ > rd ρ,

and this is obviously satisfied for sufficiently large p ∈ N.

We start proving Theorem 6.7. To this end, we need the following lemma.

Lemma 6.8
If λ1 is an eigenvalue of H1 corresponding to a positive eigenfunction and ρ > 0, then
λ2/2 > λ1, i.e., the system shows full intermittency.

Proof. We assume that λ1 corresponds to the positive eigenfunction v and v is normalized
as ‖v‖ = 1. We introduce the operator

H̃2 := H1 ⊗H1



50

acting on Z
d × Z

d as

H̃2 = (κ + ρ)(∆1 + ∆2) + γ(δ
(1)
0 + δ

(2)
0 ).

Then v⊗ v(x, y) = v(x) v(y) is an eigenfunction of H̃2 corresponding to the eigenvalue 2λ1

and, with the Rayleigh-Ritz formula (4.23),

λ2 − 2λ1 = sup Sp(H2) − sup Sp(H̃2)

= sup
‖f‖=1

(
H2f, f

)
−
(

H̃2 v ⊗ v, v ⊗ v
)

≥
((

H2 − H̃2
)

v ⊗ v, v ⊗ v
)

.

We compute

((

H2 − H̃2
)

v ⊗ v, v ⊗ v
)

= ρ
((

B2 − ∆1 − ∆2

)
v ⊗ v, v ⊗ v

)

= 2ρ
∑

x,y∈Zd

d∑

i=1

[v(x)v(y + ei) − v(x)v(y)] [v(x − ei)v(y) − v(x)v(y)]

= 2ρ
∑

x,y∈Zd

d∑

i=1

v(x) [v(x − ei) − v(x)] v(y) [v(y + ei) − v(y)]

= ρ
∑

x,y∈Zd

d∑

i=1

[v(x − ei) − v(x)]2 [v(y + ei) − v(y)]2 ,

but this expression vanishes if and only if v ≡ 0, because v ∈ ℓ2(Zd) implies lim|z|→∞ v(z) =
0. Therefore, λ2 − 2λ1 > 0.

Proof of Theorem 6.7. With Lemma 6.8, it remains to show that for γ ≤ (κ + ρ)rd

and κ rd < γ there exists p ∈ N \ {1} such that

λp−1

p − 1
<

λp

p
.

For κ rd < γ ≤ (κ+ρ)rd we have λ1 = 0 and λ̄ > 0. By Theorem 6.4, λp/p ր λ̄ as p → ∞,
hence there exists a p ∈ N such that λp > 0. Set p∗ := min {p ∈ N|λp > 0}. Then the
system is p∗-intermittent.
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Appendix A

Feynman-Kac Formula

We consider the (deterministic) Cauchy problem

{
∂u
∂t

(t, x) = κ∆u(t, x) + ξ(t, x) u(t, x), (t, x) ∈ R
+ × Z

d;

u(0, x) = u0(x), x ∈ Z
d;

(A.1)

with ξ(t, x) = γδYt(x) where (Ys)0≤s≤t is a fixed, piecewise constant path in Z
d. Then, ξ(t, ·)

is a field Z
d → R

+ which is piecewise constant in the time variable with (deterministic)
jump times 0 = τ0 < τ1 < · · · < τr−1 < τr = t.

We say that the bounded nonnegative function u : R
+ × Z

d → R solves Problem (A.1) if
u(t, x) is continuous and, moreover, on the open time interval (τi−1, τi), i = 1, . . . , r, it is
differentiable with respect to t and solves the heat equation

∂u

∂t
(t, x) = κ∆u(t, x) + ξ(t, x) u(t, x).

In this Appendix, we will show that there exists a unique nonnegative solution to problem
(A.1), which has the form (1.3).

We therefore split the function u into u1, . . . , ur (see Figure A.1) by

ul(s, x) = u(τr − τl + s, x), 1 ≤ l ≤ r, 0 ≤ s ≤ τl−1 − τl−2, x ∈ Z
d,

with the initial condition

u(0, x) = u0(x) = u1(0, x), x ∈ Z
d,

u(t, x) = ur(τr − τr−1, x), x ∈ Z
d,

and the continuity property

ul−1(τl−1 − τl−2, x) = ul(0, x), 2 ≤ l ≤ r, x ∈ Z
d. (A.2)

Let (Xt,Ft, Px) denote the simple symmetric random walk on Z
d with generator κ∆ and

corresponding family of time shift operators {θs; 0 ≤ s ≤ t}.
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Figure A.1: The time evolution of ξ and u

We use the Feynman-Kac formula for the time-independent parabolic Anderson model to
obtain

ul(s, x) = Ex ul(0, Xs) exp







s∫

0

ξl(Xw) dw






, 1 ≤ l ≤ r, s ∈ [0, τl − τl−1], x ∈ Z

d.

(A.3)
It has been shown by Gärtner and Molchanov (cf. [6], Section 2.2) that ul is the unique
nonnegative solution of the corresponding Cauchy problem, if the expression on the right
hand side in (A.3) is finite and ξ is non-percolating from below. Both is fulfilled if ξ is
bounded.

We use the Markov property (MP) for the process X to obtain

u(t, x) = ur(τr − τr−1, x)

(A.3)
= Exur(0, Xτr−τr−1

) exp







τr−τr−1∫

0

ξr(Xs) ds







(A.2)
= Exur−1(τr−1 − τr−2, Xτr−τr−1

) exp







τr−τr−1∫

0

ξr(Xs) ds






,
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but

ur−1(τr−1 − τr−2, Xτr−τr−1
)

(A.3)
= EXτr−τr−1

ur−1(0, Xτr−1−τr−2
) exp







τr−1−τr−2∫

0

ξr−1(Xs) ds







(MP )
= Ex



ur−1(0, Xτr−1−τr−2
◦ θτr−τr−1

) exp







τr−1−τr−2∫

0

ξr−1(Xs ◦ θτr−τr−1
) ds







∣
∣
∣
∣
∣
∣

Fτr−τr−1





= Ex



ur−1(0, Xτr−τr−2
) exp







τr−τr−2∫

τr−τr−1

ξr−1(Xs) ds







∣
∣
∣
∣
∣
∣

Fτr−τr−1



 ,

such that

u(t, x) = Ex



exp







τr−τr−1∫

0

ξr(Xs) ds







︸ ︷︷ ︸

Fτr−τ
r−1

-measurable

× Ex



ur−1(0, Xτr−τr−2
) exp







τr−τr−2∫

τr−τr−1

ξr−1(Xs) ds







∣
∣
∣
∣
∣
∣

Fτr−τr−1









= Ex ur−1(0, Xτr−τr−2
) exp







τr∫

τr−2

ξ(t − s,Xs) ds







= · · ·

= Ex u1(0, Xτr−τ0) exp







τr∫

0

ξ(t − s,Xs) ds







= Ex u0(Xt) exp







t∫

0

ξ(t − s,Xs) ds






.

We have derived the Feynman-Kac formula for the time-dependent parabolic Anderson
problem (A.1). It has the unique nonnegative solution

u(t, x) = Ex exp

{∫ t

0

ξ(t − s,Xs)

}

u0(Xt). (A.4)
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Appendix B

Transformation of Markov Processes

Theorem B.1 (Transformation of the state space)
Let X = (Xt, Px) be a Markov process on the countable state space E with transition
function p(t, x, Γ). Let γ be a measurable transformation of E into the (countable) state
space Ẽ such that γ(E) = Ẽ and such that the following condition is satisfied:

For all Γ ⊂ E and any x, x′ ∈ E such that γ(x) = γ(x′),

p(t, x, γ−1Γ) = p(t, x′, γ−1Γ).

Set X̃t = γXt and denote by F the σ-Algebra generated by the sets {X̃t ∈ Γ̃}, t ≥ 0,
Γ̃ ⊂ Ẽ. Further, let P̃γx(A) = Px(A), A ∈ F . The system X̃ = (X̃t, P̃x) defines a Markov
process on the state space Ẽ with transition function

p̃(t, x, Γ) = p(t, x, γ−1Γ).

If X is a strong Markov process, so is the process X̃.

Denote by B(E) and B(Ẽ) the Banach space of bounded functionals on E and Ẽ, re-
spectively. We define a transformation γ∗ of the space B(Ẽ) into the space B(E) by the
formula

γ∗f(x) = f(γx) (f ∈ B(Ẽ), x ∈ E).

Let Tt, T̃t be the semigroups of operators corresponding to the processes X and X̃, re-
spectively, and let A, Ã be the infinitesimal operators (generators) of these semigroups.
Then,

γ∗T̃t = Ttγ
∗,

γ∗Ãt = Atγ
∗,

moreover, f ∈ DÃ if and only if γ∗f ∈ DA.

We will say that the process X̃ is obtained from X by the transformation γ of the state
space and write X̃ = γ(X).

Reference: Dynkin [3], Chapter X, Theorem 10.13. In fact, Dynkin formulates the theorem
for general state spaces. We limit ourselves to countable state spaces and omit filtrations.



56



57

Appendix C

Perron-Frobenius Theory

Let A ∈ R
n×n be a matrix with nonnegative entries. We define A to be reducible, if there

is a permutation matrix P such that

P T AP =

(
A11 A12

0 A22

)

.

We call A to be irreducible if no such P exists. This is equivalent to the fact, that there
exists p ∈ N such that the matrix Ap has strictly positive entries.

Theorem C.1 (Perron-Frobenius)
If the matrix A ∈ R

n×n is (pointwise) nonnegative and irreducible, then,

(i) the matrix A has a positive eigenvalue r, equal to the spectral radius of A;

(ii) there is a positive (right) eigenvector associated with the eigenvalue r;

(iii) the eigenvalue r has algebraic multiplicity 1.

Reference: Lancaster and Tismenetsky [9], Paragraph 15.3, Theorem 1.
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[6] J. Gärtner & S. A. Molchanov. Parabolic Problems for the Anderson Model. Comm.

Math. Phys., 132: 613-655, 1990.

[7] T. Kato. Perturbation theory for linear operators. Springer, New York, 1966.

[8] W. König. Self-repellent and self-attractive path measures in statistical physics. Habil-
itationsschrift, Technische Universität Berlin, 2000.

[9] P. Lancaster & M. Tismenetsky. The Theory of Matrices. Academic Press, Orlando,
1985.

[10] M. Reed & B. Simon. Methods of modern mathematical physics I: Functional Analysis.
Academic Press, New York, 1972.


