

Dr. Mark Hamilton Danu Thung

Summer semester 2017

Lecture: Riemann surfaces Exercise sheet 8

Exercise 1.

(a) Consider \mathbb{C}^n with its standard Hermitian inner product $(v,w) \mapsto \langle v,w \rangle$. Show that

$$\langle v, w \rangle = (v, w) - i(iv, w)$$

where (v, w) denotes the standard inner product on \mathbb{R}^{2n} .

Now consider an almost complex manifold X, i.e. a manifold equipped with an endomorphism J of TX such that $J^2=-\operatorname{id}_{TX}$. Further assume that X comes equipped with a Riemannian metric g which satisfies g(Jv,Jw)=g(v,w), i.e. J is g-orthogonal (or compatible). Then use the above to obtain a $Hermitian\ metric$ (i.e. a fiberwise Hermitian inner product) h on TX.

(b) Show that the imaginary part of h defines a two-form $\omega \in \Lambda^2 T^* X$. ω is called the fundamental form. Why is the fundamental form on a Riemann surface always closed?

Exercise 2. Let $X=\mathbb{C}/\Gamma$ be a torus and consider an arbitrary homomorphism $\pi_1(X)\to\mathbb{C}$. Show that this homomorphism can be realized as the period homomorphism of a smooth one-form $\alpha\in\mathcal{E}^1(X)$.

Exercise 3. Show that there is no meromorphic function on $X = \mathbb{C}/\Gamma$ with a single pole of order one.

Exercise 4. Show that for a torus $X = \mathbb{C}/\Gamma$, $H^0(X, \Omega^1) \cong \mathbb{C}$.

Please hand in your solutions at the start of the exercise class on Monday, July 3, 2017.