Definition der Reihen

Definition (4.3)

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{K} . Dann bezeichnet man die Folge $(s_n)_{n\in\mathbb{N}}$ gegeben durch

$$s_n = \sum_{k=1}^n a_k$$
 für $n \in \mathbb{N}$

als Reihe über $(a_n)_{n\in\mathbb{N}}$. Das Folgenglied s_n nennt man die n-te Partialsumme der Reihe.

Konvergente Reihen

Ist $(a_n)_{n\in\mathbb{N}}$ eine Folge über \mathbb{K} , dann verwendet man für die Folge $(s_n)_{n\in\mathbb{N}}$ der Partialsummen auch das Symbol

$$\sum_{n=1}^{\infty} a_n.$$

Definition (4.4)

Man sagt, die Reihe konvergiert gegen einen Grenzwert $a \in \mathbb{R}$ (oder \mathbb{C}), wenn die Folge $(s_n)_{n \in \mathbb{N}}$ gegen a konvergiert. Existiert kein solcher Grenzwert, dann spricht man von einer divergenten Reihe.

- Im Falle der Konvergenz verwendet man auch für den Grenzwert das Symbol $\sum_{n=1}^{\infty} a_n$.
- Wenn statt dessen ein uneigentlicher Grenzwert vorliegt, dann schreibt man auch

$$\sum_{n=1}^{\infty} a_n = +\infty \qquad \text{oder} \qquad \sum_{n=1}^{\infty} a_n = -\infty.$$

Beispiele für Grenzwerte von Reihen

Proposition (4.5)

Es gilt
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Proposition (4.6)

Für alle
$$x \in \mathbb{C}$$
 mit $|x| < 1$ gilt $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

(Diese Reihe ist unter dem Namen geometrische Reihe bekannt.)

Beweis was Proposition 4.6 (geometrische Reche) geg. x ∈ C mix |x| < 1 22g \(\frac{2}{2} \times^{n} = \frac{1}{1-x} Beh. Für jedes ne INs erfillt die n-te fotialsumme sn = 5 xk die Gleichung sn = $\frac{1-x^{n+1}}{1-x}$ Ind. - Schrift Seine IV, setze die Cyleiching für noveaus Dann logt \(\sum \times \times \x \k = \frac{\sum \times \k + \times \times \frac{7nd}{2} \times \frac{1-x^{n+1}}{2} + \times \

(=) Beh.) Wegen
$$|x| < 1$$
 gelt $\lim_{n \to \infty} x^{n+1} = 0$

$$= \sum_{n=0}^{\infty} x^n = \lim_{n \to \infty} \sum_{k=0}^{\infty} x^k = \lim_{n \to \infty} \frac{1-x^{n+1}}{1-x} = \frac{1-\lim_{n \to \infty} x^{n+1}}{1-x}$$

$$= \frac{1-0}{1-x} = \frac{1}{1-x}$$

$$= \frac{1-0}{1-x} = \frac{1}{1-x}$$

$$= \frac{1-x^{n+1}}{1-x}$$

$$= \frac{1-x^{n+1}}{1-x}$$

Übertragung der Grenzwertsätze auf Reihen

Satz (4.7)

Seien $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ konvergente Reihen über \mathbb{K} und $\lambda \in \mathbb{K}$. Dann sind auch die Reihen $\sum_{n=1}^{\infty} (a_n + b_n)$, $\sum_{n=1}^{\infty} (a_n - b_n)$ und $\sum_{n=1}^{\infty} \lambda a_n$ konvergent, und es gilt

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n , \quad \sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

$$\text{und } \sum_{n=1}^{\infty} \lambda a_n = \lambda \sum_{n=1}^{\infty} a_n.$$

Proposition (4.8)

Seien $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ konvergente Reihen über \mathbb{R} . Gilt $a_n \leq b_n$ für alle $n \in \mathbb{N}$, dann folgt $\sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} b_n$.

Beweis ion Satz 47 (no 1 Gleichung) geg zwei konvegente Reihen Zan, Zbn Seron a, b & K die Grenzwerte Beh. Auch die Reihe & (au+ bn) konvegiert, und der Grenzwet ist at b. Es seien (sn) non und (tr) new die Folgen m dur Partralsnumen von Zan, Zbn Beh: Die n-te Partrilsumme un won 19 2 (ant lan) ist geg durch un = sn+tn Dres willst Ind. Ind - And u1 = a1+6, = 5,+t1

Un+1 = 5 (ak+6k) = $\leq (a_{k+}b_{k}) + (a_{n+1} + b_{n+1}) =$ an+1 + bn+1 = 5 ak + 5 bk + an+1 + bn+1 = \(\alpha_k + \sum_{\lambda_k} \) \(\lambda_k + \sum_{\lambda_k} \) \(\lambda_k = \sum_{\lambda_{+1}} + \tau_{\lambda_{+1}} \) (=> B/ $\frac{\infty}{2}(\alpha_n + \beta_n) = \lim_{n \to \infty} u_n = \lim_{n \to \infty} (s_n + t_n)$ $sn + lim t_n = a + b$ L grenzwetratz du Addition

Das Cauchy-Kriterium

Satz (4.9)

Eine Reihe $\sum_{n=1}^{\infty} a_n = (s_n)_{n \in \mathbb{N}}$ in \mathbb{K} konvergiert genau dann, wenn für jedes $\varepsilon \in \mathbb{R}^+$ ein $N \in \mathbb{N}$ existiert, so dass

$$\left|\sum_{k=m+1}^n a_k\right| = |s_n - s_m| < \varepsilon$$

für alle $m, n \in \mathbb{N}$ mit $n \geq m \geq N$ gilt.

Folgerung (4.10)

Sei $\sum_{n=1}^{\infty} a_n$ eine konvergente Reihe in \mathbb{R} . Dann gilt $\lim_{n\to\infty} a_n = 0$.

Bevers ion Folgoing 4.10: geg ene konvogente Reihr 5 an Beh. lin an = 0 Nach dem Canchy-Kritoinm gilt: Fir judes E = R+ gilt es un N = M ml / ar/ < E Ynzm z N Instrumente gilt (setze n = m+1) 19 mm = 1 a mm - 0 / < E V m = N Dies ist gleichted mit lim am = 0.

Das Monotonie-Kriterium

Satz (4.11)

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge nichtnegativer reeller Zahlen. Genau dann konvergiert die Reihe $\sum_{n=1}^{\infty} a_n$, wenn die Folge $(s_n)_{n\in\mathbb{N}}$ der Partialsummen beschränkt ist.

Satz (4.12)

Die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert.

	Beweis des Monotonie-Kriterius:
	geg. Folge (an) NEW mit an > 0 YNEN
	Se sn juveils du n-de Prhalshmine, fin alle me M
	Beh = an konvergent (sn) new ist ene beautoantete Folge
	bestvantete Folge
1	(Sn) new monoton wachsend (denn: Sn+1 = Sn+ an 2 Sn H NEIN) Rekannd: Jede beschränkte, monoton wachrende Folge
cn)	weeksend (denn: Sn+1 = Sn+ an > Sn H NEIN)
	bekannd: Jede beschränkte, monoton wachrende Folge
	"=>" Da (5n) ren li Voranssetzn-z konvergiert, 1st diese Folge auch beschränbt.
	Is these Folge auch beschoonly

Sate 410: Die sog hamonische Riche 2 n
Satz 4 12: Die sog hamonische Riche 5 1 ist dwergent
zeige: Die Folge (sn) nem der Partrulsummen der Reihe ist un-
besolvant. 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+
the alle PEN mit p=2 gill the die 2°-te Partialsumme
Fir alle $p \in \mathbb{N}$ wit $p \ge 2$ gill fin die 2^p -te Partialsumme $S_{2^p} = \sum_{m=1}^{2^p} \frac{1}{m} = 1 + \sum_{k=1}^{2^p} \sum_{m=2^k+1}^{2^k} \frac{1}{m} > 1 + \sum_{k=1}^{2^p} \frac{1}{m-2^{k-1}+1}$
$= 1 + \sum_{k=1}^{p} 2^{k-1} \frac{1}{2^k} = 1 + \sum_{k=1}^{p} \frac{1}{2} = 1 + P_2 = \frac{1}{2}(p+2)$
hezon (im 2 (p+2) = + 00 ist die Folge der Botral summen unbeschroubt.
Monotorie-Witerahm - Die Reihi divergiett.

Das Leibniz-Kriterium

Satz (4.13)

Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge nichtnegativer reeller Zahlen mit der Eigenschaft $\lim_n a_n = 0$. Dann konvergiert die Reihe $\sum_{n=0}^{\infty} (-1)^n a_n$.

Anwendungsbeispiel:

Die Reihe

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

ist konvergent. Man kann zeigen, dass der Grenzwert gleich ln(2) ist.

Beweis des Leibniz-Kostorhus (Satz 4.13) gog (an) news wit an > 0 the No, monoton falland lun an = 0 Sei son javoils die h-te Botralonnume, toir ne No Ansatz: Betrachte (Szn) neno ud (Szn.) NENO S2(n+1) = S2n+2 = S2n - 92n+1 + A2n+2 & S2n Also ist die Folge (52n) ne No Monoton fallend S2(141)+1 = S2n+3 = S2n+1 + a2n+2 - a2n+3, > S2n+1 Also ist diese Folge monoton wachsend

an Boden: Szn > Szn+1, Szn+1 & Szn+2 Vne No wegen Sznt = Szn 5... = So etrenso (Szn+1) ne is etrenso Jede bestrant monoton vachende ode Jallande Folge konnegion S-5' = lim 52n - lm 52n+1 = lm (52n-52n+1) = lim (22n+1 = 0) Sei EER+ lim son= S = Flack; YNZN,: |son-5|< E Imm Song = S => FNZEN : AND NZ . |SZN+1-S| < E

Sei min N = max / 2N,+1, 2Nz+1] ud n = N. 1 Fell . n goode, n = 2m fix cin m = N 2m 22N,+1 22N, => m 2 N, |sn-5|=|szm-5| < E 2 Fall nungerade. n=2m+1 for ein MEN 2m+1 > 2 Nz+1 => m > Nz =>> |Sh-5|=|Szm+1-5| < E also (asyssamt: Isn-s) < ε ∀a≥ N.]

Absolut konvergente Reihen

Definition (4.14)

Eine Reihe $\sum_{n=1}^{\infty} a_n$ in \mathbb{K} wird absolut konvergent genannt, wenn die Reihe $\sum_{n=1}^{\infty} |a_n|$ der Absolutbeträge konvergiert.

Proposition (4.15)

Jede absolut konvergente Reihe konvergiert im Sinne von Definition 4.4.

Beweis vox Prop. 4.15 NS geg. Folge (an) NEN in K. Vor. S lan it konvergent 2 29. San konvergent Ansate Uberprife das Cauchy- Kreterlum M Sei E = IR+ 5 land konvegiot = Cauchy-Kit fin chèse tente lufert ein NE N' mt 5 larle E Vuznz N D- Ungl \Box = 15 ax 1 < E = Candy- Keterhan for die Reihe = an ist obill.

Majoranten- und Minorantenkriterium

Satz (4.16)

Sei $\sum_{n=1}^{\infty} c_n$ eine konvergente Reihe in \mathbb{R}_+ und $\sum_{n=1}^{\infty} a_n$ eine Reihe in \mathbb{K} mit $|a_n| \leq c_n$ für fast alle (d.h. alle bis auf endlich viele) $n \in \mathbb{N}$. Dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.

Folgerung (4.17)

Sei $\sum_{n=1}^{\infty} c_n$ eine divergente Reihe in \mathbb{R}_+ und $\sum_{n=1}^{\infty} a_n$ eine Reihe in \mathbb{R} mit $a_n \geq c_n$ für fast alle $n \in \mathbb{N}$. Dann ist auch $\sum_{n=1}^{\infty} a_n$ divergent.

Boweis ion Salz 4,16 Andret man in eine Reihe Zan endlich welle Folgensphider, so andert das mobiles am Konvergenzverhalten (wohl aber am Grenzwert!). donn: Ser & an' one Rahe and NEN mit an = an fair alle n > N üboporte: Said (5n) new and (5n') new die entsprechanden Folgen der Pertialsummen dans gilt Sn' = Sn+a mit a = \((an'-an) \text{ Yn > N} Des zeigt, das (sn) nen genen dann kornegiot, wenn (sn') NEN bornesiet

Deshalt komen wi toranseten, dass lants on fair alle ne Nerfillt ist Mosporife run des Cauchy- Kriterhun Frio ∑lant Sei EERt ∑ on konveyich - FNEW : YnzmaN. Eck < E (+) -> YN>M>N: \(\frac{1}{2} | 9_E | < \(\epsilon \) Country-kert. Elan list konvergent. NEN grot,

forwerding: \sum_{n=1}^{1} to konvergent bacits gezerelt: \(\sum_{n=1}^{\text{N}} \frac{1}{n(n+1)} \) ist konvergent (General 1) $-\infty$ $\sum_{n=1}^{\infty} \frac{2}{n(n+1)}$ ist much borroagent. Ankoden gelt fair alle $n \in |N|$ die Regunsalenz $\frac{1}{n^2} \le \frac{2}{n(n+1)} \iff n^2 \ge \frac{1}{2} n(n+1)$ - N2 > 2 N2+ 2 N - 2 N2 > 2 N - > N> 1 also: $\frac{1}{n^2} \leq \frac{2}{n(n+1)}$ of fix alle ne IN establish Sout folgt die (absolute) Konvergenz von Z 1/22 aus den Majorantenkriterium