Aufgabe H17T3A4 (12 Punkte)

Es sei α die reelle Zahl $\sqrt[3]{2+\sqrt{2}} \in \mathbb{R}$, und es sei ζ die primitive dritte Einheitswurzel $e^{2\pi i/3} \in \mathbb{C}$.

- (a) Bestimmen Sie das Minimalpolynom f von α über \mathbb{Q} .
- (b) Es sei $\beta = \sqrt[3]{2 \sqrt{2}} \in \mathbb{R}$. Zeigen Sie, dass für den Zerfällungskörper $L \subseteq \mathbb{C}$ von f in \mathbb{C} gilt $L = \mathbb{Q}(\alpha, \beta, \zeta)$.
- (c) Zeigen Sie, dass die reelle Zahl $\sqrt[3]{2}$ in L liegt, und folgern Sie, dass die Galoisgruppe $Gal(L|\mathbb{Q})$ einen Normalteiler vom Index 6 besitzt.

 $L\ddot{o}sung$:

zu (a) Zunächst bestimmen wir ein Polynom über \mathbb{Q} mit $\alpha = \sqrt[3]{2 + \sqrt{2}}$ als Nullstelle. Es gilt

$$\alpha = \sqrt[3]{2 + \sqrt{2}} \quad \Rightarrow \quad \alpha^3 = 2 + \sqrt{2} \quad \Rightarrow \quad \alpha^3 - 2 = \sqrt{2} \quad \Rightarrow \quad (\alpha^3 - 2)^2 = 2$$

$$\Rightarrow \quad \alpha^6 - 4\alpha^3 + 4 = 2 \quad \Rightarrow \quad \alpha^6 - 4\alpha^3 + 2 = 0.$$

Setzen wir $f = x^6 - 4x^3 + 2 \in \mathbb{Q}[x]$, dann gilt also $f(\alpha) = 0$. Außerdem ist f normiert, und nach dem Eisenstein-Kriterium (angewendet auf die Primzahl 2) auch irreduzibel über \mathbb{Q} . Insgesamt ist f also das Minimalpolynom von α über \mathbb{Q} .

zu (b) Wir zeigen, dass $N=\{\alpha,\zeta\alpha,\zeta^2\alpha,\beta,\zeta\beta,\zeta^2\beta\}$ die Menge der komplexen Nullstellen von f ist. Setzen wir $g=x^2-4x+2$, dann gilt $f(x)=g(x^3)$, und die p-q-Formel zeigt, dass $2\pm\sqrt{2}$ die beiden reellen Nullstellen von g sind. Nun gilt für $k\in\{0,1,2\}$ wegen $\zeta^{3k}=(\zeta^3)^k=1^k=1$ jeweils $f(\zeta^k\alpha)=g((\zeta^k\alpha)^3)=g(\zeta^{3k}\alpha^3)=g(2+\sqrt{2})=0$ und $f(\zeta^k\beta)=g(\zeta^{3k}\beta^3)=g(2-\sqrt{2})=0$. Dies zeigt, dass N jedenfalls in der Nullstellenmenge von f enthalten ist.

Weil ζ eine primitive dritte Einheitswurzel ist, sind durch $1, \zeta, \zeta^2$ drei verschiedene komplexe Zahlen gegeben. Wegen $\alpha, \beta \neq 0$ sind auch die drei Elemente $\alpha, \zeta\alpha, \zeta^2\alpha$ verschieden, ebenso $\beta, \zeta\beta, \zeta^2\beta$. Wegen $|\zeta| = 1$ und $|\alpha| > |\beta|$ gilt $|\zeta^k\alpha| > |\zeta^\ell\beta|$ für beliebige $k, \ell \in \{0, 1, 2\}$. Damit ist insgesamt gezeigt, dass N ein sechselementige Teilmenge von $\mathbb C$ ist. Weil f als Polynom vom Grad 6 nicht mehr als sechs verschiedene Nullstellen besitzt, ist N also nicht nur in der Nullstellenmenge von f enthalten, sondern gleich der Nullstellenmenge von f.

Nach Definition des Zerfällungskörpers gilt also $L=\mathbb{Q}(N)$. Wir beweisen nun noch die Gleichung $\mathbb{Q}(N)=\mathbb{Q}(\alpha,\beta,\zeta)$. Mit $\alpha,\beta,\zeta\in\mathbb{Q}(\alpha,\beta,\zeta)$ sind auf Grund der Abgeschlossenheit von $\mathbb{Q}(\alpha,\beta,\zeta)$ auch alle Elemente aus N in diesem Körper enthalten. Daraus folgt $\mathbb{Q}(N)\subseteq\mathbb{Q}(\alpha,\beta,\zeta)$. Für die umgekehrte Inklusion bemerken wir, dass wegen $\alpha,\beta\in N$ auch $\alpha,\beta\in\mathbb{Q}(N)$ gilt. Aus $\alpha,\zeta\alpha\in\mathbb{Q}(N)$ folgt auch $\zeta=(\zeta\alpha)/\alpha\in\mathbb{Q}(N)$. Damit ist insgesamt $\{\alpha,\beta,\zeta\}\subseteq\mathbb{Q}(N)$ nachgewiesen, und daraus folgt $\mathbb{Q}(\alpha,\beta,\zeta)\subseteq\mathbb{Q}(N)$.

zu (c) Es gilt $(\alpha\beta)^3 = \alpha^3\beta^3 = (2+\sqrt{2})(2-\sqrt{2}) = 4-2 = 2$, also ist $\alpha\beta$ eine Nullstelle von $g = x^3 - 2$. Außerdem gilt $\alpha\beta \in \mathbb{R}$. Weil $\sqrt[3]{2}$ die einzige reelle Nullstelle von g ist, folgt $\alpha\beta = \sqrt[3]{2}$ und somit $\sqrt[3]{2} \in \mathbb{Q}(\alpha,\beta,\zeta) = L$. Wegen $\{\sqrt[3]{2},\zeta\} \subseteq L$ ist auch $N_1 = \{\zeta^k\sqrt[3]{2} \mid k \in \{0,1,2\}\}$ eine Teilmenge von L, und somit ist $M = \mathbb{Q}(N_1)$ ein Zwischenkörper von $L|\mathbb{Q}$. Für jedes $k \in \{0,1,2\}$ gilt $g(\zeta^k\sqrt[3]{2}) = (\zeta^k\sqrt[3]{2})^3 - 2 = \zeta^{3k} \cdot 2 - 2 = 1 \cdot 2 - 2 = 0$, und wegen $\sqrt[3]{2} \neq 0$ sind die Elemente $\zeta^k\sqrt[3]{2} \in \mathbb{C}$ verschieden. Dies zeigt, dass N_1 die Nullstellenmenge von g ist, und folglich ist M der Zerfällungskörper von g über \mathbb{Q} .

Als Zerfällungskörper eines Polynoms ist M normal über \mathbb{Q} , und laut Galoistheorie ist $U = \operatorname{Gal}(L|M)$ folglich ein Normalteiler von $G = \operatorname{Gal}(L|\mathbb{Q})$. Außerdem gilt $(G:U) = [M:\mathbb{Q}]$. Um diesen Erweiterungsgrad zu bestimmen, bemerken wir zunächst, dass g das Minimalpolynom von $\sqrt[3]{2}$ über \mathbb{Q} ist; denn g ist normiert, nach dem Eisenstein-Kriterium (mit p=2) irreduzibel, und es gilt $g(\sqrt[3]{2}) = 0$. Daraus folgt zunächst $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = \operatorname{grad}(g) = 3$. Das Polynom $h = x^2 + x + 1$ ist normiert und erfüllt $h(\zeta) = 0$. Wäre es über $\mathbb{Q}(\sqrt[3]{2})$ reduzibel, dann müssten wegen $\operatorname{grad}(h) = 2$ die beiden Nullstellen ζ, ζ^2 in $\mathbb{Q}(\sqrt[3]{2})$ liegen. Aber dies ist nicht der Fall, denn einerseits gilt $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$, andererseits aber $\zeta, \zeta^2 \notin \mathbb{R}$. Also ist h das Minimalpolynom von ζ über $\mathbb{Q}(\sqrt[3]{2})$, und wir erhalten

$$[\mathbb{Q}(\sqrt[3]{2},\zeta):\mathbb{Q}(\sqrt[3]{2})] = [\mathbb{Q}(\sqrt[3]{2})(\zeta):\mathbb{Q}(\sqrt[3]{2})] = \operatorname{grad}(h) = 2.$$

Schließlich gilt noch $\mathbb{Q}(\sqrt[3]{2},\zeta) = \mathbb{Q}(N_1)$. Denn mit $\sqrt[3]{2},\zeta \in \mathbb{Q}(\sqrt[3]{2},\zeta)$ gilt auch $N_1 \subseteq \mathbb{Q}(\sqrt[3]{2},\zeta)$ auf Grund der Abgeschlossenheit des Körpers unter Multiplikation, und damit $\mathbb{Q}(N_1) \subseteq \mathbb{Q}(\sqrt[3]{2},\zeta)$. Umgekehrt enthält $\mathbb{Q}(N_1)$ die Elemente $\sqrt[3]{2}$ und $\zeta\sqrt[3]{2}$, also auch $\zeta = (\zeta\sqrt[3]{2})/\sqrt[3]{2}$. Somit gilt $\{\sqrt[3]{2},\zeta\} \subseteq \mathbb{Q}(N_1)$, und daraus folgt $\mathbb{Q}(\sqrt[3]{2},\zeta) \subseteq \mathbb{Q}(N_1)$. Damit ist die Gleichung bewiesen. Wir können nun die Gradformel anwenden und erhalten

$$(G:U) = [M:\mathbb{Q}] = [\mathbb{Q}(N_1):\mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{2},\zeta):\mathbb{Q}] =$$

 $[\mathbb{Q}(\sqrt[3]{2},\zeta):\mathbb{Q}(\sqrt[3]{2})] \cdot [\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 2 \cdot 3 = 6.$

Damit ist gezeigt, dass G einen Normalteiler vom Index 6 besitzt.